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This letter employs Hall magnetohydrodynamic simulations to study X-lines formed during the
reconnection of magnetic fields with differing strengths and orientations embedded in plasmas of
differing densities. Although random initial perturbations trigger the growth of X-lines with many
orientations, a few robust X-lines sharing an orientation consistent with the direction of maximal
outflow speed, as predicted by Swisdak and Drake �Geophys. Res. Lett. 34, L11106 �2007��
eventually dominate the system. Reconnection in the geometry examined here contradicts the
suggestion of Sonnerup �J. Geophys. Res. 79, 1546 �1974�� that it occurs in a plane normal to the
equilibrium current. At late time, the X-lines’ growth stagnates, leaving them shorter than the
simulation domain. © 2010 American Institute of Physics. �doi:10.1063/1.3494218�

According to the frozen-in theorem of magnetohydrody-
namics �MHD�, two adjoining collisionless plasmas with dif-
ferent densities, temperatures, and magnetic fields cannot al-
ter their magnetic topology, and hence transport across their
common boundary is prohibited. Magnetic reconnection vio-
lates this constraint as, for example, when solar wind plasma
penetrates the Earth’s magnetosphere or fusion plasma es-
capes from a tokamak core during a disruption. The ques-
tions of whether and how reconnection takes place for arbi-
trary conditions are important for these and other systems.

Consider two plasmas threaded by magnetic fields B1

and B2 of arbitrary relative orientation and separated by a
planar surface, the x-z plane in Fig. 1. We define the y-axis to
be perpendicular to the discontinuity plane, the z-axis to par-
allel the X-line, and the x-axis to complete the right-handed
triplet. Let � be the shear angle between the two fields and �
be the unknown angle between B1 and the X-line. In the
highly symmetric cases often considered in theory and simu-
lations � can frequently be easily deduced �e.g., �=90° for
B1=−B2�. For more general configurations, however, no ob-
vious choice exists, nor is it even clear that a single X-line
orientation will dominate the system. Sonnerup1 argued that
� is determined by requiring that the currents in the recon-
nection plane vanish or, equivalently, that the components of
the fields parallel to the X-line �the guide fields� be equal. As
a consequence, no reconnection occurs in this scenario when
cos ��B1 /B2 �assuming, as in Fig. 1, B1�B2�, since no
component of the field changes sign across the discontinuity.

Others2,3 have questioned this choice on both theoretical
and observational grounds. For example, the Sonnerup crite-
rion implies that reconnection with small shear angles occurs
infrequently, but in situ observations in the solar wind reveal
the contrary.4–7 In fact, most reconnection events in the solar
wind occur at shear angles �90°.5,7

As an alternative, Swisdak and Drake8 proposed that the

X-line orients itself so as to maximize the speed of the
Alfvénic outflow. The outflow speed for plasmas with recon-
necting components B1x and B2x and mass densities �1 and �2

is8,9

vout
2 =

B1x + B2x

4�
� �1

B1x
+

�2

B2x
�−1

. �1�

Writing this expression in terms of � and maximizing with
respect to � for a fixed � determines the X-line orientation.
Since vout always has a local maximum between �=0 and
�=�, reconnection occurs for any ��0. An alternative sug-
gestion is that maximizing a related quantity, the normalized
reconnection rate, determines the X-line orientation.10

In this letter, we perform two-dimensional �2D� and
three-dimensional �3D� two-fluid simulations of reconnec-
tion between asymmetric plasmas in order to explore the
generic development of X-lines. We first use a 2D simulation
to demonstrate reconnection occurs in a system with small
shear angle. Since 2D simulations artificially impose the ori-
entation of the X-line, studying the full development of the
system necessitates a 3D domain. In previous investigations
of 3D Hall reconnection,11–13 the initial configuration of an-
tiparallel fields confined nascent X-lines to one plane be-
tween the two plasmas. Initially localized X-lines grew in the
direction of the electron current and, in some cases, extended
over almost the entire computational domain. For the more
general situation considered here, X-lines in the linear stage
of development grow on different planes, known as rational
surfaces, and undergo more complex interactions. We find
that X-lines of several different orientations are excited at
early times, but eventually only a few modes dominate. In-
terestingly, and in contrast to previous investigations,11,12 the
X-lines’ length stagnates at a finite value that is shorter than
the simulation domain.

For our initial equilibrium we employ a double tearing
mode configuration with magnetic field componentsa�Electronic mail: swisdak@umd.edu.
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Bx�y� = tanh� y + Ly/4
w0

� − tanh� y − Ly/4
w0

� − 1, �2�

and

Bz�y� = −
1
�2

tanh� y + Ly/4
w0

� +
1
�2

tanh� y − Ly/4
w0

� + 2�2,

�3�

where w0=0.5 is the initial width of the current sheet �the
normalization is described later�. The asymptotic fields have
components �Bx ,By ,Bz�= �1,0 ,�2� and �−1,0 ,2�2�. The to-
tal pressure is balanced using a nonuniform number density n

n =
1

T
�Pa −

B2

2
� , �4�

where the temperature T=1.0 is uniform, B is the magnitude
of the magnetic field, Pa=5.5 is a constant, and the factor of
2 in the denominator arises from our code’s normalization.
For this configuration �1=4, �2=1, B1=�3, B2=3, and the
shear angle �=54.7°. This system represents the limiting
case described by Sonnerup1 since cos �=B1 /B2.

The numerical simulations use the Hall-MHD code
F3D,14 which explicitly advances the magnetic field, mass
density, and ion velocity with the second-order trapezoidal
leapfrog method15 in time and fourth-order finite differencing
in space. Periodic boundary conditions are applied in all di-
rections. Variables are measured in normalized units: lengths
to the ion inertial length di= �mic

2 /4�n0e2�1/2, velocities to
the Alfvén speed cA=B0 / �4�min0�1/2, densities to an arbi-
trary value n0, pressures to P0=min0cA

2 , magnetic fields to an
arbitrary field strength B0, temperatures to micA

2 , and electric
fields to E0=cAB0 /c. Here c is the speed of light, and mi and
e are the mass and charge of the ions, respectively.

The grid cells have a length of 0.2 on each side. No
explicit viscosity or resistivity is applied, but a fourth-order
diffusion coefficient of 10−3 damps noise at the grid scale.
The electron-to-ion mass ratio is me /mi=1 /25. Since the

electron inertial length de=di
�me /mi equals the cell size,

the simulations do not describe the details of the electron
dynamics.

To determine whether reconnection can occur between
the fields of Eqs. �2� and �3�, we first perform a 2D simula-

tion. The computational domain has size Lx	Ly =51.2
	25.6 and no variations are allowed in the z direction �i.e.,
� /�z=0�. We initiate reconnection with random magnetic
perturbations of amplitude 10−3B0. The perturbations are
generated in k-space with maximum wavenumbers of
kx=ky =15. Setting the initial perturbation amplitude 100
times smaller produces similar final results.

During the early stages of the simulation, strong out-of-
plane currents develop, indicating the existence of magnetic
reconnection. As the system evolves, multiple X-lines form,
move along the x-axis, and merge, eventually leaving just
one reconnection site. The out-of-plane current density of the
lower current sheet after this merging is shown in Fig. 2.
Following some initial fluctuations, caused by the interac-
tions of multiple X-lines, the normalized reconnection rate
stabilizes at a relatively steady value of 	0.02.

This simulation demonstrates that reconnection can oc-
cur in a plane that includes equilibrium currents even when
Sonnerup’s model1 suggests it should not. However, since
the geometry of the computational domain determines the
X-line orientation it did not establish whether an optimal
orientation exists. Doing that requires a full 3D system, in
which X-lines are free to develop in any direction. Our 3D
simulation uses the same initial equilibrium as the 2D run,
but in a computational domain of size Lx	Ly 	Lz=51.2
	51.2	409.6. Initial perturbations on the magnetic field in
the z direction have a maximum wavenumber of kz=5.

In the linear theory of the tearing mode in periodic sys-
tems, reconnection can only occur at discrete locations,
called rational surfaces, where k ·B0=0 �k is the wavenum-
ber of the linear mode and B0 is the equilibrium field�. Due
to the periodicity of the domain, the wavenumbers of the
linear instability must take the form kx=2�m /Lx and
kz=2�n /Lz, where m and n are integers. This establishes
rational surfaces at the locations satisfying

Bx�y�
Bz�y�

= −
nLx

mLz
. �5�

Since Lz /Lx=8 several linear modes with n�0 can grow in
the current layer. Once they exit the linear regime interac-
tions between different modes allow them to no longer re-
spect the rational surfaces.

To reiterate, the model of Sonnerup1 predicts that recon-
nection will not occur in this system. In contrast, Swisdak
and Drake8 predict that reconnection will occur with the
X-line at an angle � given by the root of the equation

FIG. 1. Field line geometries related to the Sonnerup �Ref. 1� hypothesis.
Plasmas with fields B1 and B2 occupy the spaces y
0 and y�0. In both
panels, the X-line parallels ẑ, reconnection occurs in the x-y plane, and the
fields are oriented such that the components parallel to the X-line are equal.
Sonnerup �Ref. 1� proposed that reconnection occurs when the
x-components of B1 and B2 are antiparallel �a�, and that it otherwise does not
�b�.

FIG. 2. �Color online� Out-of-plane current density Jz for the lower sheet in
the 2D simulation at t=156 with overplotted magnetic field lines. The other
sheet exhibits similar behavior.
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�2

�1
sin2 �
sin�� − 2�� −

B2

B1
sin�2� − 2���

+
B2

B1
sin2�� − ��
sin 2� +

B2

B1
sin�� − 2��� , �6�

lying between 0 and �. Numerically solving for the param-
eters of the present system—B2 /B1=�3, �2 /�1=1 /4, and
�=54.7°—yields �=34.3°.

The early evolution of the 3D simulation mirrors that of
the 2D run, in that both current sheets develop multiple
X-lines separated by bulges in which reconnected flux accu-
mulates. In Fig. 3 we present cuts at t=84 �relatively early in
the simulation� of Jz in the x-y plane for four values of z
separated by Lz /4. Unlike the 2D simulation of Fig. 2, the
X-lines need not parallel the z-axis.

While in the 2D case topological constraints make the
identification of X-lines straightforward, in three dimensions
the situation is more complicated, particularly when, as is the
case here, no 3D nulls exist in the system.16 In this letter, we
take an empirical approach to identifying reconnection
sites by examining isosurfaces of the current density Jxz

=�Jx
2+Jz

2. �We use Jxz in order to avoid favoring a particular
X-line orientation in the x-z plane, although in practice we
find that Jz�Jx.� Figure 4 shows two values of the isosurface
level at two different times. The regions of strong current,
which map the X-lines, form extended structures in the x-z
plane at various angles with respect to the z-axis. At t=84
�panels �a� and �b�� multiple X-lines are present, but by t
=201 �panels �c� and �d�� only a few distinct orientations
dominate the system. Although the predominant X-line ori-
entation at t=201 is horizontal, there are some features that
appear to be aligned with the asymptotic magnetic fields.
Although many of the weaker examples �for instance, the
thin structures at z�40 and x�20 in panel �c�� are field-
aligned currents not directly associated with reconnection,
the strongest instances �e.g., the structure at −170�z
�−120 and −10�x�10 in panel �d�� correspond to X-lines.

Reconnection of the initial asymptotic fields cannot be oc-
curring at such sites and, in fact, cuts through these features
�not shown� reveal that the local reconnecting fields differ
significantly from the initial asymptotic values.

To evaluate the orientation of the X-lines quantitatively,
we use the Canny method,17 a standard image processing
tool that finds edges by looking for local maxima of the
gradient, calculated using the derivative of a Gaussian filter.
The method uses two thresholds to detect strong and weak
edges and includes weak edges in the output only if they are
connected to strong edges. In Fig. 5, the edges of the isosur-
face projection of Fig. 4�d� are shown in black. Due to im-
perfections in either the image data or the edge detector,
there may be missing points on the desired curve.

The grouping of the extracted edge features to determine
the X-line orientation is done with the Hough transform.18

For each image pixel and its neighborhood, the Hough trans-
form algorithm determines whether an edge exists at that
pixel. The pixels lying along the highest values of parametric
lines represent potential lines in the input image. Small gaps
are automatically filled, and the lines are identified while a
threshold is applied so that only lines longer than that value
are considered. The thicker �red� lines in Fig. 5 are those
identified by the Hough transform, and clearly map the
X-line. By simply averaging the various orientations identi-
fied in Fig. 5, we find that at t=201 the X-line is oriented at

FIG. 3. �Color online� Slices of Jz in the x-y plane of the 3D domain at
t=84. The upper �lower� current sheet is denoted by bright �dark� areas
representing positive �negative� currents.

FIG. 4. �Color online� Top view of the isosurfaces of Jxz in the upper current
layer at t=84 �panels �a� and �b�� and t=201 �panels �c� and �d��. Panels �a�
and �c� are at an isosurface level of 1.3, panels �b� and �d� at 1.7. The axes
have been shifted to put the prominent features near the center. Solid lines
denote the asymptotic magnetic fields and the dashed line the expected
orientation of the X-line according to Swisdak and Drake �Ref. 8�.

FIG. 5. �Color online� Edges of the projection of the strong current density
at t=201 on the x-z plane and detected by the Canny method are shown in
black. The thicker �red� lines are the result of the Hough transform.

110704-3 Three-dimensional simulations of the orientation… Phys. Plasmas 17, 110704 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://php.aip.org/php/copyright.jsp



an angle of ��0.6
8.5° with respect to the z-axis, which
corresponds to �sim=arctan�1 /�2�+��35.9° 
8.5°.

This orientation agrees with the prediction of Swisdak
and Drake,8 �SD=34.3°. The existence of many short X-lines
with differing orientations early in the simulation demon-
strates that Lz does not play a limiting role and hence that the
size of the computational domain probably does not affect
our results.

The value of �SD predicted by Swisdak and Drake8 is the
angle that maximizes the outflow speed from the X-line
when the reconnecting fields have their asymptotic initial
values. The strong diagonal features in Fig. 4�d� discussed
above, on the other hand, are due to the reconnection of
significantly perturbed fields. �The density contrast, �2 /�1,
remains essentially constant.� Applying the criterion of Eq.
�6� to the perturbed fields yields orientations roughly consis-
tent with those observed in the simulation. It is unclear, how-
ever, if there is some overarching reason why the local re-
connecting fields would be reconfigured in such a way as to
generate X-lines that parallel the original asymptotic fields,
or if the alignment in this case is purely coincidental.

It has been suggested �Ref. 10� that maximizing the nor-
malized reconnection rate, and not the outflow speed from
the X-line, determines the orientation. If the aspect ratio of
the diffusion region �R, assumed to be �1� remains indepen-
dent of the upstream properties of the plasma �which has not
been established in 3D simulations� Cassak and Shay9 argue
that the rate E varies as

E 	 2R
vout

c
� B1xB2x

B1x + B2x
� . �7�

In Fig. 6, the solid and dashed lines trace the dependence of
vout and E on � for the parameters of our simulations; the
vertical line denotes �sim. The dashed line peaks at an angle,
�E=31.7°, which is slightly farther away from the value
measured in the simulation. However, given the broad peaks
generated by both criteria and the uncertainties associated
with determining �sim, we cannot reliably discriminate be-
tween the two. The similarities between the quantities being
maximized means that doing so requires extreme, difficult-
to-simulate choices of parameters �e.g., B2 /B1�1�.

As Fig. 4 shows, the lengths of the X-lines barely change
between t=84 and t=201; in fact most growth occurs early

in the simulation, before significant magnetic flux has recon-
nected. We find that the growth of a given X-line is usually
throttled by the interaction of its current with islands of re-
connected flux from other X-lines at different rational sur-
faces. This effect will not be present in antiparallel reconnec-
tion �where all X-lines are confined to a single plane� and
may explain why our result conflicts with the finding of
Huba and Rudakov11 that X-lines continually grow in the
current direction. Shay et al.12 saw stagnation of the X-line
length for some initial current sheet widths, although not for
the value used here �w0=0.5�.

Our results suggest that reconnection can occur in any
system where the adjoining fields are not parallel and in
which other processes do not suppress reconnection �e.g.,
diamagnetic drifts19�. The relatively broad peak of vout in
Fig. 6 may mean that, for a given set of asymptotic condi-
tions, X-lines do not take on a single orientation but instead
exhibit a distribution of orientations. Further 3D simulations
are needed to test this hypothesis.

We are not aware of any other model that does a better
job of predicting �. We suggest that on an encounter with
reconnection events in which highly asymmetric conditions
exist, or while numerically reconstructing such an event, the
Swisdak and Drake8 criterion can cautiously be applied to
determine the orientation of the reconnection X-line, as has
already been done by Phan et al.6 and Teh and Sonnerup.3
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