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ABSTRACT

The pressure–strain interaction describes the rate per unit volume that energy is converted between bulk flow and thermal energy in neutral
fluids or plasmas. The term has been written as a sum of the pressure dilatation and the collisionless analog of viscous heating referred to as
Pi! D, which isolates the power density due to compressible and incompressible effects, respectively. It has been shown that Pi! D can be
negative, which makes its identification as collisionless viscous heating troubling. We argue that an alternate decomposition of
pressure–strain interaction can be useful for interpreting the underlying physics. Since Pi! D contains both normal deformation and shear
deformation, we propose grouping the normal deformation with the pressure dilatation to describe the power density due to converging/
diverging flows, with the balance describing the power density purely due to shear deformation. We then develop a kinetic theory
interpretation of compression, normal deformation, and shear deformation. We use the results to determine the physical mechanisms that
can make Pi! D negative. We argue that both decompositions can be useful for the study of energy conversion in weakly collisional or
collisionless fluids and plasmas, and implications are discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0125248

I. INTRODUCTION
Weakly collisional plasmas are important in many settings, from

heliophysics to planetary magnetospheres to astrophysics.1 A host of
plasma phenomena take place in such settings, including magnetic
reconnection, plasma turbulence, and collisionless shocks. The dearth
of collisions in many settings of interest implies that these plasmas can
be far from local thermodynamic equilibrium (LTE). In the study of
these physical phenomena, one of the forefront research questions is
how energy is converted during each process, especially when non-
LTE effects greatly affect the dynamics at the micro-, meso-, and even
the macro-scale.2

A quantity contributing to non-LTE energy conversion that has
received intense scrutiny over the last few years is the pressure–strain
interaction, written as!ðP # $Þ # u, where P is the pressure tensor of a
species of a fluid or plasma and u is its bulk flow velocity.3–6 In terms
of the phase space density f (the number of particles per unit position
space volume and velocity space volume), the bulk flow velocity is
u ¼ ð1=nÞ

Ð
d3vvf , where v is the velocity space coordinate,

n ¼
Ð
d3vf is the number density, and the integrals are over all veloc-

ity space, and the elements of the pressure tensor P are (classically and
non-relativistically) Pjk ¼ m

Ð
vj 0v0kfd

3v, where j and k are indices for

the spatial dimensions, m is the constituent particle mass, and v0

¼ v ! u is the peculiar (random) velocity.
To see why pressure–strain interaction is important for energy

conversion, consider the thermal (internal) energy density
Eth ¼ 3P=2 ¼

Ð
1
2mv02
" #

fd3v, where P ¼ ð1=3ÞtrðPÞ ¼ ð1=3ÞPjj is
the effective pressure, using the Einstein summation convention for
repeated indices here and throughout. Its time evolution is described
by7

@Eth
@t
þ $ # ðEthuÞ ¼ !ðP # $Þ # u! $ # qþ _Qvisc;coll; (1)

where q ¼
Ð
ð1=2Þmv02v0fd3v is the vector heat flux density and

_Qvisc;coll is the volumetric viscous heating rate via collisions, where we
use the word viscous regardless of the functional form of the collisional
heating. The time evolution of the bulk kinetic energy density Ek
¼ ð1=2Þmnu2 is given by7

@Ek
@t
þ $ # uEk þ u # Pð Þ ¼ P # $ð Þ # uþ nu # Fþ Rcoll; (2)

where F is the net body force and Rcoll is the inter-species collisional
drag force power density. The pressure–strain interaction !ðP # $Þ # u
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arises in each equation with opposite signs, so it describes the rate per
unit volume that energy is converted between bulk flow and thermal
energy. The minus sign is included in the definition so a positive value
describes a contribution toward increasing thermal energy density.
While these equations have been known for years, a watershed
moment came recently when it was emphasized that the pressure–
strain interaction is key to describing changes in thermal energy in
plasmas.3–6

The pressure–strain interaction can be simplified by defining the
strain rate tensor $u, which can be decomposed6,8 as $u ¼ SþX
into a symmetric (irrotational) strain rate tensor S with elements Sjk
¼ ð1=2Þð@uk=@rj þ @uj=@rkÞ and an anti-symmetric strain rate ten-
sor X with elements Xjk ¼ ð1=2Þð@uk=@rj ! @uj=@rkÞ. A flow with
non-zero S but zero X has “pure straining motion”;8 it strains a fluid
element without rotating it. In contrast, a flow with non-zero X but
zero S is “rigid body rotation,”8 which rotates a fluid element without
changing its shape. A further decomposition of S was introduced3,4,6,8

by writing S ¼ ð1=3ÞIð$ # uÞ þD, i.e.,

Sjk ¼
1
3
djkðr # uÞ þDjk; (3)

where I is the identity tensor, djk is the Kronecker delta, andD is the
traceless strain rate tensor with elements

Djk ¼
1
2

@uj
@rk
þ @uk
@rj

 !
! 1
3
djkð$ # uÞ: (4)

Physically, ð1=3ÞIðr # uÞ describes compression/expansion, while D
describes the incompressible deformation of a fluid element,6,8 which
is a volume preserving change of shape of the fluid element.

The pressure–strain interaction is then written in a number of
equivalent ways. In terms of the strain rate tensor, !ðP # $Þ # u
¼ !P : $u ¼ !Pjkð@uk=@rjÞ. Using $u ¼ SþX, it is immediately
found that P : X ¼ 0 since P is symmetric under interchange of indi-
ces, so rigid body rotation does not contribute to pressure–strain inter-
action.3 Consequently, !ðP # $Þ # u ¼ !P : S ¼ !PjkSjk, i.e.,
pressure–strain interaction only has contributions from the pure
straining motion portion. Furthermore, one decomposes the pressure
tensor as

P ¼ PIþP; (5)

where P is the deviatoric pressure tensor that describes the non-
isotropic part of the pressure tensor. While the diagonal elements of P
must be non-negative, all elements of P can be either positive or nega-
tive. Using the decomposition of S in Eq. (3) withD defined in Eq. (4)
and the pressure decomposed in Eq. (5), one finds

!ðP # $Þ # u ¼ !Pð$ # uÞ !PjkDjk; (6)

where the cross-terms vanish because P andD are both traceless. The
benefit of this decomposition is that the first term (including the
minus sign), called pressure dilatation, describes the power density of
heating due to bulk compression ($ # u < 0) or cooling due to bulk
expansion ($ # u > 0). The second term (including the minus sign)
has been called4 Pi! D, which is the power density due to incom-
pressible deformation.6 Pi! D was also called “collisionless viscosity”
because it is analogous in form to collisional viscous heating.5

Much has been learned about the pressure–strain interaction and
Pi! D in the context of plasma physics. The pressure–strain interac-
tion was studied in strongly magnetized plasmas,9 including the recog-
nition that the gyroviscous contribution to the pressure–strain
interaction vanishes identically. The fluid description of the contribu-
tions to the pressure–strain interaction was studied for the case with
zero heat flux density.3,6 It was shown4 that for a periodic or closed
domain in a purely collisionless system, the volume average of Eq. (1)
implies that h!ðP # $Þ # ui is the only term that can change the total
thermal energy Eth ¼

Ð
d3rEth of the system, where angular brackets

denote a volume average. Interestingly, the same study showed in sim-
ulations of plasma turbulence that Pi! D could be locally positive or
negative (since elements of both P andD can be positive or negative).

Numerous studies have since investigated the pressure–strain
interaction and Pi! D using numerical simulations. Pi! D is stron-
ger in coherent structures (current sheets) than in the bulk in plasma
turbulence.5 The pressure–strain interaction was highest in regions
with current sheets and high vorticity.10 Pi! D was found to success-
fully identify regions of strong energy conversion in dipolarization
fronts.11,12 The pressure–strain interaction dominates other energy
conversion metrics at small length scales13 and was shown to account
for the net temperature increase in simulations of turbulence.10,14 A
recent study compared the pressure–strain interaction during recon-
nection and turbulence, finding that pressure dilatation at current
sheets was more important in turbulence than in reconnection.15

Pi! D increases with plasma beta for ions, but the dependence is
weak for electrons.16 In island coalescence, pressure–strain interaction
does not depend strongly on electron mass or system size.17 It was sug-
gested that pressure–strain interaction contributes to the break in the
turbulent spectrum at ion18 and electron19 scales and, therefore, is a
critical piece of the termination of the turbulent cascade.2 Importantly,
Pi! D and the heat flux divergence have similar contributions in tur-
bulence,20 and the heat flux divergence can oppose the pressure–strain
interaction.21

The pressure–strain interaction, including Pi! D, has also been
studied observationally, facilitated greatly by the high resolution mea-
surements afforded by the Magnetospheric Multiscale (MMS) mis-
sion.22 In the turbulent magnetosheath, it was found that pressure
dilatation contributed more to the pressure–strain interaction than
Pi! D,23 as would later be seen in simulations.15 A statistical study of
Pi! D in the turbulent magnetosheath found that it is spatially con-
centrated near current sheets as in the simulations, but is small within
current sheets,24 as would also later be reported in simulations.15 A
study of magnetopause reconnection found that electrons were heated
at a faster rate than ions and pressure-dilatation dominated Pi! D.25

The same study measured negative Pi! D. In a statistical study of
reconnection diffusion regions, it was common to see a negative
Pi! D, and the pressure–strain interaction was positive in only about
half of the events.26 They also found that the gyrotropic portion of
Pi! D was more important than the non-gyrotropic part. In a study
of 50 turbulent magnetosheath events, both positive and negative
intervals were found for both pressure dilatation and Pi! D.27 A sta-
tistical study of 122 dipolarization fronts suggested that Pi! D is not
a significant contributor to energy conversion.28

Despite great advances in our knowledge about pressure–strain
interaction in general, and Pi! D in particular, there are a number of
puzzling aspects of its interpretation, especially Pi! D. For example, it
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is not understood how Pi! D is effectively a collisionless viscosity but
can be negative. This study is the first in a three-part series on pres-
sure–strain interaction. Here, we point out that the strain rate tensor
contains both normal deformation and shear deformation, as is well
known in continuum mechanics, which therefore implies that Pi! D
contains power density due to both effects. This grouping of terms
complicates the interpretation of Pi! D because it mixes stresses
from normal flows and sheared flows. Because pressure dilatation is
also associated with normal flows, we suggest an alternate decomposi-
tion of the pressure–strain interaction that groups the normal defor-
mation with the pressure dilatation instead of shear deformation. This
separates the effects of converging/diverging flow from shear strain.
We calculate the terms in this alternate decomposition analytically.
We then develop a physical interpretation of the compression and
normal and shear deformation using kinetic theory. This allows us to
determine the physical mechanisms that can make Pi! D negative,
thereby clarifying how to interpret such measurements. In the second
study29 (Paper II), we write the pressure–strain interaction in magnetic
field-aligned coordinates, which further elucidates the physical contri-
butions to the pressure–strain interaction in a magnetized plasma. In
the third study30 (Paper III), we display the pressure–strain interaction
and its Cartesian and magnetic field-aligned decompositions in simu-
lations of reconnection. We determine the physical causes for the pres-
sure–strain interaction during reconnection.

The layout of this manuscript is as follows. An alternate decom-
position of the pressure–strain interaction is derived in Sec. II. We
then provide a kinetic theory interpretation of the pressure–strain
interaction contributions in Sec. III and discuss the causes of Pi! D
and the normal deformation being negative using kinetic theory in
Sec. IV. Section V includes a discussion and conclusions.

II. AN ALTERNATE DECOMPOSITION
OF PRESSURE–STRAIN INTERACTION

From the expression in Eq. (4), we note the important general
property, well known in continuum mechanics, that the diagonal ele-
ments of D are associated with normal deformation, while the off
diagonal elements are associated with shear deformation. To picture
this, consider a cubic fluid element. Normal deformation of the fluid
element results from flow parallel to the normal to the edges of the
fluid element that vary, while shear deformation results from flow in
the plane of the edges of the fluid element that vary. Thus, we decom-
pose D into a normal deformation tensor Dnormal and a shear defor-
mation tensorDshear, so that

D ¼ Dnormal þDshear: (7)

Here, Dnormal;jk ¼ ½ð@uj=@rjÞ ! ð1=3Þðr # uÞ(djk (with no sum on j)
has the same diagonal elements as D with its off diagonal elements
equal to zero and isolates normal deformation. Similarly, Dshear;jk ¼
ð1=2Þð@uj=@rk þ @uk=@rjÞ for j 6¼ k and Dshear;jj ¼ 0 (no sum on j)
has its diagonal elements equal to zero and its off diagonal elements
equal to those of D, which isolates shear deformation. (A related
decomposition was discussed in Refs. 17 and 26, but we do not make
any assumptions about gyrotropy.)

In terms of this decomposition ofD, we write Pi! D as the sum
of two terms as follows:

Pi! D ¼ Pi! Dnormal þ Pi! Dshear; (8)

where Pi! Dnormal ¼ !P : Dnormal and Pi! Dshear ¼ !P : Dshear.
In Cartesian coordinates, a brief calculation reveals that these are

Pi! Dnormal ¼ !ðPxxDxx þPyyDyy þPzzDzzÞ

¼ ! Pxx
@ux
@x
þPyy

@uy
@y
þPzz

@uz
@z

$ %
; (9a)

Pi! Dshear ¼ !ð2PxyDxy þ 2PxzDxz þ 2PyzDyzÞ

¼ !
&
Pxy

@ux
@y
þ
@uy
@x

$ %
þ Pxz

@ux
@z
þ @uz
@x

$ %

þ Pyz
@uy
@z
þ @uz
@y

$ %'
: (9b)

The terms separate the contributions due to normal deformation and
shear deformation, respectively.

Mirroring the decomposition of Pi! D, we revisit the pressure–
strain interaction, which describes the full rate of conversion between
bulk flow and thermal energy density. Following Eq. (3), we decom-
pose the symmetric strain rate tensor S as

S ¼ 1
3
Ið$ # uÞ þDnormal þDshear: (10)

Then, the pressure–strain interaction is decomposed into three pieces,

!ðP # $Þ # u ¼ !Pð$ # uÞ þ Pi! Dnormal þ Pi! Dshear: (11)

These three terms isolate the power density due to dilatation, normal
deformation, and shear deformation, respectively. A key point is that
the normal deformation only depends on diagonal elements ofD, i.e.,
on converging/diverging flow, as seen in Eq. (9a). We, thus, argue that
it may be more natural for the normal deformation to be combined
with the pressure dilatation, which also only depends on the diagonal
elements of D, than with Pi! Dshear. We therefore introduce the
quantity PDU as

PDU ¼ !Pð$ # uÞ þ Pi! Dnormal (12a)

¼ ! Pxx
@ux
@x
þ Pyy

@uy
@y
þ Pzz

@uz
@z

$ %
; (12b)

so that

!ðP # $Þ # u ¼ PDUþ Pi! Dshear: (13)

For an isotropic pressure with Pxx ¼ Pyy ¼ Pzz ) P, where P is the
scalar pressure, Eq. (12b) reduces to PDU ¼ !Pð$ # uÞ, the known
pressure dilatation from fluid mechanics. For an arbitrary pressure
tensor, PDU gives the power density due to converging and diverging
flows, which contains both dilatation and normal deformation.
Equation (12b) is the reasonable generalization of pressure dilatation
when isotropy is not valid, as it contains contributions from dilatation
in each direction independently.

III. PHYSICAL INTERPRETATION OF PRESSURE–STRAIN
INTERACTION

Here, we provide the physical interpretation of the pressure–
strain interaction contributions in the fluid and kinetic descriptions.
The fluid description has partially been addressed previously.3,6

We provide simplified examples that allow for the physical interpreta-
tion to be made clear, with the idea that they can be used to motivate
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analogous processes for more general cases. While the fluid descrip-
tion is valid, both simulations and satellites now regularly measure the
phase space density, measuring plasma properties at scales and below
the scales where treating a plasma as a fluid is no longer appropri-
ate.31,32 Thus, we argue it is important to also develop a fully kinetic
interpretation of the contributions to the pressure–strain interaction.
As shown in Sec. IV, this understanding will provide insight into what
it means to have a negative Pi! D.

A. Fluid description of the pressure–strain interaction
We begin with the physical interpretation of pressure–strain

interaction in the fluid description. It was treated in the limit of van-
ishing vector heat flux density q in Ref. 6, vividly conveyed in their
Fig. 1 that contains valid sketches of the effects of dilatation (red) and
normal deformation (blue). However, because their analysis did not
contain a vector heat flux density, the shear deformation term in Eq.
(9b) did not appear in their analysis. Thus, we extend their Fig. 1 in
the general case in our Fig. 1.

Panel (a) exemplifies pressure dilatation !Pð$ # uÞ, representing
compression of the sketched spherical fluid element. Panel (b) exem-
plifies normal deformation Pi! Dnormal, represented by the volume
preserving change of shape of the sketched ellipsoidal fluid element.
These two panels are modeled directly after Ref. 6. The initial fluid ele-
ment is in black, the flow profile is in the large arrows, and the final
fluid element is in color. The small colored arrows denote the action of
the fluid element due to the flow.

Panel (c) exemplifies shear deformation Pi! Dshear, which is
not present in Ref. 6. The sheared flow deforms the fluid element,
as in the standard treatment of flow shear in a fluid, except that
this effect is purely collisionless. A key point is that shear deforma-
tion requires a non-zero off diagonal pressure tensor element in
the plane of the varying bulk flow and its gradient for there to be a
contribution to the pressure–strain interaction [see Eq. (9b)].
Thus, we draw a cubical fluid element in (c) with a feature sticking
out of the box to denote the need for the off diagonal elements.
Since the off diagonal pressure tensor elements can be either posi-
tive or negative, shear deformation can lead to a positive or nega-
tive contribution to the pressure–strain interaction. Because the
pressure–strain interaction is collisionless, any change in thermal

energy due to it is formally reversible. In contrast, collisional vis-
cous heating is unable to lead to a decrease in thermal energy and
is irreversible.

B. Kinetic description of PDU
Here, we treat the kinetic theory interpretation of the pres-

sure–strain interaction. We do this by investigating how a phase
space density evolves in time when there is a non-zero pressure–
strain interaction to illustrate kinetically why there is a change in
the thermal energy density. We first emphasize that the pressure–
strain interaction is local in space and time, and calculating it
depends only on the local pressure tensor and the bulk flow veloc-
ity profile. Thus, instantaneously, determining if there is conver-
sion between bulk flow and thermal energy density does not
require knowledge of the presence of any body forces or collisions.
In the treatment that follows, we ignore body forces and collisions.
Although body forces and collisions are not needed to determine
the local pressure–strain interaction, they do impact the motion
of particles and the evolution of the phase space density, so these
effects would have to be considered in addition to the phase space
evolution considered here. We briefly return at the end to moti-
vate how body forces change the pictures that follow.

In the force-free, collisionless limit, the Boltzmann/Vlasov equa-
tion becomes

@f
@t
þ v # $f ¼ 0: (14)

As is well known, this is merely a linear convection equation in
position space at every v. We will use this in the examples that
follow.

As an example which isolates PDU, consider a plasma with a
drifting bi-Maxwellian phase space density fbiM aligned with a
Cartesian coordinate system so that the pressure tensor PbiM is uni-
form in space and its elements are given by Pxx ¼ Pyy ¼ P?;
Pzz ¼ Pjj, and Pjk¼ 0 for j 6¼ k. The effective pressure is then
PbiM ¼ ð2P? þ PjjÞ=3, and Eq. (5) reveals that the deviatoric pressure
tensor PbiM is

FIG. 1. Sketch of representative contributions to the pressure–strain interaction in the fluid description. Black shapes are the initial fluid elements, and bold arrows show the
bulk flow directions. The dashed arrows map the change between initial and final shapes of the fluid elements. (a) Pressure dilatation (red), showing compression, (b) normal
deformation (blue), and (c) shear deformation (green). Panels (a) and (b) are essentially copies of Fig. 1 from Ref. 6; panel (c) is new. Modified with permission from Fig. 1 of
D. Del Sarto and F. Pegoraro, Mon. Not. R. Astron. Soc. 475, 181 (2018). Copyright 2017, Oxford University Press.
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PbiM ¼ PbiM ! PbiMI ¼ ðP? ! PjjÞ

1
3

0 0

0
1
3

0

0 0 ! 2
3

0

BBBBB@

1

CCCCCA
: (15)

Using Eq. (4), the associated Pi! DbiM for an arbitrary bulk flow pro-
file u is

Pi! DbiM ¼ !PjkDjk ¼ !ðP? ! PjjÞ
1
3
ð$ # uÞ ! @uz

@z

& '
: (16)

As desired, this pressure tensor PbiM does not depend on flow shear
even if it is present. For definiteness, we consider Pjj > P?. We first
treat converging flow in the parallel direction, such that u ¼ uzðzÞẑ,
and for simplicity, we treat bulk flow toward z¼ 0.

A sketch of the system at initial time t¼ t0 is in Fig. 2(a). The
phase space density fbiM is sketched as the magenta ovals in the (vx, vz)
plane at three different spatial locations, z ¼ dz; 0; and!dz. The pres-
sures are the same at each location, but the phase space densities are
offset from the origin accordingly to impose that the bulk flow con-
verges toward z¼ 0. A short time dt later, fbiM with vz < 0 at z>0
(labeled 1) convects down, fbiM with vz > 0 at z<0 (labeled 3) con-
vects up, and fbiM near vz¼ 0 at z¼ 0 (labeled 2) does not convect far,
so the phase space density f at z¼ 0 at t ¼ t0 þ dt is qualitatively dis-
played in Fig. 2(b), with the same numbering scheme to show where
the particles came from at t¼ t0. (We acknowledge that the precise
phase space density at time t0 þ dt would be affected by particles from
cells beyond those plotted and would smear out the final distribution,
but we do not attempt to capture this effect in the sketch for simplic-
ity.) Comparing the phase space densities fbiM and f at z¼ 0 at t¼ t0

and at t ¼ t0 þ dt, respectively, we note that the breadth of f in the
perpendicular vx direction is the same as in fbiM (there is no perpendic-
ular heating), but f is broader in the parallel vz direction than fbiM.
Broadening a phase space density is the kinetic manifestation of heat-
ing, i.e., increasing the thermal energy. This gives the kinetic interpre-
tation of PDU, i.e., heating via converging flow in the z direction,
corresponding to!Pzzð@uz=@zÞ in Eq. (12b).

We now consider converging flow in the perpendicular direction
for the same initial phase space density, so now u ¼ uxðxÞx̂ , treating
bulk flow converging toward x¼ 0 for simplicity. A sketch at the initial
time t¼ t0 is in Fig. 2(c), where the phase space density fbiM is sketched
at x ¼ !dx; 0; and dx. Since fbiM evolves in time according to the con-
vection equation in Eq. (14) in the absence of body forces and colli-
sions, the phase space density f at x¼ 0 a short time dt later appears as
sketched in Fig. 2(d). The phase space density f does not broaden in
the parallel vz direction, but does broaden in the vx direction. This
is the kinetic manifestation of heating from PDU via converging flow
in the x direction, corresponding to !Pxxð@ux=@xÞ in Eq. (12b). In
both examples, heating due to converging flow contains contributions
from both dilatation and normal deformation, a key point we return
to in Sec. IV.

Finally, we return to the effect of the presence of a body force F.
As stated earlier, it is clear from the expression for pressure–strain
interaction that a body force cannot contribute to it, even though the
forces impact the motion of the particles. The sketches used here can
still provide information for how to interpret the terms in the pres-
sure–strain interaction when there is a body force present. First con-
sider a uniform body force, i.e., it is the same at every position. The
body force F changes the velocity of all particles of mass m at a
given position by the same increment dv ¼ Fdt=m in a small incre-
ment in time dt, so it merely translates the phase space density in

FIG. 2. Sketches showing the physical interpretation of PDU; i:e:; heating via converging flow, in kinetic theory, ignoring body forces and collisions for simplicity. Magenta ellip-
ses denote a 2D slice of the phase space density f in the (vx, vz) plane given by bi-Maxwellian distributions with Pjj > P?, where x is a perpendicular direction and z is parallel.
(a) Phase space densities at initial time t¼ t0 at three locations at and near z¼ 0. The vertical bulk flow velocity uz, denoted by the magenta arrows, is converging in the paral-
lel direction. (b) The phase space density at z¼ 0 at a slightly later time t ¼ t0 þ dt. The phase space densities labeled 1, 2, and 3 in panel (a) qualitatively evolve to their
associated positions labeled in panel (b). The phase space density at this time is broader in vz, implying an increase in thermal energy density. Note, Pi! D is positive for this
case. (c) and (d) are analogous for the same phase space density except with converging bulk flow in x. There is an increase in the thermal energy density in the phase space
density at x¼ 0 at t ¼ t0 þ dt in panel (d). Interestingly, Pi! D is negative for this case.
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velocity space. In the Lagrangian reference frame, this shift does not
lead to a change in the thermal energy at the point in question beyond
what is shown in the sketches in this section. If there is a force that is
not uniform, similar evolution occurs except that the shift in velocity
space of the particles can be different at every location. In our example,
the phase space density is uniform in space, so the result is unchanged.
In the more general case for which the phase space density is also not
uniform, it would require a detailed analysis to understand the evolu-
tion of the particles and the associated phase space densities, which is
beyond the scope of the present study. However, we know the result
for an arbitrary force and initial phase space density must be that the
body force does not alter the pressure–strain interaction in the
Lagrangian reference frame.

C. Kinetic description of Pi!Dshear

We next turn to the kinetic interpretation of heating via shear
deformation. As noted in Sec. I,3,6,8 the symmetric strain rate tensor S
needs to be non-zero for the pressure–strain interaction to be non-
zero, and the pressure–strain interaction is independent of the anti-
symmetric strain rate tensor X. Moreover, from Eq. (9b), the pressure
tensor must have a non-zero off diagonal element in order for there to
be heating via shear deformation. Consequently, we consider purely
straining flow shear of a phase space density with non-zero off diago-
nal pressure tensor elements.

Consider flow in the xz plane; dynamics in the other planes is
analogous. Figure 3(a) contains sketches in a region near ðx; zÞ ¼ 0 at
initial time t¼ t0, with phase space densities sketched in (vx, vz) space
at an array of spatial locations given by x ¼ dx; 0; and –dx and
z ¼ dz; 0; and –dz. In the kinetic picture, Pxz is non-zero if the phase
space density lacks symmetry in both the vx and vz directions relative
to the bulk flow speed (ux, uz). One way a phase space density can

have a positive Pxz is if it is elongated in the first and/or third quadrant
in the (vx, vz) plane compared to the second and/or fourth quadrants;
similarly, a negative Pxz is elongated in the second and/or fourth quad-
rants in (vx, vz) space. Another way is if f is weighted higher in the first
and/or third quadrants than the second and/or fourth quadrants.
Figure 3(a) includes a phase space density with Pxz < 0 due to the
weighting of f that is uniform in space, displayed with red signifying
larger f and blue signifying smaller f. To impose a bulk velocity shear,
the phase space densities are shifted relative to the velocity space ori-
gin, with the bulk flow direction denoted by the magenta arrows. For
this illustration, we assume a profile with u ¼ uzðxÞẑ, where uz is posi-
tive for x>0 and negative for uz < 0.

In the next increment in time dt, particles with vx > 0; vz < 0 at
ð!dx; dzÞ (labeled 2) move toward the origin (in the absence of body
forces and collisions), appearing in the vx > 0; vz < 0 quadrant at the
origin at t ¼ t0 þ dt (labeled 2) in Fig. 3(b). This portion of the phase
space density is blue, meaning f is relatively low there. Similarly, in the
phase space density at ðdx;!dzÞ, particles in the left part of the distri-
bution (labeled 1) have vx < 0; vz > 0, so they also move toward the
origin. At t ¼ t0 þ dt, they become the population in the vx < 0; vz
> 0 portion of the phase space density (labeled 1) in Fig. 3(b). The red
portion in Fig. 3(b) is the portion of the phase space density at
t ¼ t0 þ dt with higher f values than elsewhere in the phase space
density.

To interpret this result, we note the phase space density at the
origin at t ¼ t0 þ dt effectively stretches away from the velocity space
origin in the second and fourth quadrants relative to the phase
space density at the origin at t¼ t0 and moves closer to the velocity
space origin in the first and third quadrants than at t¼ t0. If f had
begun at t¼ t0 as symmetric in (vx, vz) space (i.e., if Pxz had been 0),
this would lead to no net heating at t ¼ t0 þ dt, since there would be
equal numbers of particles brought closer to the velocity space origin
as those brought further away. However, in this case, there are more
particles in quadrant 2 than the other quadrants at t ¼ t0 þ dt, so
there are more particles further from the origin. This is the kinetic
manifestation of heating. This example provides motivation for the
kinetic theory of heating via pressure–strain interaction due to
Pi! Dshear, with the same caveat as in Sec. III B that body forces and
collisions can alter the particle trajectories and phase space density
evolution, but cannot directly impact the pressure–strain interaction.
We note that Pxz < 0 and @uz=@x > 0 in this example, so the term
!Pxzð@uz=@xÞ in Eq. (9b) is positive. This is associated with heating,
consistent with the physical picture given here. A similar construction
with the higher f region in the fourth quadrant (so that Pxz is again nega-
tive) also leads to heating. If the higher f region is in the first or third
quadrant, it would lead to cooling because there are more particles closer
to the velocity space origin than farther away from it. In this case, Pxz is
positive, and the Pi! Dshear contribution to the pressure–strain interac-
tion is negative, consistent with cooling. Thus, Pi! Dshear can contribute
to heating or cooling depending on the flow profile and the sign of the
off diagonal pressure tensor elements, and it is in principle reversible.

We conclude this subsection with a kinetic theory interpretation
of why pure straining motion leads to a contribution to the pressure–
strain interaction, but rigid body rotation does not. Figure 4(a) is a
sketch analogous to Fig. 3(a) of a hyperbolic bulk flow profile corre-
sponding to pure straining motion with @uk=@rj ¼ @uj=@rk, so
X ¼ 0. Analogous to Fig. 3(b), there is a flow of particles toward

FIG. 3. Sketch illustrating the kinetic theory explanation of why Pi! Dshear leads to
heating or cooling. (a) Array of sketches at locations in position space (x, z) near
the origin at the initial time t0. Each sketch contains a phase space density f in the
(vx, vz) plane in blue and red, where blue represents relatively low f and red repre-
sents relatively high f. Such phase space densities have Pxz < 0. The placement of
the phase space density in each axis system reveals its bulk flow u, denoted for
each f by the magenta arrow. The flow profile has a representative form
ðux ; uzÞ ¼ ð0; xÞ. (b) Sketch of the phase space density at the origin at a slightly
later time t ¼ t0 þ dt. The portions of the phase space densities in (a) labeled 1
and 2 evolve to make up the portions of the phase space densities in (b) labeled 1
and 2, respectively. For this flow profile, there is a net displacement of particles
away from the velocity space origin, implying an increase in thermal energy density.
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(and away from) the origin in the next small increment in time, which
serves to increase the thermal energy density at the origin at
t ¼ t0 þ dt. In contrast, Fig. 4(b) shows a similar sketch, but for rigid
body rotation for which @uk=@rj ¼ !@uj=@rk, so S ¼ 0. In this case,
the flow profile imposes that the particles in the phase space densities
surrounding the origin predominantly go around the origin rather
than changing the phase space density at the origin, leaving the ther-
mal energy density at the origin unchanged. This is the kinetic expla-
nation for why rigid body rotation does not contribute to the
pressure–strain interaction.

IV. KINETIC INTERPRETATION OF NORMAL
DEFORMATION AND IMPLICATIONS
FOR THE SIGN OF Pi!D

It has been shown numerically and observationally that Pi! D,
i.e., collisionless viscous heating, can be positive or negative, which has
been puzzling because collisional viscous heating must be non-
negative. We use the present results to interpret the sign of Pi! D
within the kinetic description. We emphasized in Sec. II that Pi! D
contains both normal deformation and shear deformation.
Consequently, it is not a well-posed question to ask what a negative
value of Pi! D means physically because it is ambiguous; it could
have contributions from either term. The physics of Pi! Dshear was
discussed in Sec. III C, including what it means physically for it to be
positive or negative. The example of heating due to converging flow in
Sec. III B explained the sign only for PDU, i.e., the sum of the dilata-
tion and normal deformation terms, so we reconsider the example
given there to isolate the normal deformation and explain the kinetic
interpretation of its sign.

Consider again the bi-Maxwellian distribution fbiM with Pxx
¼ Pyy ¼ P? and Pzz ¼ Pjj with Pjj > P? discussed in Sec. IIIB. For
the two bulk flow profiles in Fig. 2, analytic expressions for
Pi! Dnormal are readily calculated from Eq. (9a). For parallel converg-
ing flow u ¼ uzðzÞẑ, we get

Dnormal ¼ D ¼
@uz
@z

! 1
3

0 0

0 ! 1
3

0

0 0
2
3

0

BBBBB@

1

CCCCCA
; (17)

so that

Pi! Dnormal ¼ Pi! D ¼ 2
3
@uz
@z
ðP? ! PjjÞ: (18)

A similar derivation reveals that if u ¼ uxðxÞx̂ for perpendicular con-
verging flow,

Pi!Dnormal ¼ Pi! D ¼ ! 1
3
@ux
@x
ðP? ! PjjÞ: (19)

Importantly, Pi! Dnormal for parallel and perpendicular converging
flow have opposite signs.

For the flow profiles in Fig. 2, Pi! Dnormal is positive for parallel
converging flow but negative for perpendicular converging flow. We
know the net dilatation plus normal deformation due to converging
flow leads to heating as quantified by PDU for converging flow in
either direction. Thus, it may not be surprising that Pi! Dnormal > 0
for parallel converging flow. However, it is counterintuitive that
Pi! Dnormal < 0 for perpendicular converging flow because negative
Pi! D has been referred to as “cooling.”

The resolution of this apparent paradox is to consider
Pi! Dnormal in the context of pressure dilatation !Pð$ # uÞ. For the
perpendicular converging flow case,

!Pð$ # uÞ ¼ !P @ux
@x
¼ !

2P? þ Pjj
3

$ %
@ux
@x

: (20)

This quantity is non-negative for converging flow, which reflects that
there is heating. The sum of dilatation and normal deformation from
Eqs. (19) and (20) to get PDU is

PDU ¼ !P?
@ux
@x

; (21)

as expected from Eq. (12b). This is positive for converging flow, corre-
sponding to a net heating, as expected.

This simple example suggests the kinetic theory interpretation of
Pi! Dnormal. The quantity PDU describes the total volumetric heating
rate due to converging flow. Pressure dilatation describes the volumet-
ric rate of compressible heating if the system was in equilibrium with a
(scalar) pressure P since it has the form !Pð$ # uÞ. Kinetically, pres-
sure dilatation describes the heating that would take place if the phase
space density f were replaced by a Maxwellian distribution fM with the
density n ¼

Ð
fd3v and with its pressure given by the effective pressure

P found from the local phase space density f. The phase space density

FIG. 4. Sketch illustrating the kinetic the-
ory explanation of why (a) symmetric
shear (pure straining motion) can lead to
heating/cooling, while (b) anti-symmetric
shear (rigid body rotation) cannot. In each
sketch, the grid in x and z denotes physi-
cal positions in the environment of the ori-
gin ðx; zÞ ¼ ð0; 0Þ. Each red and blue
box denotes a phase space density f with
a negative Pxz in the (vx, vz) plane at the
location in question. The local bulk flow u
is denoted for each f with a magenta
arrow. The flow profiles are (a) ðux ; uzÞ
¼ ðz; xÞ and (b) ðux ; uzÞ ¼ ðz;!xÞ.
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fM is known as the Maxwellianized distribution of f. The contribution
from Pi! Dnormal, then, describes the correction to the total of the vol-
umetric heating rate due to converging flow due to the phase space
density f not being the Maxwellianized distribution fM.

In the example of the bi-Maxwellian distributions with Pjj > P?
in Fig. 2(a), the Maxwellianized distribution fM of the phase space den-
sity fbiM is round in velocity space, so it is cooler in the parallel direc-
tion and hotter in the perpendicular direction than f. Compression of
fM in the perpendicular x direction would heat the plasma, making the
phase space density at t ¼ t0 þ dt broader in the vx direction than it
would be due to compression of fbiM. This means there would be a
higher volumetric heating rate of fM than there would be of fbiM since
Pjj > P?. Therefore, Pi! Dnormal is negative in this example because
it represents the correction to the volumetric heating rate of the actual
phase space density fbiM because it is not the Maxwellianized distribu-
tion fM; in this case, the correction is negative. Thus, Pi! Dnormal < 0
during converging flow does not represent physical cooling, because
when combined with!Pð$ # uÞ to form PDU, the volumetric heating
rate into thermal energy is positive, as is expected for converging flow.
This is in contrast to Pi! Dshear, which necessarily contributes to cool-
ing when it is negative.

Similar reasoning holds for parallel converging flow. As shown in
Fig. 2(b), the result of converging parallel flow is to generate a phase
space density at the origin that is even more elongated than fbiM at
t¼ 0. In this case, pressure dilatation is again positive because there is
converging flow, but here Pi! Dnormal is also positive. This is because
the Maxwellianized distribution fM is narrower in the parallel direction
than fbiM, so the heating of fM is less than the heating of fbiM. The con-
tribution from Pi! Dnormal is positive to make up for the part of the
heating omitted from the converging flow acting on fM.

Thus, simply knowing that Pi! D is negative is insufficient to
know if it is caused by normal deformation or shear deformation, and
it is insufficient to know if there is overall cooling via the pressure–
strain interaction. If Pi! D < 0 and Pi! Dshear dominates, there is a
contribution toward cooling. However, if Pi! D < 0 and is domi-
nated by Pi! Dnormal, one cannot know if there is heating or cooling
due to converging or diverging flow because !Pð$ # uÞ can have
either sign depending on whether there is converging or diverging
flow. It is PDU that must be measured to assess if heating/cooling due
to converging/diverging flow is taking place.

V. DISCUSSION AND CONCLUSIONS
The pressure–strain interaction, including Pi! D, has under-

gone intense scrutiny in recent years because it concisely describes the
rate that energy density is converted between bulk flow and thermal
energy. Pressure dilatation is the portion of pressure–strain interaction
associated with compression and expansion, while Pi! D is the por-
tion associated with incompressible heating6 and has been described
as collisionless viscosity.5 Despite the scrutiny, fundamental questions
about the physical interpretation of the pressure–strain interaction
and Pi! D have persisted, including what it means for Pi! D to be
negative.

In this study, we use the fact that Pi! D contains both normal
deformation and shear deformation to propose an alternate decompo-
sition of the pressure–strain interaction into PDU and Pi! Dshear

terms, which separate the pressure–strain interaction into the power
densities associated with converging/diverging flow and flow shear,

respectively. The PDU term is a combination of the dilatation and
normal deformation terms, and gives the reasonable generalization of
dilatation for systems not in local thermodynamic equilibrium. In the
large magnetic field limit, it was shown9 that the Pi! Dshear term
(!pgv : U in their notation) vanishes to low order in the strong mag-
netic field expansion. This is because the magnetic field dominates all
other collisionless physics in the limit in question, and the magnetic
field itself does not directly contribute to the pressure–strain interac-
tion [see Eq. (1) and Ref. 3]. Outside of this limit, as shown here,
Pi! Dshear need not vanish.

Using these results, we provide a physical understanding of the
contributions to the pressure–strain interaction both from a fluid per-
spective, with one modification from previous work on the subject
that ignored the vector heat flux density,6 and fully in the kinetic pic-
ture at the phase space density level. We use the results to explain
kinetically why pure straining motion (a symmetric strain rate tensor)
can lead to a change in thermal energy but rigid body rotation (an
asymmetric strain rate tensor) cannot. We finally use these results to
give the physical mechanisms that cause Pi! D, including giving a
new kinetic theory interpretation for the normal deformation term.
We further show the counterintuitive result that while converging flow
must contribute to a positive pressure–strain interaction, it can con-
tribute to a negative Pi! D for systems not in LTE.

We emphasize a number of consequences of this study that may
be of use to the field:

1. As has been recognized elsewhere,2,4,14 the pressure–strain interac-
tion !ðP # $Þ # u is the most relevant quantity to determine the
rate of change of bulk flow energy density into thermal energy
density (heating or cooling), rather than Pi! D in isolation.

2. It is correct that the pressure dilatation !Pð$ # uÞ describes the
volumetric rate of heating/cooling due to compression/expan-
sion, but it is not the full description of energy conversion in
converging or diverging flow. Similarly, Pi! D is the measure of
incompressible heating, but contains both normal deformation
and shear deformation. In contrast, PDU gives the effect of con-
verging/diverging flows, and Pi! Dshear gives the effect of flow
shear. We believe both decompositions have merit for analyzing
the energy conversion in physical processes and provide comple-
mentary information. We envision that keeping all three terms—
pressure dilatation, Pi! Dnormal, and Pi! Dshear—may also
prove useful in some circumstances.

3. A local measurement of a negative Pi! D does not imply there
is cooling. If Pi! D is negative due to normal deformation, the
net effect of normal deformation and dilatation in the total pres-
sure–strain interaction is still positive if the flow is converging.
Meanwhile, a negative Pi! D could also be the result of shear
deformation, so there is no way to unambiguously identify the
key physical processes at play from the sign of Pi! D alone.

4. The physical interpretation of the normal deformation portion
of Pi! D in kinetic theory is the difference between the rate of
compressional heating and the rate of compressional heating of
the same process where the phase space density is replaced by a
Maxwellian distribution of the same effective pressure.

5. The introduction of the traceless strain rate tensor D, which has
been carried into plasma physics following a long history in the
study of neutral fluids,8 is only advantageous to study the rate of
heating/cooling that is compressible vs incompressible. However,
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it is not useful for distinguishing the heating between converg-
ing/diverging flows and flow shear. While the difference may be
negligible in neutral fluids that are near local thermodynamic
equilibrium, they can be very different in plasmas that are far
from local thermodynamic equilibrium.

6. It bears noting that the pressure–strain interaction is rigorously
the quantity that describes the rate of conversion between bulk
flow and thermal energy density, but it is not the only term that
determines the local thermal energy density. In particular, ther-
mal energy density flux and/or heat flux can also change the local
thermal energy density,12,20 even though these terms do not con-
tribute to changes in the net thermal energy in a closed or iso-
lated system.4

7. The thermal energy density describes the random energy in a
phase space density, i.e.,

Ð
ð1=2Þmv02fd3v. However, other forms

of energy such as
Ð
ð1=2Þmv0xv

0
yfd

3v or higher order moments are
not contained in the thermal energy density, yet represent a pos-
sible energy channel during a physical process. The energy going
into channels beyond thermal energy density is treated in a sepa-
rate study.33

In Paper II,29 we derive the pressure–strain interaction in mag-
netic field-aligned coordinates. In Paper III,30 we display the pres-
sure–strain interaction in Cartesian and magnetic field-aligned
coordinates in PIC simulations and use the results to determine the
mechanisms that contribute to the pressure–strain interaction during
collisionless reconnection. For future work, it would be interesting to
employ the decomposition of the pressure–strain interaction discussed
here more broadly in simulation data and observational data to sepa-
rate converging/diverging flow effects from shear flow effects. Example
systems where such studies would be interesting include collisionless
reconnection, plasma turbulence, and collisionless shocks.

Furthermore, we again point out from Eqs. (1) and (2) that pres-
ence of collisions and body forces, such as electric, magnetic, or gravi-
tational forces, enters directly into the bulk flow energy density
equation but not directly into the pressure–strain interaction. Body
forces are quantified by the nu # F term in Eq. (2), which for the elec-
tromagnetic force is qnu # E for a species of charge q. This quantity,
including the version summed over species given by J # E, has also
been under intense scrutiny in the study for describing the conversion
between bulk flow energy and electromagnetic energy.34–39 A better
understanding of how body forces impact thermal energy should
remain a topic of future work.1
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