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ABSTRACT

Theory and Simulations of Incomplete Reconnection

During Sawteeth Due to Diamagnetic E↵ects

Matthew Thomas Beidler

Tokamaks use magnetic fields to confine plasmas to achieve fusion; they are the leading
approach proposed for the widespread production of fusion energy. The sawtooth crash in
tokamaks limits the core temperature, adversely impacts confinement, and seeds disruptions.
Adequate knowledge of the physics governing the sawtooth crash and a predictive capability
of its ramifications has been elusive, including an understanding of incomplete reconnection,
i.e., why sawteeth often cease prematurely before processing all available magnetic flux.
In this dissertation, we introduce a model for incomplete reconnection in sawtooth crashes
resulting from increasing diamagnetic e↵ects in the nonlinear phase of magnetic reconnection.
Physically, the reconnection inflow self-consistently convects the high pressure core of a
tokamak toward the q = 1 rational surface, thereby increasing the pressure gradient at the
reconnection site. If the pressure gradient at the rational surface becomes large enough due
to the self-consistent evolution, incomplete reconnection will occur due to diamagnetic e↵ects
becoming large enough to suppress reconnection. Predictions of this model are borne out
in large-scale proof-of-principle two-fluid simulations of reconnection in a 2D slab geometry
and are also consistent with data from the Mega Ampere Spherical Tokamak (MAST).
Additionally, we present simulations from the 3D extended-MHD code M3D-C1 used to study
the sawtooth crash in a 3D toroidal geometry for resistive-MHD and two-fluid models. This is
the first study in a 3D tokamak geometry to show that the inclusion of two-fluid physics in the
model equations is essential for recovering timescales more closely in line with experimental
results compared to resistive-MHD and contrast the dynamics in the two models. We use
a novel approach to sample the data in the plane of reconnection perpendicular to the
(m,n) = (1, 1) mode to carefully assess the reconnection physics. Using local measures of
reconnection, we find that it is much faster in the two-fluid simulations, consistent with
expectations based on global measures. By sampling data in the reconnection plane, we
present the first observation of the quadrupole out-of-plane magnetic field appearing during
sawtooth reconnection with the Hall term. We also explore how reconnection as viewed in the
reconnection plane varies toroidally, which a↵ects the symmetry of the reconnection geometry
and the local diamagnetic e↵ects. We expect our results to be useful for transport modeling
in tokamaks, predicting energetic alpha-particle confinement, and assessing how sawteeth
trigger disruptions. Since the model only depends on local diamagnetic and reconnection
physics, it is machine independent, and should apply both to existing tokamaks and future
ones such as ITER.
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Chapter 1

Review of Sawteeth in Tokamaks

1.1 Fusion

1.1.1 Motivation

In the past century the human population has increased nonlinearly mainly due to medical

advances and improvements in agricultural productivity, which have caused mortality rates

to decrease and birth rates to increase. At the same time, our technological capabilities have

increased exponentially consistent with “Moore’s law”. A continuously growing population

consuming an exponentially increasing amount will eventually exhaust the limited resources

our planet provides. In order to continue developing new technology and processing raw

materials to support our growing population’s needs, a vast amount of energy is required.

The current use of fossil fuels to power our technology relies on rearranging the chemical

bonds of hydrocarbon molecules utilizing the combustion reaction. However the energy

contained in these chemical bonds pales in comparison to the energy contained in the nuclear

bonds holding together the core of individual atoms, ⇠ 1 eV versus ⇠ 10 MeV (Chen, 2011)!
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Figure 1.1: A curve showing the nuclear binding energy per nuclear particle as a function of mass of the
element. Note the global minimum at iron (A = 56). Generally, processes that increase the
atomic number of light elements or decrease the atomic number of heavy elements result in a
decrease of nuclear energy. From Gibbs (2012).

To motivate how nuclear energy is stored and how it can be extracted, Fig. 1.1 shows

the binding energy per individual nuclear particle (protons and neutrons) across di↵erent

elements due to the strong nuclear force. This curve takes an interesting shape, having

a minimum1 binding energy for iron atoms with 56 nucleons. Nuclear reactions in which

nuclei with large binding energy are transformed to nuclei with lower binding energy results

in a decrease in the total binding energy, which must be transformed to another form of

energy if the total energy is to be conserved. Nuclear binding energy can also be interpreted

as the mass per nucleon, and the change in binding energy is consistent with a change in

mass by Einstein’s relation �E = �mc2. This excess energy is almost entirely converted

into kinetic energy of the resulting particles, and when considering all reactions over an

ensemble of nuclei, it can be interpreted as an increase in the temperature of the resulting

particles. Since the minimum nuclear binding energy per nucleon can be achieved by both

1The convention shown with nuclear binding energy as negative reflects that the more stable nuclei sit in
a deeper potential well, and more energy must be added to break their bonds.
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heavy elements undergoing reactions to produce lighter elements and also lighter elements

undergoing reactions to produce heavier elements, there are two kinds of nuclear reactions:

fission and fusion.

1.1.2 Nuclear Reactions

Mankind has already successfully harnessed the power released from fission reactions, with

power plants spread across the globe. To induce a fission reaction, a heavy element, like

uranium-235, is bombarded with energetic neutrons and, when a neutron strikes a uranium

nucleus, the nucleus splits into two smaller nuclei and additional energetic neutrons. How-

ever, when heavy nuclei are split into lighter elements they often have extra neutrons as

compared to more stable isotopes of the resultant element. This makes the products of

fission reactions unstable to radioactive beta decay, where a neutron spontaneously decays

into a proton and an energetic electron. The energetic electrons are expelled from the nuclei

at high speeds and can do damage to nearby organisms, either directly killing their cells, or

causing harmful mutations to their DNA. The half-life of these radioactive fission products

can be on the order of human lifetimes, making the delicate storage of this waste the major

drawback of fission power.

Fortunately, the fusion reaction does not produce the same amount of radioactive mate-

rial; unfortunately though, it has proven much more di�cult to properly induce and harvest

energy from fusion reactions than was the case for fission reactions. While triggering a fission

reaction is akin to shooting a target with a bullet, the fusion reaction can be thought of as

shooting a volley of bullets towards one another and waiting for two to collide. An example

of a fusion reaction can be seen in Fig. 1.2 where a collision of deuterium and tritium nuclei

results in the production of a helium nucleus, a free neutron, and 17.6MeV of energy from
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Figure 1.2: Illustration of a fusion reaction from Barabaschi (2015). A collision between deuterium and
tritium nuclei results in a helium nucleus, a free neutron, and 17.6 MeV of energy from the
restructuring of the nuclear bonds.

the restructuring of the nuclear bonds. From conservation of momentum, the helium nucleus

and neutron respectively receive 1/5 and 4/5 of this energy as kinetic energy.

In order for nuclei, which are positively charged, to overcome their mutual electrical

repulsion and fuse together, they must have a large kinetic energy. To produce nuclei with

large kinetic energies there are two main approaches, strip neutral atoms of their electrons

to create charged particles and accelerate them with electric fields, or heating up a gas to

undergo thermonuclear collisions. To accomplish the latter, we first start by heating up a

molecular gas; this causes low energy collisions between molecules causing them to break

their molecular bonds and decompose into individual atoms. As we continue to heat up

the now monatomic gas, higher energy collisions take place that separate orbiting electrons

from their central nucleus, ionizing the gas. When the temperature has increased su�ciently,

a majority of the atoms are ionized and the matter takes the form of a plasma. Because

the plasma is composed of charged ion nuclei and free electrons, it reacts to the Lorentz

force, which greatly complicates the dynamics compared to a normal gas. As we continue to

heat up the plasma, nuclei undergo thermonuclear collisions once a su�cient temperature is
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reached.

1.1.3 Lawson’s Criterion to Achieve Fusion

Two techniques have been been successful in creating an environment on Earth where ther-

monuclear fusion reactions may controllably occur, inertial and magnetic confinement. While

it is well known that fusion reactions happen in the core of stars between hydrogenic ions

that are trapped in immense gravitational fields (for millions of years before a reaction takes

place!), because we have not yet been able to create the same gravitational well to contain

fusion particles here on Earth, these other confinement methods were engineered. Inertial

confinement uses powerful lasers to ablate the outer shell of a target, compressing the in-

ner fuel to create an extremely high density and temperature plasma for a very short time.

Contrast this with magnetic confinement, the topic of this dissertation, which attempts to

use magnetic fields to contain lower density fuel plasma at high temperatures for long times

by taking advantage of the Larmor motion of charged particles.

In both techniques introduced above and also in the core of stars, the ultimate require-

ments for fusion are the same: a su�cient density of fuel must be held at a su�cient tem-

perature for a su�cient amount of time (Lawson, 1957). For peak values of temperature T̂

and density n̂, this criterion is given quantitatively by

n̂T̂ ⌧E > 5 ⇥ 1021 m�3 keV s, (1.1)

where ⌧E is the energy confinement time (Wesson, 1987). This condition quantifies the

balance between the dominant energy production and loss mechanisms, where there is more

energy produced than lost when satisfied. Figure 1.3 reprinted from Wesson (1987), shows



6

Figure 1.3: Evolution of the triple product of density, temperature, and confinement time achieved in toka-
maks from Wesson (1987). Exponential growth was exhibited until 1990 where it has stagnated
for the past decades due to hurdles in scientific understanding, technological constraints, and
economic barriers.

the progress made toward this “breakeven” point in devices called tokamaks, the favored

device of the magnetically confined fusion community discussed in the next section. Since

1955, the achieved triple-product has exhibited exponential growth similar to Moore’s law,

and while Fig. 1.3 shows growth slowed in the 1990’s, the breakeven point continues to be

approached by current and planned machines [e.g. Webster (2003)].

1.1.4 Tokamaks

Magnetic fields are useful for containing the charged particles in a fuel plasma due to the

nature of the magnetic force. Mathematically, this part of the Lorentz force is described (in

Gaussian units) by the equation

FB = q
v ⇥ B

c
, (1.2)

which shows that the resulting force is perpendicular to both the direction of motion and the

magnetic field, and zero when the velocity is in the direction of the field. The consequence of

the magnetic force having this form is that charged particles orbit perpendicular to the field
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Figure 1.4: Coordinate systems utilized to quantify tokamak dynamics from Caldas et al. (2002). Cylindri-
cal (R, �, Z) and quasi-toroidal coordinates (r, �, ✓) are shown where � is the toroidal direction
along a circle of major radius R0, and ✓ is the poloidal direction in the plane normal to �̂ along
a circle of minor radius r.

direction at a radius determined by particle energy and local field magnitude in a direction

prescribed by Lenz’s law, and move unimpeded along the direction of the magnetic field; this

is a description of the Larmor motion mentioned previously in the context of magnetically

confined fusion.

The magnetic field can be thought of as lines that are aligned with the local direction

of the field and have a spatial density proportional to the magnitude of the field. With

this interpretation in mind, for a uniform field, charged plasma particles are constrained to

move in helices having their axes along magnetic field lines. By creating a magnetic field

configuration in which field lines wrap around upon themselves into a torus, we can hope to

confine a plasma for long times; this is the main principle behind magnetic confinement.

However, for a magnetic field generated by a current along the Z axis, as sketched in

Fig. 1.4, the magnetic field decreases like 1/R, where R is the major radius defined from the
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Figure 1.5: Schematic diagram of a tokamak from www.efda.org (EFDA-JET). Shown are the poloidally
and toroidally aligned current coils, which set up the toroidal and poloidal magnetic field
components that combine to create the resulting helical magnetic field containing the tokamak
plasma. Also represented is the primary and secondary transformer circuits used to ohmically
drive toroidal current in the plasma.

azimuthal axis of the torus in the cylindrical coordinate system (R,�, Z). At the center of

the plasma column, the major radius is denoted as R0; we refer to the inboard side of the

torus where R < R0, and the outboard side of the torus where R > R0. Additionally, the

minor radial location r of the quasi-toroidal coordinates (r,�, ✓) increases outward from R0.

Completing the coordinate systems, � is the toroidal direction along a circle of constant R,

and ✓ is the poloidal direction in the plane normal to �̂ along a circle of constant r.

Due to the gradient in magnetic field strength, the Larmor radius of plasma particles

changes throughout an orbit, causing particles to drift perpendicular to the field direction

and out of confinement! To combat these particle drifts, another component of magnetic field

perpendicular to the first must be added so particle drifts o↵set while traveling around the

device; the original (and dominant) field is in the toroidal direction, and the perpendicular

field is in the poloidal direction. A tokamak is a device that has a helical magnetic field

composed of toroidal and poloidal components, as sketched in Fig. 1.5.
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Tokamaks are devices composed of poloidal and toroidal current coil loops, which also

includes the current driven toroidally through the contained plasma as depicted in Fig. 1.5.

The magnetic configuration of toroidal and poloidal fields is consistent with Ampère’s law

(4⇡/c)J = r ⇥B, where the poloidal currents generate the toroidal field and vice versa. By

carefully constructing the external current coils, and driving a controlled current through

the plasma, the resulting magnetic fields wrap around the torus helically, and be bound to

closed, nested surfaces; in this way, closed two dimensional magnetic field surfaces can be

used to contain plasma in a three dimensional shape. Trying to contain the plasma in this

way was once described at the first uno�cial Sherwood Fusion Theory meeting in 1955 by

Edward Teller (Chen, 2011) as, “It’s like holding jello with rubber bands!” This description

remains applicable today.

1.1.4.1 Tokamak Operation

Magnetic fields have proven useful for containing plasma for relatively long times, but to

stimulate fusion reactions, the plasma must also be heated to high temperatures. While it

is possible to heat the plasma Ohmically from collisions of the particles flowing in plasma

currents, we discuss in a later section that charged particles collide less frequently at higher

temperatures, limiting the usefulness of this mechanism. Several tools have been engineered

to heat the plasma, including neutral beam deposition and resonant electromagnetic (EM)

wave heating.

Neutral beam deposition works by accelerating ions outside of the tokamak, and then

directing them through a neutralizing electron bath and into the device. While charged

particles are deflected by the confining magnetic fields, neutral particles can cross these

fields and deposit their energy into the plasma through collisions. Neutral beams also impart
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their momentum through these collisions, which is a source of toroidal rotation appearing in

tokamak plasmas. The plasma can also be heated by Landau damping of lower hybrid (LH)

waves, which arise in plasmas due to density gradients. By using an antenna that launches

EM waves with a frequency at the LH frequency, LH waves are driven in the plasma. LH

waves then Landau damp with particles flowing near their propagation speed, coupling their

energy into plasma, thereby heating it. Another non-inductive heating technique is also

particularly useful for driving currents locally in the plasma, ion and electron cyclotron

resonance heating and current drive. Because charged plasma particles gyrate in Larmor

orbits, circularly-polarized EM waves can be resonantly matched to the gyration (cyclotron)

frequency of ions and electrons, coupling their energy through cyclotron damping. As we

discuss in the next chapter, the cyclotron frequency depends on the local magnetic field, so

wave energy is only coupled to the charged particle populations in a well defined location,

driving currents and heating the plasma locally.

Using non-inductive heating methods along with neutral beam deposition, a tremendous

amount of energy is available to couple into a tokamak plasma. A recent major surprise in

tokamak research was that after a su�ciently large amount of energy is coupled into the

system, the plasma configuration spontaneously transforms into a high-confinement config-

uration (H-mode), exhibiting a sharp gradient in the gas pressure near the outward edge of

the plasma column. This configuration exhibits lower levels of particle and energy transport

across the newly formed edge barrier. While H-mode has become the preferred operating

configuration in tokamaks, it still holds the danger of disruptions and other deleterious tran-

sient events. Disruptions are a complete breakdown of plasma confinement, where all the

contained energy is released simultaneously, while transient events are a temporary leak of

plasma and thermal energy; both have the capability to damage the tokamak vessel. These
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issues still remain, but are currently being addressed leading up to the construction of the

first international tokamak experiment, formerly known as the International Thermonuclear

Experimental Reactor, and now simply as ITER.

1.1.5 Rational Surfaces and instabilities

A convenient way to describe the magnetic configuration is to trace the magnetic field starting

from an initial position for many toroidal windings N and take the ratio with the number

of poloidal revolutions M along the path; this is known as the safety (or quality) factor

q(r) ⌘ N/M . Simply put, the safety factor describes the “twistedness” of the magnetic field.

In general, the safety factor varies with location, which is consistent with a sheared magnetic

field that changes direction as one moves out in r.

It should be noted that q averages the magnetic field twist over the poloidal and toroidal

directions, limiting its usefulness in describing local phenomena. However, when the mag-

netic field lines are assumed to have toroidally axisymmetric circular cross-sections and a

large aspect ratio R/r, setting R ⇠ R0, the safety factor can be conveniently expressed as

q(r) =
rB�(r)

R0B✓(r)
, (1.3)

where B� and B✓ are the toroidal and poloidal magnetic fields. In standard tokamak config-

urations, this value often has a minimum around 1 in the core and monotonically increases

toward the edge to ⇠ 5.

For the locations whereN andM take integer values, q is a rational number, and magnetic

field lines close upon themselves. These closed field lines are more susceptible to being

unstable to perturbations. To model these perturbations in a tokamak, which has periodicity
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in the toroidal and poloidal directions, we Fourier transform system variables, denoted in

general by f , over � and ✓. For a circular cross section, perturbations take on the form

f̃(r, ✓,�) = f̃(r)ei(m✓�n�), (1.4)

where f̃(r) is the amplitude of the perturbation, and m,n are the poloidal and toroidal mode

numbers, respectively. Note that the mode numbers m,n are di↵erent from the winding

numbers M,N .

Perturbations that lead to instabilities are ones that decrease the potential energy. Be-

cause stretching or bending magnetic fields requires an input of energy, the most important

(unstable) perturbations are those that do not bend or stretch field lines. These perturba-

tions only shift the field, and are quantified by the relation (Bateman, 1978)

b · rf̃ = 0, (1.5)

where b = B/|B| is the direction of the local magnetic field. For plasma columns with

circular cross-section, br = 0, so writing Eq. 1.5 with perturbations of the form in Eq. 1.4

gives

b · rf̃ = �b�
in

R0
f̃ + b✓

im

r
f̃ = 0, (1.6)

where a large aspect ratio (R ⇠ R0) was assumed. This is satisfied for helical magnetic fields

in a direction given by

ĥ ⌘ �̂+
nr

mR0
✓̂, (1.7)

corresponding to helices of a circular cross-section with di↵erent pitch given bym,n. Writing

the total magnetic field B = B��̂+B✓✓̂ in terms of ĥ instead of �̂, we find B = B�ĥ+B⇤✓̂,
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Figure 1.6: The Madison Symmetrical Torus (Sar↵ et al., 2005) is a reversed field pinch (RFP) that is
similar to a tokamak, in that it is composed of nested magnetic surfaces that are sheared relative
to each other. At rational surfaces in both tokamaks and RFPs, perturbations drive tearing
and magnetic reconnection where dissipative process allow magnetic energy to be converted
into kinetic energy of driven plasma jets.

where

B⇤(r) = B✓ � nr

mR0
B� = B✓

⇣
1 � n

m
q
⌘
. (1.8)

Thus, on surfaces satisfying q = N/M = m/n, where magnetic fields close upon themselves,

B⇤ = 0 and the direction of the magnetic field is aligned with ĥ. On these aptly named

“rational surfaces”, perturbations trigger the magnetic configuration into releasing its energy

through various instabilities depending on the particular rational surface. From a plasma

physics perspective, a large part of the reason tokamaks are not yet used for widespread

power production is due to instabilities distorting or breaking magnetic surfaces.

1.2 Sawteeth

1.2.1 Tearing and Reconnection

While electric currents flowing through the plasma of a tokamak are needed to maintain

the toroidally nested magnetic surfaces, they are also a source of energy that can drive

instabilities. The instabilities of import to the present study are tearing and reconnection,
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which occur where magnetic fields change direction and draw their energy from gradients in

the current profiles. Magnetic field lines on adjacent nested magnetic surfaces in a tokamak

typically have a nonzero amount of relative shear, so the magnetic field B⇤ projected onto

the plane perpendicular to the local field direction at the rational surface (ĥ from the last

section if the cross section is circular) changes direction at the rational surface, making it

prone to reconnection. We define this plane as the reconnection plane for reasons that will

soon become apparent. The relative shear between adjacent nested surfaces is shown in

Fig. 1.6 for a di↵erent toroidal configuration known as a reversed field pinch.

By Ampère’s law, an antiparallel magnetic field configuration is consistent with a current

profile peaked where the field exhibits the greatest amount of shear, which for a tokamak

is generally in the vicinity of the rational surface. If the width of the current profile be-

comes su�ciently narrow, or rather a su�ciently large magnetic shear is present, dissipative

processes (e.g. collisions and electron inertia) allow for magnetic field lines to break and

reconnect (Dungey , 1953; Sweet , 1958; Parker , 1957). For small perturbations from the

equilibrium (the linear regime) this process is known as tearing (Furth et al., 1963), and

when the perturbations grow large (the nonlinear regime) it is known as magnetic reconnec-

tion2.

The reconnection process is sketched in Fig. 1.7. In the top panel, the oppositely directed

components of the equilibrium magnetic field in the inflow regions of the reconnecting plane

are flattened. When the field is able to break and reconnect, it cross connects to form the

configuration in the bottom panel of Fig. 1.7. Plasma jets are driven in the outflow regions as

these newly reconnected field lines release their tension. Due to mass continuity this induces

an inflow of plasma from upstream toward the reconnection site. The inflow also brings in

2Since tearing and reconnection are essentially di↵erent limits of the same process, for much of the
remainder unless otherwise noted, the term reconnection is understood to include both processes.
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Figure 1.7: An illustration of the magnetic configuration of tearing and magnetic reconnection (Cowley
et al., 2007). Magnetic fields in the inflow region convect toward the X-line, where dissipative
e↵ects allow them to break and reconnect. These strongly bent fields subsequently release their
tension in the outflow region, driving plasma jets and inducing additional inflow due to mass
continuity.

additional magnetic flux, so the process is self-reinforcing. Where the inflow and outflow

regions meet at the center of the reconnection site is often referred to as an “X-line”

It is also observed that the magnitude of the magnetic field in the outflow regions is greatly

diminished from that in the inflow regions, suggesting a conversion of magnetic energy in the

inflow region into kinetic energy of the outflow jets. By a simple scaling argument balancing

the magnetic energy density in the inflow region B2
rec/8⇡ with the kinetic energy density in

the outflow region minv2out/2, Parker (1957) showed the jets have an outflow speed vout of

vout ⇠ Brecp
4⇡min

= cA, (1.9)

the Alfvén speed based on the magnetic field strength of the inflow region.

In tokamaks, where magnetic reconnection takes place on rational surfaces, the nested
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von Goeler et al., 1974 

Figure 1.8: The first observation of sawteeth in the ST tokamak (von Goeler et al., 1974). Intensity of soft
X-rays from electron bremsstrahlung emission are proportional to the square root of the electron
temperature. The signal from the core (bottom trace) shows a slow rise phase followed by a
rapid crash phase, while a signal from the edge (top trace) shows the reverse process, signifying
a substantial thermal transport during the sawtooth crash.

magnetic surfaces that used to be topologically isolated are now connected, and the hot

plasma in the interior can get out to the exterior. Reconnection usually starts abruptly,

leading to a rapid loss of confinement.

1.2.2 Early Observations and Model

When magnetic reconnection occurs at the q = 1 rational surface, the resulting explosive

transport of thermal energy is known as the sawtooth crash. The sawtooth was first observed

by von Goeler et al. (1974) in the X-ray emission due to electron bremsstrahlung in the

Symmetric Tokamak (ST); the time history of X-ray emission during an ST discharge is

shown in Fig. 1.8. The two traces correspond to the electron temperature at locations in the

core (r = 0) and edge (r = 3.9 cm); the oscillatory pattern earned it the name sawtooth. The

core trace shows a slow rise phase (⇠ 5 ms) followed by a rapid crash, while the edge trace

shows a slow decline followed by a spike. This is a strong indication that there is a sudden

transport of particles and thermal energy out of the high temperature core, which decreases

the core temperature and confinement of the plasma. Remembering that the Lawson criteria
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in Eq. 1.1 requires the temperature and confinement to be high, sawteeth are deleterious for

fusion reactions.

This observation was first explained by Kadomtsev (1975) as a magnetic reconnection

event of the (m,n) = (1, 1) resistive tearing mode. The perturbation that drives the en-

ergy release at the q = m/n = 1 surface comes from the internal kink mode, an ideal-

magnetohydrodynamic (MHD) instability [e.g. Freidberg (1987)]. As current is driven in

the toroidal plasma column it tends to be peaked centrally, increasing the poloidal field B✓

in the interior, and from Eq. 1.3 lowering the central safety factor q0 = q(r = 0). When

the central safety factor satisfies q0 < 1, the internal kink mode is unstable (Bussac et al.,

1975). The physics of the kink instability is that perturbations bend the plasma column and

produce a gradient in the poloidal magnetic pressure, which leads to a force that reinforces

the perturbation.

In Kadomtsev’s model, the time it takes for the crash to occur is the time for reconnection

to process all of available magnetic flux in the core. Equivalently, the safety factor q exceeds 1

everywhere after the event; this is called “complete reconnection”, and is an important aspect

of Kadomtsev’s model. Crash times were consistent with the time it takes resistive Sweet-

Parker reconnection to process all available magnetic flux (⇠ 30 µs for the ST tokamak),

and early simulations (Sykes and Wesson, 1976; Denton et al., 1986) were largely consistent

with this picture.

1.2.3 Additional Experimental Observations

Sawteeth are a near-ubiquitous feature of tokamaks, appearing across di↵erent machines

with a variety of discharge parameters. In this section, we discuss several interesting results

of relevance to the present work.
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Figure 1.9: Figure (1) adapted from Edwards et al. (1986) that shows the central and a non-central soft
X-ray detector data during a sawtooth crash phase in JET. The timescale of the crash phase
orders on 100 µs, and evidence of the (m, n) = (1, 1) mode is seen in the data from the o↵-center
trace.

While the von Goeler observation was indicative of internal transport of core plasma on

a much faster timescale than the total discharge time, the spatial resolution of the soft X-ray

diagnostic was too low to diagnose the evolution of the sawtooth mode. Shortly after, on

the Joint European Torus (JET) in the early 1980s, multiple upgraded, soft X-ray detectors

were arranged to provide high temporally resolved (⇠ µs) and 2D tomographically resolved

(⇠ 8 cm) signals of the plasma electron temperature (Edwards et al., 1986). In Fig. 1.9, we

show the expanded view of the central and a non-central detector from Fig. (1) of Edwards

et al. (1986). The top trace shows the crash phase of a sawtooth cycle from the central

detector, exhibiting a timescale the order of 100 µs. The bottom trace shows the data from

an o↵-center detector that is much more complicated, suggesting a complex evolution of the

central region of the plasma.

The times denoted by letters in Fig. 1.9 correspond to tomographical reconstructions

of the electron temperature shown in Fig. 1.10. During the early evolution, the shift of
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Figure 1.10: 2D tomographical reconstructions of soft X-ray data from JET (Edwards et al., 1986) corre-
sponding to the times given in Fig. 1.9. Seen are the early evolution of the kink mode (A&B),
the processing of the core plasma during the reconnection phase (C-G), and the complete
reconnection of the core (H).

the plasma core due to the kink mode can clearly be seen, giving way to reconnection in

(C). The reconnection process continues, as implied by the shrinking hot core, until it fully

processes the core plasma sometime between (G) and (H). Reconnection is complete for this

sawtooth cycle consistent with Kadomtsev’s model. However the timescale of the crash is

much quicker than expected for this discharge, which was estimated to be on the order of

several milliseconds. This discrepancy is due to the model assuming resistive reconnection of

the (m,n) = (1, 1) mode. Resistivity is modelled in plasmas by electron-ion collisions, where

⌘ ⌘ me⌫ei/ne2 is the collisional resistivity, and ⌫ei is the electron-ion collision frequency

which is proportional to n/T 3/2
e (Spitzer and Härm, 1953). JET had Te ⇠ 4 keV, while ST

had Te ⇠ 0.7 keV, so due to the inverse 3/2-power dependence of the electron temperature in

the resistivity, neglecting other e↵ects, the crash time is estimated to be ⇠ 14 times longer,

but was observed to be only ⇠ 3 times longer. This suggests that additional physics is
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Figure 1.11: Toroidally resolved soft X-ray data from the WT-3 tokamak (Yamaguchi et al., 2004). Data
from ports 15, 3, and 8 are at toroidal angle � = 0

�
, 90

�
, and 202.5

�
. The reference time

is given in milliseconds, the blue arrows indicate which edge of the device the mode is o↵set
towards, the red dashed boxes indicate where the helical mode intersects the outboard side
of the device, and the dashed white circles show the q = 1 rational surface. With the toroidal
plasma current opposite to the toroidal direction, the helical mode has a counter-clockwise
polarity, and with a neutral beam causing rotation in the positive toroidal direction, the mode
is observed to rotate in the clockwise poloidal direction.

needed to properly explain the crash time of sawteeth; we discuss this topic more in the next

chapter.

Kadomtsev’s model described the sawtooth crash as a reconnection event of the (m,n) =

(1, 1) mode, and the non-central detector data in Fig. 1.9, along with the 2D tomographical

reconstruction in Fig. 1.10, shows a non-trivial behavior in the evolution of the electron tem-

perature. As was discussed in Sec. 1.1.5, the helical (m,n) = (1, 1) mode wraps around the

tokamak, so viewing data from a single toroidal angle misses out on important information

on how the mode evolves. It was not until the WT-3 tokamak was built in the early 2000s

that multiple soft X-ray detector arrays were placed around the device at di↵erent toroidal

angles (Yamaguchi et al., 2004). On WT-3, detector arrays were positioned at � = 0
�
, 90

�
,

and 202.5
�
, in the 15th, 3rd, and 8th diagnostic ports, respectively. Data from the beginning
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of the sawtooth crash phase can be seen in Fig. 1.11, where the reference time is given in

milliseconds and the total elapsed time is 60 microseconds.

For this discharge, the plasma current is directed oppositely to the toroidal magnetic

field in the positive toroidal direction, giving the reconnection mode a counter-clockwise

helical polarity. With a neutral beam causing rotation in the positive toroidal direction,

the mode is observed to rotate in the clockwise poloidal direction, as expected. Aside from

the observation that the mode rotates, it is also apparent that the poloidal location of

reconnection a↵ects the structure of the electron temperature. When the hot core is o↵set

towards the outboard side, the electron temperature profile elongates along the q = 1 surface.

Furthermore, when the core is o↵set towards the top or bottom, there is an asymmetry of

the temperature towards the outboard side.

1.2.4 Impact of Sawteeth

In more than 40 years since the first observation of sawteeth, the fusion community has come

to better understand their role in the containment of fuel plasma and general operation of

tokamaks. Many of the diagnostics developed to probe the internal magnetic field and plasma

current profiles were motivated by the need to characterize sawtooth behavior (Soltwisch,

1992). In the same time span, technologies have become available that allow us to heat

specific populations of plasma particles and drive currents non-inductively in local regions

of the plasma, largely without a↵ecting the rest of the tokamak, by resonantly coupling

injected wave energy to the gyromotion of the charged plasma particles as discussed in

Sec. 1.1.4.1. It was demonstrated that energetic ions have a stabilizing e↵ect on sawtooth

dynamics (Porcelli , 1991), whether the energetic ions are from fusion-born alpha particles

or non-inductively heated populations (Porcelli et al., 1996). Additionally, currents driven
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Figure 1.12: Soft X-ray observations of sawteeth with periods that were increased (black trace) and de-
creased (grey trace) by non-inductively driving ions in JET (Sauter et al., 2002). Delayed
sawteeth are seen to trigger an (m, n) = (3, 2) NTM, while triggered sawteeth do not couple
their energy into these deleterious modes.

by non-inductively energized charged particles have been used to directly trigger sawteeth

[see Chapman (2011a) for a review], by changing the magnetic shear locally at the q = 1

rational surface (Prater , 2004).

Without the use of control techniques, the sawtooth period and amplitude vary and

in some cases can lead to catastrophic “monster sawteeth”, where the internal kink mode

is stabilized for long times until it is terminated by a large crash (Campbell et al., 1986).

These sawteeth are often more violent and more likely to trigger neoclassical tearing modes

(NTMs). NTMs (Chang et al., 1995) arise on higher numbered rational surfaces, most

notably (N,M) = (3, 2) and (2, 1) surfaces, and act similarly to sawteeth but much closer

to the edge of the plasma. They allow for much faster thermal transport and can lead to

full tokamak disruptions (La Haye et al., 1997). By triggering the crash with non-inductive

current drive, the sawtooth period can be shortened, with relatively smaller crashes that
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Figure 1.13: The presence of sawteeth correlate well to decreased levels of impurities in the plasma core
in JET (Nave et al., 2003). Ar impurity injection was used to enter H-mode, and when
sawteeth stabilized (red trace) Ar impurities accumulated in the core, leading to large levels
of radiative bremsstrahlung losses. However, when ions were driven non-inductively, sawteeth
were maintained and the core impurity density was limited.

are less likely to trigger NTMs. In Fig. 1.12, data is shown from JET (Sauter et al., 2002),

where energetic ion populations were driven to lengthen and shorten the sawtooth period in

order to control NTMs. This is seen in the top panel, where the black trace shows where

the sawtooth period was lengthened and the grey trace shows where the sawtooth period

was decreased. The bottom figure in the lower panel shows the magnetic signal for n = 2

modes and, when the sawtooth period is elongated, it is seen that a (m,n) = (3, 2) NTM is

triggered.

The main e↵ect of sawteeth is the expulsion of hot plasma from the core of the tokamak,

mediated by the change in magnetic topology at the q = 1 rational surface that allows

particle transport. This is important for several of the energy loss mechanisms factoring into

Eq. 1.1, one of those being the bremsstrahlung radiation of accelerating charged particles

compromising the fuel plasma. The radiated energy is proportional to the square of the

accelerating charge: for hydrogenic species this is small where the atomic number is Z = 1,



24

but the heavier particles making up the confinement vessel have much larger Z and the

radiation losses are much greater. In Nave et al. (2003), JET discharges in high-confinement

(H-mode) with Ar injection were observed to be free of sawteeth, and were accompanied by

increased levels of Ar in the tokamak core as seen in Fig. 1.13; this led to a sudden and

unexpected loss of containment. However, when ions were used to non-inductively drive

current to alter the q-profile and stimulate sawteeth, the core impurity density was limited

and good confinement was maintained throughout the discharge. Thus, sawteeth can be

beneficial despite their other deleterious e↵ects.

In this section, we discussed the impacts of sawteeth on tokamak operation. While

sawteeth allow for the adverse transport of hot fuel plasma from the core, their absence

gives rise to unfavorable conditions as well. Thus, controlling sawteeth should be the desired

operating scenario in tokamaks. However, this requires a more complete knowledge of the

underlying physics of sawteeth.

1.3 Incomplete Reconnection in Sawteeth

1.3.1 Observations

We saw in the last section that the sawtooth period can be controlled by utilizing methods

that non-inductively heat and drive currents in the plasma, for either triggering or delaying

the crash onset. However, there is much less understanding of the duration of the sawtooth

crash phase. While the model in Sec. 1.2.2 was successful at explaining sawtooth phenomena

and timing initially [e.g. McGuire and Robinson (1979)], crash times in the larger and hotter

tokamaks JET (Edwards et al., 1986; Wesson et al., 1991) and TFTR (Yamada et al., 1994)

(⇠ 100 µs) were much faster than Kadomtsev’s prediction (several milliseconds) as discussed
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Figure 1.14: Observations of incomplete sawteeth in TFTR (Yamada et al., 1994). The blue trace corre-
sponds to the central electron temperature, which shows the standard sawtooth oscillation.
The red trace shows that the central safety factor always satisfies q0 < 1, which signifies
excess unreconnected magnetic flux at the end of the crash phase.

in Sec. 1.2.3. Several of these faster crash times were accompanied by the curious observation

of “incomplete reconnection”, meaning the central safety factor q0 remains below 1 and not all

available magnetic flux is reconnected by the end of the crash phase. This was also observed

at Tokapole II (Osborne et al., 1982), TFR (Dubois et al., 1983), TEXT (West et al., 1987),

TEXTOR (Soltwisch, 1988), JET (Campbell et al., 1988), PBX-M (Levinton et al., 1989),

DIII-D (Wroblewski and Lao, 1991), MTX (Rice, 1992). Note that not all sawteeth are

incomplete either; q0 was near 1 in sawteeth in ATC and ASDEX [e.g. Soltwisch (1992)]. An

example of the time history of q0 (red trace) and central electron temperature Te (blue trace)

for incomplete sawteeth on TFTR (Yamada et al., 1994) is in Fig. 1.14. The observation that

the safety factor in the core never rises above one throughout the temperature oscillations

indicates that there is still magnetic flux in the core that is available to undergo magnetic

reconnection.

Incomplete sawteeth continue to be actively researched, helped in part by the advance-

ment of diagnostic systems. As an example, a recently upgraded Thomson scattering di-

agnostic system on the Mega Ampere Spherical Tokamak (MAST) has shown incomplete
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Figure 1.15: Thomson scattering measurements towards the end of a sawtooth crash cycle on MAST
(Chapman et al., 2010). The high time and spatial resolution of the upgraded diagnostic
system allows the observation of a transition from a well-confined core in the second frame to
turbulence in the third frame.

Figure 1.16: Profiles of the electron density during the MAST discharge shown in Fig. 1.15 as reproduced
from Chapman et al. (2010). Since the density remains approximately constant as the tem-
perature completely relaxes, reconnection during the sawtooth crash phase is incomplete.

reconnection during a sawtooth cycle as seen in Fig. 1.15 reproduced from Chapman et al.

(2010). In (d) and (e) the core is well-defined with a sharp boundary between it and the

island formed from reconnection. The boundary becomes turbulent in (f), and a full relax-

ation of the core electron temperature takes place within 20 µs (not shown). As the core

temperature relaxes, the electron density remains essentially unchanged as can be seen in

Fig. 1.16; along with measurements that indicate that the central safety factor remains below

1, the observation of unchanged core density is evidence of incomplete reconnection.

While a definitive model for how reconnection evolves during the sawtooth crash phase
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has been elusive, toroidal simulations with extended-MHD physics have observed partial

reconnection (Breslau et al., 2007). Simulated using the M3D code (Park et al., 1999) with

ion diamagnetic terms included, a sawtooth cycle exhibited incomplete reconnection as seen

in the Poincaré plots3 of Fig. 1.17. The first reconnection phase takes place in plots (a)-(c),

and a second reconnection cycle is shown in (d)-(e) that ends before processing all the core

flux, a sawtooth cycle with incomplete reconnection! Compared to a similar resistive-MHD

simulation (not shown), the reconnection mode in this simulation can be observed to rotate

in the poloidal direction, consistent with the addition of the diamagnetic e↵ects, as we discuss

later. While Breslau et al. (2007) was unable to conclude if the incomplete reconnection was

due to the inclusion of two-fluid e↵ects or a consequence of the lesser energy of the second

crash, this is still the first simulation result showing incomplete reconnection in a 3D toroidal

geometry.

To understand why reconnection is incomplete, one must determine how reconnection

can cease despite the presence of free magnetic energy. Referring to Sec. 1.2.1, once mag-

netic fields break, reconnect, and subsequently release their tension, mass continuity induces

inflows that bring in additional magnetic flux. To interrupt this process, there must be

additional e↵ects besides the local magnetic shear. In the previous section, we saw that an-

other source of energy from energetic populations of plasma particles a↵ects the reconnection

process. Other possible sources of energy that could play an important role at the q = 1 ra-

tional surface are flow shear, pressure gradients (diamagnetic e↵ects), and tokamak shaping.

Determining which, if any, of these energy sources contribute to incomplete reconnection

remains an open issue and is the main concern of this dissertation.

3In the context of tokamaks, Poincaré plots map where magnetic fields intersect a plane defined by a
specific toroidal angle. By seeding di↵erent starting points in such a plane, the value of the local magnetic
field is used to trace along the field for multiple toroidal transits. Recording where the field “punctures” the
plane on each transit gives the plots shown in Fig. 1.17.
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a)
 b)
 c)


d)
 e)


Figure 1.17: Poincaré sections showing the reconnection phases of two sawtooth cycles for extended-MHD
simulations including ion diamagnetic e↵ects (Breslau et al., 2007). The first sawtooth crash
(a)-(c) exhibits complete reconnection, while in the second crash (d)-(e) reconnection is in-
complete. Rotation of the reconnection mode in the poloidal direction is due to the inclusion
of diamagnetic e↵ects.
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1.3.2 Impact of Incomplete Reconnection

Sawtooth phenomena are projected to threaten operation in ITER [e.g. Hender et al. (2007)],

so it is critical to accurately predict sawtooth phenomena. Sawtooth events degrade confine-

ment of fusion alpha particles generated in the core of the tokamak, limiting their ability to

transfer their energy to the plasma; the timescale of the sawtooth crash (i.e., whether recon-

nection is complete or incomplete) directly determines the importance of these losses. It was

recently argued that fast-ion transport strongly depends on the crash time (Muscatello et al.,

2012), though there is no accepted model of the crash time because incomplete reconnection

is not well understood.

The uncertainty of the cause of incomplete reconnection impacts tokamak transport mod-

eling. Low-dimensional transport models capture the sawtooth period and amplitude (Por-

celli et al., 1996), but the fraction of flux reconnected is an input parameter rather than

self-consistently calculated [e.g. Bateman et al. (2006)]. Therefore, a first principles self-

consistent understanding of incomplete reconnection is crucial to understand transport and

predict the viability of future fusion devices such as ITER.

1.4 Summary of Results

The remainder of this manuscript focuses on understanding the of role magnetic reconnec-

tion during the crash phase of sawteeth. In the next chapter, we continue by introducing

collisionless reconnection, in particular how it evolves under the conditions relevant for saw-

teeth, where pressure gradient e↵ects, or diamagnetic e↵ects, play an important role. In the

third chapter, we return our discussion to sawteeth, but focus primarily on models of in-

complete reconnection in sawteeth. This includes the introduction of a new model detailing
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how magnetic reconnection can self-consistently cease during a crash phase, and a series of

two-fluid simulations in a 2D slab geometry that support the model. In the fourth chapter,

we transition to simulations in a 3D toroidal geometry. By viewing the simulation data using

a novel technique, we properly diagnose collisionless reconnection in 3D toroidal simulations

for the first time during a sawtooth crash phase. The final chapter summarizes our work,

and suggests additional interesting lines of inquiry.
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Chapter 2

Review of Magnetic Reconnection

2.1 Collisionless Reconnection

With the main consideration of this work being to further understand the causes and e↵ects

of incomplete reconnection, the observation of a shorter crash time compared to Kadomt-

sev’s theory suggests that additional physics to the resistive (m,n) = (1, 1) tearing mode

is necessary. Rather than the resistive (slow) reconnection model of Sweet and Parker uti-

lized by Kadomtsev, the fast time scales of the crash phase imply that collisionless (fast)

reconnection e↵ects are important [e.g. Biskamp (2000)].

In order to quantify the rate of reconnection, we assume that the plasma flow is incom-

pressible (i.e. r · v = 0) outside of the region where magnetic field lines reconnect, which

leads to the scaling

vin
�

⇠ vout
L

) Er ⌘ vin
vout

⇠ �

L
, (2.1)

where � and L are the respective thickness (in the inflow direction) and length (in the

outflow direction) of the reconnection region, and vin and vout are the velocity of the flow
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Figure 2.1: Magnetic geometry of Petschek (top) and Sweet-Parker (bottom) reconnection (Cassak , 2006).
Note the opening angle of the reconnection site, leading to an X outflow structure and elongated
outflow structure, for Petcheck and Sweet-Parker reconnection, respectively.

into and out of the reconnection region, respectively. The reconnection rate Er, or the

normalized rate at which flux is processed, is the ratio between the inflow speed and the

outflow speed from the reconnection site (Parker , 1957). Er was suggestively chosen to

represent the reconnection rate, because Er is also equal to the out-of-plane electric field at

the reconnection site (Vasyliunas , 1975), which, from Faraday’s law, is related to the time

rate of change of magnetic flux.

In the Sweet-Parker model, the outflow speed is Alfvénic and the length of the recon-

nection region is set by the global scale Lg (Biskamp, 1986; Scholer , 1989a; Uzdensky and

Kulsrud , 2000; Jemella et al., 2003, 2004) as seen in the bottom plot of Fig. 2.1 from Cassak

(2006). One can show the reconnection rate is Er = S�1/2 (Parker , 1957; Sweet , 1958),

where S = µ0LgcA/⌘ is the Lundquist number, representing the ratio between the resistive

di↵usion time and the Alfvénic convection time. Thus, Er ⇠ ⌘1/2, and as we saw in the

last chapter, ⌘ scales like T�3/2, showing that Sweet-Parker reconnection has a lower rate at

higher plasma temperatures.

To reconcile the observations of fast rates of reconnection at high Lundquist numbers in
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astrophysical and space plasmas, Petschek (1964) proposed a model where the reconnection

site is localized in the outflow direction, rather than stretching over global scales. Refer-

ring to Eq. 2.1, decreasing the outflow scale relative to the inflow scale increases the rate

of reconnection, e↵ectively decreasing the nozzle-e↵ect and allowing more magnetic flux to

be processed. However, computations (Biskamp, 1986) showed this geometry cannot be sus-

tained with a simple uniform resistivity. Instead, the resistivity must increase locally at the

X-line, leading to several models of anomalous resistivity (Papadopoulos , 1977; Galeev and

Sagdeev , 1984; Drake et al., 2003). We will see in Sec. 2.3 that the di↵erence in characteristic

length scales between electrons and ions due to their disparate masses allow for a Petschek

reconnection geometry in the absence of collisions, as seen in the top plot of Fig. 2.1. How-

ever, the mechanism by which two-fluid e↵ects allow this configuration to arise is still under

debate.

2.2 Magnetohydrodynamics

In order to ascertain the dominant physics that controls the reconnection process in the

sawtooth crash, we must begin by choosing a proper model. Rather than keeping information

about each individual particle, or using a distribution function that describes the ensemble

of plasma particles in phase (x,v, t) space, we use the two-fluid model, which captures the

minimum physics needed to model collisionless reconnection by treating ions and electrons

as separate fluids using the framework of magnetohydrodynamics, or MHD for short. This

choice is reinforced by the results of the GEM challenge, where Fig. 2.2 shows a benchmark of

several models used to study reconnection (Birn et al., 2001). The “Hall-MHD” model, which

is similar to the two-fluid model, exhibits a comparable amount of reconnected magnetic flux
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Figure 2.2: A benchmark of di↵erent models used to study reconnection in plasmas (Birn et al., 2001).
The models compared include resistive-MHD, Hall-MHD (similar to two-fluid), a hybrid model
where ions are treated as particles and electrons are treated as a fluid, and a full particle
model. While reconnection is slow for resistive-MHD, the other three models are qualitatively
consistent with collisionless reconnection.

as the full particle and hybrid models, which dramatically outpaces the slower resistive-MHD

model.

However, we start our discussion by describing MHD. It employs an approximation to

model the di↵erent species of charged particles comprising a plasma as a single fluid, and

when coupled with Maxwell’s equations for electromagnetism, the resulting set of equations

is MHD [e.g. Chen (1974)]. Additionally, we allow for collisions between the ion and electron

species that enter the system of equations through Ohm’s law as a resistivity; in the next

section, we expand this to a “generalized Ohm’s law” to include the physics of the two-fluid

model, which treats ions and electrons as separate populations as contrasted to the single

fluid of MHD.

The set of resistive-MHD equations include the mass, momentum, and pressure (or alter-

natively, energy) evolution equations, Faraday’s law, Ampère’s law (where the displacement

current term is ordered out), and the resistive Ohm’s law, given by Forbes (2007) in Gaussian
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units as:

d⇢

dt
= �⇢r · v, (2.2)

⇢
dv

dt
= �rp+

J ⇥ B

c
, (2.3)

dp

dt
= ��pr · v + (� � 1)⌘J2, (2.4)

@B

@t
= �cr ⇥ E, (2.5)

r ⇥ B =
4⇡

c
J, (2.6)

E+
v ⇥ B

c
= ⌘J. (2.7)

Here, d/dt = @/@t + v · r refers to the time derivative moving with the plasma, where

@/@t is the local time derivative and v · r is the convective derivative due to flow through

a spatially varying plasma. The plasma mass density is denoted by ⇢ ' min for mi � me,

where n is the quasineutral particle density (i.e., electron and ion densities are equal ne ' ni),

p = pi + pe is the (isotropic) plasma pressure, and � is the ratio of specific heats. E denotes

the electric field, B is the magnetic induction field, J is the electric current density, and

⌘ is the collisional resistivity described in Sec. 1.2.3. Closing the hydrodynamic equations

with the adiabatic equation of state in Eq. 2.4 describes convection, compression, and Ohmic

heating, ignoring other e↵ects1.

In this formulation, the quasineutral plasma flow v = (mivi + meve)/(mi + me) '

vi + ve(me/mi) upon using mi � me, is largely independent of the electron flow, making

this “one-fluid” flow heavily dependent upon the ions. Interestingly, Eq. 2.7 is consistent

with E = 0 in the reference frame moving with the plasma [e.g. Choudhuri (1998)], except

1Braginskii (1965) provides a rigorous treatment, deriving the two-fluid equations from the Vlasov equa-
tion (including collisions), which describes the time evolution of the plasma distribution function.
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where electron-ion collisions allow slippage of the plasma fluid relative to the magnetic field.

This is known as the “frozen-in” condition, which describes how the magnetic flux through

any closed surface moving with the plasma cannot change, prescribing the magnetic field

and plasma move together in the absence of dissipation (Axford , 1984; Choudhuri , 1998).

Combining Eq. 2.5 with Eq. 2.7 gives

@B

@t
= cr ⇥

✓
v ⇥ B

c
� ⌘J

◆
(2.8)

for the evolution of the magnetic field in resistive MHD. The first term on the right is due

to convection, compression, and bending of the magnetic field, consistent with the frozen-

in condition, while the second term describes di↵usion of the magnetic field. Upon using

Ampère’s Law, the e↵ect of di↵usion on magnetic field evolution scales like

@B

@t
⇠ ⌘c2

4⇡
r2B. (2.9)

In Sweet-Parker reconnection, this di↵usion is what allows the magnetic fields to break

and convert their energy into the kinetic energy of the reconnection outflows and heat;

it is this type of reconnection that Kadomtsev’s model of sawteeth uses. However, for

higher temperatures in modern tokamaks such as DIII-D, Kadomtsev’s resistive reconnection

timescale is on the order of 1 ms, while observed crash times are on the order of 40 µs (Lazarus

et al., 2006). As discussed earlier, because the Spitzer resistivity is inversely proportional

to T 3/2
e , as temperatures increase the magnetic di↵usion time increases as well, while the

sawtooth crash time is observed to remain approximately constant.

However, when electrons are treated independently from the ions in a plasma, their

presence gives rise to dynamics on much faster time scales than di↵usion alone, and their
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inertia allows for the breaking of magnetic fields even in the absence of collisions.

2.3 Two-fluid Physics in Reconnection

2.3.1 Two-Scale Separation

Ions and electrons gyrate around magnetic fields, as discussed in Sec. 1.1.4. The Larmor

radius rL for an ion travelling at the Alfvén speed cA revolving at a gyrofrequency ⌦ci =

eB/mic is given by

rL =
cA
⌦ci

=
c

!pi
= di (2.10)

where di = c/!pi = c
p

mi/4⇡ne2 is the ion inertial length in a quasi-neutral plasma. In

antiparallel reconnection at scale lengths shorter than di from the X-line, the ions no longer

gyrate about a particular magnetic field line. During a gyro-orbit, the ion sees an oppositely

directed magnetic field, and reverses its orbit direction, e↵ectively demagnetizing ions in this

“ion di↵usion region”. After averaging over the motion in this region, vi ⇡ 0. Additionally,

since the Larmor orbit also depends on the square root of the mass of the charged particle,

the Larmor radius for electrons, everything else the same, is a factor of ⇠ 40 smaller than

that for ions. In the area between the ion Larmor radius di (the ion di↵usion layer) and the

electron Larmor radius de (the electron di↵usion layer), the ions are demagnetized while the

electrons are still frozen into the magnetic field.

The discussion of finite Larmor radius (FLR) e↵ects in the last paragraph can be visu-

alized in Fig. 2.3 from Drake and Shay (2007). The reconnecting magnetic fields at the top

and bottom are consistent with the out-of-plane current at the center of the reconnection

site. The ion and electron flows are shown by the dotted and dashed lines respectively, and
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Figure 2.3: Two-scale structure of collisionless reconnection where ions and electrons decouple due to their
disparate masses (Drake and Shay , 2007). The ion and electron di↵usion regions are shown by
the shaded and inset clear regions, with flows dotted for ions and dashed for electrons. Due
to the disparate scales of the ion and electron di↵usion layers, a (Hall) current is driven in the
reconnection plane shown by the solid line in the figure, along with the associated quadrupolar
out-of-plane magnetic field.

the ion and electron di↵usion regions are the centrally nested shaded and clear rectangles

with the electron di↵usion region inside the ion region. The diagram shows that once the

ions enter the ion di↵usion region, they are quickly swept downstream in broad outflows

scaling with the width of the ion di↵usion region. Similarly, the electrons enter the inflow

region and travel toward the electron di↵usion region before being swept downstream.

A consequence of the ions and electrons decoupling due to their disparate Larmor radii

is that while the magnetic field is frozen-in to the bulk plasma outside of the ion dissipation

region, inside this region the magnetic field is frozen-in to the electron fluid alone. This yields

a current, which should also be included in the model. By adding additional physics to the

resistive Ohm’s law in Eq. 2.7, these e↵ects can be quantified through a generalized Ohm’s

law and solved self-consistently with the other MHD equations to diagnose reconnection
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with collisionless physics.

2.3.2 Generalized Ohm’s Law

Two-scale ion and electron physics is included in the two-fluid model, a generalization of

MHD to include sub-ion Larmor radius e↵ects. To get from the set of resistive-MHD equa-

tions in the last section to the two-fluid model, an evolution equation for the electron pressure

must be added and Eq. 2.7 is augmented to give

E+
v ⇥ B

c
= ⌘J+

J ⇥ B

nec
� 1

ne
r · Pe +

me

e2
d

dt

✓
J

n

◆
. (2.11)

In addition to the convection and resistive terms, the second term on the right is known as

the Hall term including the physics of the disparate ion and electron scales, the third term

is the divergence of the electron pressure tensor, and the final term contains the physics of

electron inertia.

To understand the physics contained in Eq. 2.11, we begin with the electron fluid equation

of motion

me
dve

dt
= � 1

ne
r · Pe � e

✓
E+

ve ⇥ B

c

◆
+me⌫ei(ve � vi). (2.12)

Solving this for E gives Eq. 2.11. From the equation of motion, we approximate ve by

employing the quasi-neutral approximation mentioned in the last section, ni = ne = n,

along with the definition of electric current to write

J = ne(vi � ve) ) ve = vi �
J

ne
' v � J

ne
, (2.13)

where we also took the limit that vi ' v for mi � me. When substituted into Eq. 2.12,
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Figure 2.4: Illustration of a reconnection site, where the nested, dashed red and purple boxes indicate
the ion and electron di↵usion regions, and the opening angle of the X-line is shown in black.
The green magnetic fields are convected out of the plane by the electrons making up the
reconnection current Jz (red arrows) in the ion di↵usion region. This out-of-plane convection
leads to a quadrupolar field structure B̃, shown by the orange arrows.

this expression for the electron flow gives rise to the J ⇥ B Hall term and the form of the

electron inertia term2 appearing in Eq. 2.11. Physically, as is the case for collisions in the

resistive Ohm’s law, in the generalized Ohm’s law, while electrons attempt to short out any

electric fields arising in the plasma, mechanisms arise at the ion and electron gyroscales that

limit the electrons ability to negate local charge accumulation, described by the terms on

the RHS of Eq. 2.11.

The Hall term describes the ions decoupling from the magnetic field while the electrons

remain frozen-in. There is the appearance of a Hall current, as seen in Fig. 2.3 by the solid

black arrows. Since the Hall currents are opposite to the electron flow in the ion di↵usion

layer from the first equality in Eq. 2.13, Hall currents are directed from the outflow to the

inflow regions. By Ampère’s law, these currents set up an out-of-plane quadrupolar magnetic

field along the outflow openings from the X-line consistent with the illustration in Fig. 2.3.

This quadrupole structure is also consistent with the out-of-plane electron flow in the ion

di↵usion layer, illustrated in Fig. 2.4. Since vi ' 0 in the ion dissipation region (the dashed

red box), the out-of-plane electron flow is opposite to that of the reconnection current Jz

consistent with the (green) magnetic field Brec. The electrons are frozen-in in this region, so

2Electron inertia physics only becomes important inside the electron di↵usion region where vi ' 0, so the
fourth term in Eq. 2.11 makes this additional approximation.
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they convect the magnetic field out of the reconnection plane (Terasawa, 1983; Mandt et al.,

1994), producing the quadrupolar out-of-plane field structure B̃ indicated by the orange

arrows.

We can find where the Hall term becomes important by applying a scaling analysis similar

to that originally done by Vasyliunas (1975). By balancing the convection of magnetic field

into the ion dissipation region with the Hall term

|v ⇥ B|
c

⇠ |J ⇥ B|
nec

) cAB ⇠ cB2

4⇡ne�
) �i ⇠ cA/⌦ci ⌘ di, (2.14)

whereB/� ⇠ 4⇡J/c from Ampère’s law. Thus, we find that the Hall e↵ect becomes important

precisely where the ions decouple from the magnetic field in the vicinity of the X-line!

Numerical simulations (Shay et al., 1998) and laboratory experiments (Yamada et al., 2006)

confirm that the thickness of the ion dissipation region scales like di. Additionally, a similar

scaling analysis of the electron dissipation layer (Drake and Shay , 2007) show its width

scales as �e ⇠ de, where de =
p

me/midi is the electron inertial length; this is corroborated

by simulations (Zeiler et al., 2002).

2.4 Guide-field Reconnection

In the preceding section, we discussed reconnection for an equilibrium magnetic configuration

where the fields are antiparallel, lying in a plane without a field component in the direction

perpendicular to the reconnection plane. This is a special case of magnetic reconnection; in

general, there can be a component of the field perpendicular to the reconnection plane, which

is known as a “guide-field”. Even with the inclusion of a guide-field, only the components

of the magnetic field in the reconnection plane undergo reconnection. An example of this
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Figure 2.5: Illustration of a reconnection geometry including an additional out-of-plane component of the
magnetic field to the reconnecting, antiparallel field (Cassak , 2006). The addition of the guide-
field leads to a much di↵erent structure of the ion and electron dissipation regions in collisionless
reconnection.

configuration is illustrated in Fig. 2.5, where the plane of reconnection is defined by black

dotted rectangle and the magnetic field is seen to have a component perpendicular to this

plane. Reconnection with a guide-field, also known as component reconnection, is the general

state of reconnection in many systems including the solar wind, the sunward side of Earth’s

magnetosphere, and toroidal fusion devices, where the guide field is much larger than the

reconnecting field3.

2.4.1 Pressure Quadrupole

Numerical simulations show that guide-field Hall reconnection is fast4 when the Hall term

is big enough to dominate electron physics (Kleva et al., 1995; Hesse et al., 1999; Pritchett ,

2001; Rogers et al., 2001; Hesse et al., 2002; Huba, 2005), meaning it looks like the top

panel in Fig. 2.1, not the bottom panel. Interestingly the inclusion of a sizable guide-

3We see in Ch. 3 that the guide-field is estimated to be four orders of magnitude larger than the recon-
necting field in the MAST tokamak!

4Fast reconnection with a guide-field was also recently reported without the inclusion of Hall e↵ects (Cas-
sak et al., 2015). When an electron pressure anisotropy described by the Chew-Goldberger-Low gyrotropic
equations of state is included in the generalized Ohm’s law, this e↵ect can dominate the Hall term in plasmas
typical of the solar wind and some tokamaks.
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Figure 2.6: Illustration showing the polarity of the density (pressure) quadrupole for the case of collisionless
reconnection with a guide-field Cassak (2006). Note that the polarity of the density quadrupole
is opposite to that of the out-of-plane magnetic field produced by the Hall current, in order to
maintain total pressure balance.

field substantially changes the structure of the dissipation regions surrounding the X-line.

Physically, this can be understood in terms of pressure balance across the ion dissipation

region in the inflow direction. The equation for pressure balance is found from the steady-

state (@/@t ! 0) of the momentum evolution equation Eq. 2.3. After using Ampère’s law to

write J ⇥ B = (c/4⇡)[�r(B2/2) + (B · r)B], but neglecting the second term on the RHS

since magnetic curvature upstream of the di↵usion region is small, we find

r

p+

B2

8⇡

�
= 0, (2.15)

or that the gas pressure plus the magnetic pressure is a constant in space. Recalling the

quadrupole magnetic field B̃ in Fig. 2.4, we allow for all quantities to be composed of an equi-

librium part and a quadrupole part (perturbation) consistent with two-fluid reconnection,

e.g., p = p0 + p̃. With this substitution, Eq. 2.15 becomes

(p0 + p̃) +
(B0 + B̃)2

8⇡
⇠ constant ) p̃ ⇠ 2B0 · B̃+ B̃2

8⇡
, (2.16)

where the equilibrium terms satisfying p0 + B2
0/8⇡ = constant have been dropped, since

that is the condition which sets the equilibrium. Then we assume that quantities due to
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the reconnection quadrupole are small compared to the equilibrium fields, dropping the B̃2

term. Next, considering that the magnetic field is composed of reconnecting and out-of-plane

components B = Brecô + Bhĥ, where ô and ĥ are the outflow and out-of-plane directions,

for the strong guide-field case where Bh � Brec, B0 · B̃ = B0,recB̃rec +B0,gB̃g ⇠ B0,gB̃g, and

Eq. 2.16 reduces to

p̃ ⇠ �Bg,0B̃g/4⇡. (2.17)

Thus, when a guide-field is present, there will be a pressure quadrupole along the reconnec-

tion site outflow openings as illustrated in Fig. 2.6 to balance out the guide-field quadrupole

due to Hall currents. Additionally, since it is the total pressure that must be balanced, the gas

pressure quadrupole has a polarity opposite to that of the magnetic guide-field quadrupole.

This depletion and enhancement of the density along the outflow openings has been observed

in many simulations (Kleva et al., 1995; Tanaka, 1996; Pritchett and Coroniti , 2004; Drake

et al., 2005).

An alternative way to understand the existence of the pressure gradient for collisionless

reconnection with a guide-field is to again consider the physics in Ohm’s law, namely how the

electrons attempt to short out any charge imbalances. Without a guide-field, electrons in the

ion dissipation region attempt to short out the electric field produced by the reconnecting

field, which drags the field in the out-of-plane direction. The e↵ect of electron migration on

the pressure profile can be seen in the top plot in Fig. 2.7, from Rogers and Denton (2003),

where the pressure is peaked in center of the outflows. However, when a guide-field is present

that is in the same direction as the out-of-plane electric reconnection field, electrons can move

across the midplane in the inflow direction to short out this field. This leads to the depleted

and augmented regions of the pressure quadrupole seen in the bottom plot of Fig. 2.7.
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Figure 2.7: Plots of the gas pressure during collisionless two-fluid reconnection for zero guide-field (top)
and a guide field 30 times larger than the reconnecting field (bottom) (Rogers and Denton,
2003); note that the equilibrium pressure is 30 times greater for the large guide-field case.
The pressure is centrally peaked in the outflows in the absence of a guide-field, and exhibits a
quadrupole structure for a large guide-field.

2.4.2 Electron Diamagnetic E↵ects

The scaling argument we used earlier to ascertain the length scale at which the Hall ef-

fect becomes important for antiparallel reconnection was valid because there were only two

dominant physical processes in question, convection of magnetic fields and the Hall e↵ect.

However, compression plays an active role with the introduction of a guide-field, so this sim-

ple scaling analysis does not encapsulate the intricate balance between the di↵erent physical

processes. For guide-field reconnection, the length scale at which the Hall e↵ect becomes

important is (Zakharov and Rogers , 1992)

�i ⇠ ⇢s, (2.18)

where ⇢s =
p
�/2di = cs/⌦ci is the Larmor radius based on the sound speed

cs =
p
�eZeffkBTe/mi, where kB is Boltzmann’s constant, Zeff is the e↵ective ion charge

due to impurities and multiple ionization states, and � = 8⇡nkBTe/B2 is the ratio of the
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Figure 2.8: Due to density (pressure) gradients on the electron Larmor orbit length-scale when a guide-field
is present, the non-uniform concentration of gyro-orbits results in a bulk flow consistent with
v⇤e = (c/neB2)rpe ⇥ B. Note that the electron diamagnetic drift v⇤e is perpendicular to the
direction of the guide-field and the pressure gradient as shown.

electron gas pressure to the magnetic pressure in a plasma. This scaling has been con-

firmed numerically (Kleva et al., 1995) and observed experimentally (Egedal et al., 2007).

Additionally, the guide-field also constrains electrons at smaller scales than was the case for

antiparallel reconnection, resulting in a narrower electron dissipation region that scales like

�e ⇠ ⇢e (Hesse et al., 2002, 2004), where ⇢e =
p

me/mi⇢s is the electron thermal Larmor

radius.

At small length scales inside the ion dissipation layer, the pressure quadrupole that

extends along the guide-field reconnection outflow openings converges at the electron dissi-

pation layer, which leads to large electron pressure gradients downstream of the reconnection

site. These gradients are important due to diamagnetic e↵ects, as pictured in Fig. 2.8. When

pressure gradients (the simplified case of an electron density gradient is shown in Fig. 2.8)

arise in a plane perpendicular to a magnetic field, there is a non-uniformity in the concen-

tration of particle gyro-orbits. Due to this non-uniformity, there are an unbalanced number

of particles in each half of their orbit locally, which leads to a bulk flow normal to both rpe

and B known as a diamagnetic drift. For a collisionless reconnection site with a guide-field,

the pressure quadrupole sets up gradients aligned in the inflow direction as seen in Fig. 2.6,
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so the electron diamagnetic drifts are directed along the reconnection outflows.

An alternative way to see the e↵ect of the electron pressure quadrupole in the ion dis-

sipation layer starts with the electron equation of motion, Eq. 2.12. We ignore electron

inertia and collisions with ions, and assume an isotropic electron pressure (r · Pe ! rpe)

for simplicity. Taking the cross product of the remaining terms with the magnetic field and

rearranging, we find that the electron velocity perpendicular to the magnetic field satisfies

ve,? = c
E ⇥ B

B2
+ c

rpe ⇥ B

neB2
. (2.19)

The first term on the RHS is the well known “E cross B drift” [e.g. Chen (1974)], and the

second term is the electron diamagnetic drift v⇤e. While the E ⇥ B drift is consistent with

outflows driven by bent magnetic field lines, numerical simulations of collisionless reconnec-

tion have shown electron jets that exceed this speed (Hesse et al., 2008). Hesse et al. (2008)

showed that this excess is due to electron diamagnetic flows.

2.5 Suppression of Reconnection

Up to this point, this chapter has focused on properties of collisionless reconnection in a

steady state. While it all pertains to reconnection during the crash phase of a sawtooth,

the main problem we set out to answer was why reconnection can stop suddenly and end

the crash phase prematurely. In this section, we begin to see how this is possible by moti-

vating how reconnection is suppressed by diamagnetic e↵ects. While models describing the

diamagnetic e↵ects on sawteeth, or the so called !⇤-e↵ects to be more thoroughly explored

in the next chapter, were popular in the early 1990’s, fully nonlinear, non-axisymmetric,

two-fluid simulations of tokamaks were not computationally available. Thus, we concern our
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Figure 2.9: Particle-in-cell (PIC) simulations of collisionless guide-field reconnection, where the amount of
flux reconnected over time is seen to decrease as diamagnetic e↵ects are increased (Swisdak
et al., 2003). The strength of the equilibrium guide-field was varied across the dotted, dashed,
and dotted-dashed lines of Bg0 (1.5, 1.0, and 0) with an equilibrium density gradient across
the reconnection inflows. The solid line shows reconnection without any diamagnetic e↵ects
for reference.

discussion here to theory and simulations that were initially used to describe reconnection

at the sunward side of Earth’s magnetosphere (Swisdak et al., 2003), the magnetopause,

where there is a large equilibrium density gradient between the outer magnetosphere and

the denser plasma of the solar wind. This study has the benefit of using simulations run

with a particle-in-cell (PIC) code, which more accurately captures the physics compared to

a fluid model.

The initial equilibrium in Swisdak et al. (2003) had a gradient in the density across the

inflow regions, and with the reconnecting field symmetric, the nonzero guide-field also varied

along the inflow direction to maintain total pressure balance. The simulation is initialized

with a coherent perturbation of the magnetic flux that sets the X-line, and is large enough

that the system begins to reconnect nonlinearly, thereby skipping the tearing phase. By vary-

ing the strength of guide-field, while keeping everything else constant, v⇤e = (c/neB2)rpe⇥B

was varied, and numerical results of the amount of magnetic flux reconnected as a function of

time are shown in Fig. 2.9. The solid line shows the reference case with no density gradient,
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Figure 2.10: For guide-field reconnection with an electron pressure gradient in the inflow direction, there
will be an electron diamagnetic flow at the X-line, which causes the X-line to convect in the
outflow direction. If the drifting X-line overtakes the reconnection outflow speed, bent field
lines can no longer release their tension, and reconnection ceases.

while the dotted, dashed, and dotted-dashed lines have a decreasing value of the guide-field

of 1.5, 1.0, and 0. As the guide-field is decreased, the diamagnetic flows are increased, and

the amount of reconnected flux decreases as well, a clear indication that diamagnetic e↵ects

suppress reconnection.

An imporant aspect of electron diamagnetic flows is that they convect the local magnetic

fields (Coppi , 1965; Scott and Hassam, 1987; Swisdak et al., 2003; Pritchett , 2008), as a

short derivation shows. Starting from the electron equation of motion, Eq. 2.12, and ignoring

electron inertia and resistivity for simplicity gives

E = �ve ⇥ B

c
� rpe

nee
= �(ve + v⇤e) ⇥ B

c
. (2.20)

Substituting this into Faraday’s law, Eq. 2.5, gives

@B

@t
= r ⇥ [(ve + v⇤e) ⇥ B]. (2.21)

This is analagous to the standard frozen-in condition, where the single fluid velocity v is

replaced by ve + v⇤e. Since magnetic fields convect at velocity v in ideal-MHD, this implies
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that the fields convect with electron flow including the electron diamagnetic drift. Thus,

within the ion dissipation region where vi ⇡ 0, the electron diamagnetic flows convect the

X-line.

Swisdak et al. (2003) finds that when the condition5

|v⇤e|out � vout (2.22)

is satisfied, or when the electron diamagnetic flow in the outflow direction at the X-line is

greater than the outflows driven by reconnection, reconnection is suppressed. This interplay

is illustrated in Fig. 2.10, where an electron pressure gradient across the reconnection layer

induces a diamagnetic flow v⇤e in the same direction as one of the reconnection outflows when

a guide-field is present. Physically, if the X-line, convecting with v⇤e, drifts faster than the

reconnection outflow vout, the bent magnetic field lines are no longer releasing their tension

in the reference frame of the moving X-line. With no outflow in one of the exhausts, the

inflow is throttled and reconnection ceases.

In Swisdak et al. (2010), Eq. 2.22 was written in terms of the shear angle ✓ between the

magnetic fields (where ✓ = 180� is antiparallel and 0� is parallel) as

�� � 2L

di
tan

✓
✓

2

◆
, (2.23)

where the width of the pressure gradient L corresponds to the gradient length scale, and ��

is the jump in plasma beta across the reconnection layer. The condition distills the essential

physics of reconnection suppression: when pressure gradients (��) dominate over magnetic

5For completeness, we note that the result in Swisdak et al. (2003) used the relative diamagnetic speed
between ions and electrons. However, given the discussion in the previous paragraph, we expect that the
electron diamagnetic flow is the important physics for suppression.



51

L = di 

2di 

0.5di 

Figure 2.11: Reconnection events in the solar wind as measured by the Wind and ACE spacecraft plotted
according to Eq. 2.23 adapted from Phan et al. (2010). Only where there is a su�cient amount
of magnetic shear in the magnetic field, denoted by the angle ✓, compared to the jump in
diamagnetic e↵ects across the reconnection layer, quantified by ��, is reconnection observed.
The gradient length scale over which � changes is modeled as the free parameter L, and for
L = di the data fits above the solid line consistent with Eq. 2.23.

shear (✓), magnetic reconnection ceases. This threshold was tested numerically and verified

using solar wind data from reconnection events observed by the Wind and ACE spacecrafts

in the period from 1997 to 2005 (Phan et al., 2010). These data are shown in Fig. 2.11, where

the drawn lines correspond to di↵erent values modelled for di, and each point represents a

reconnection event. The distribution of reconnection events confirms that reconnection does

not happen when diamagnetic e↵ects are su�ciently large. Additionally, the data suggests

that the critical pressure gradient length scale L is equal to the ion inertial scale di, since

the majority of the reconnection events lie above the solid line in Fig. 2.11. The condition

in Eq. 2.23 has also been verified using data from the dayside of Earth’s magnetopause,

Mercury, Saturn, and the heliopause.

Now that we have motivated the important mechanisms comprising collisionless, guide-

field reconnection, and how it can be suppressed due to local pressure gradients at the

reconnection site, we are prepared to discuss the problem of reconnection during the sawtooth

crash phase in tokamaks. The next chapter will apply knowledge of reconnection to the

magnetic configurations of tokamaks, where the magnetic shear and pressure gradients vary
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throughout. This will ultimately lead us to a model for incomplete reconnection in sawteeth.
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Chapter 3

Incomplete Magnetic Reconnection

3.1 Previous Models of Incomplete Reconnection

There are a number of existing models to explain incomplete reconnection in sawteeth. Many

of these models incorporate observations from experiments and simulations of the suppression

of sawteeth. However, it is not clear in many cases how the suppression mechanism self-

consistently grows and dominates over the tearing/reconnection process.

In Lichtenberg et al. (1992), magnetic islands with di↵erent pitch, having di↵erent N,M

characteristic winding numbers consistent with q = N/M from Sec. 1.1.5, overlap, leading to

stochastic magnetic fields (Zaslavskĭı and Chirikov , 1972), which was purported to enhance

transport and slow reconnection. Modelling by Igochine et al. (2007) confirms that stochas-

ticity of overlapping rational surfaces is an important component of the sawtooth crash phase

as seen in Fig. 3.1. In each column (a)-(c), numerical data from an equilibrium having a q

profile shown in the bottom plot was evolved assuming perturbations having a combination

of (m,n) = (1, 1), (2, 2), and (3, 3) helical modes. For the equilibrium with a central safety

factor well below 1 shown in (a), many rational surfaces are available to overlap resulting in
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Figure 3.1: (Top) Poincaré plots of the magnetic field for the combination of (m, n) = (1, 1), (2, 2), (3, 3)
modes for di↵erent safety factor profiles from Igochine et al. (2007). (Bottom) q profiles for three
equilibria with di↵erent central q values. Lower central safety factors include more rational
surfaces, leading to increased levels of stochastization.

widespread stochasticity, revealed by space-filling fields in the Poincaré plot in the top row.

When q0 . 1 in (c), the magnetic surfaces are better maintained. While it is accepted that

fields become stochastic [e.g. Borgogno et al. (2005)], their role was questioned (Wesson

et al., 1997) because the transport is caused by motion along the magnetic field, which takes

longer than the observed crash times.

It has been directly observed that trapped1, high energy ion populations prevent saw-

teeth (Coppi et al., 1988; White et al., 1989, 1990; Porcelli , 1991). Whether these energetic

populations originate from neutral beams, acceleration by RF sources, or alpha particles

produced by the fusion process, they extend the time between sawteeth. The internal kink

1Trapped compared to passing particles in a tokamak are due to the 1/R varying toroidal magnetic field
and the adiabatically conserved magnetic moment of charged particles arising from their Larmor motion.
The magnetic moment is given by the ratio of the perpendicular (to the field) kinetic energy of the particle
to the local magnetic field strength. As a particle moves along a magnetic field line from the outboard
side towards the inboard side of the tokamak, where the local magnetic field increases, in order to keep the
particle’s total kinetic energy and magnetic moment constant, the particle’s parallel kinetic energy (along
the field) decreases. Depending on their initial parallel kinetic energy, trapped particles have their parallel
velocity decreased to zero, trapping them on the outboard side, while passing particles are able complete a
transit around the tokamak.
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mode is unstable for q0 < 1, and this mode shifts the plasma column and compresses nearby

magnetic surfaces. This causes the gyro-orbits of trapped energetic ions bound to these

surfaces to fight against the compression to maintain the radius of their orbits, which has a

stabilizing e↵ect on the kink mode. While this gives a mechanism by which sawteeth are pre-

vented, for incomplete reconnection to occur in sawteeth, a su�cient population of trapped

energetic particles would need to be produced during the reconnection phase to stabilize the

mode prematurely.

A flattening of the safety factor at the rational surface has also led to the suppression

of sawteeth (Holmes et al., 1989). As the tearing and reconnection mode grows, a current

sheet forms that a↵ects the magnetic field profile and the local shear available to drive the

mode. By using non-inductive current drive techniques discussed in Sec. 1.1.4.1 to locally

couple energy into ion or electron populations through cyclotron resonance, the local current

and associated magnetic shear profiles can be altered to change the sawtooth period by

controlling when reconnection of the crash phase is triggered (Chapman, 2011a; Chapman

et al., 2012, 2013).

There is also evidence that sheared poloidal (Kleva, 1992) or toroidal (Kleva and Guzdar ,

2002) flows stabilize tearing. For poloidal flow shear, the internal kink mode is found to be

stabilized when the local gradient in the poloidal flow eclipses the local gradient in the Alfvén

speed based o↵ the poloidal magnetic field at the q = 1 rational surface. This is suggested

by simulation data shown in Fig. 3.2, where the width of the magnetic island resulting from

reconnection decreased after the mode migrated to a region of increased poloidal shear. The

fundamental physics of this observation was quantified in Cassak (2011), where reconnection

was stabilized by flow shear on the order of the reconnection outflow that scales with the

Alfvén speed. For toroidal flow shear, sawteeth are stabilized when the toroidal flow is on
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Figure 3.2: Figure 7 of Kleva (1992) showing initial growth in the simulated island width, which changes
to island reduction as the rational surface migrates to a region of increased poloidal flow shear.

the order of the sound speed. This is because the centrifugal force arising due to toroidal

curvature leads to compression, which is stabilizing.

The last models we summarize involve fast reconnection leading to configurations that

are out of force balance. In the first, fast reconnection simulations including electron inertia

and parallel electron pressure gradient lead to rapid island growth that broadens the current

sheet, which weakens its ability to sustain pressure gradients, and begins the dissolution of

the reconnection mode (Wang and Bhattacharjee, 1995). In another model, it is shown that

when the pressure in the island formed by reconnection is larger than the pressure in the

core, the nonlinear growth of the m = 1 mode is stabilized, stopping reconnection (Park

et al., 1987). Determining which, if any, of these models explain incomplete reconnection

remains an open question.
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3.2 Diamagnetic Suppression and Sawteeth

Diamagnetic e↵ects were first seen to quasi-linearly stabilize the m = 1 mode at small

island amplitudes for a tokamak-like geometry in Biskamp (1981). While these simulations

used a simplified cylindrical geometry with helical perturbations, extended-MHD two-fluid

terms were kept in the model equations, including electron diamagnetic drift physics. With

this reduced set of equations, there was nonlinear evolution of a localized flow the order of

the electron diamagnetic velocity v⇤e around the q = 1 rational surface. Zakharov et al.

(1993, 1994) expanded on this quasi-linear analysis to quantify the diamagnetic stabilization

condition as

r1q
0
cr > r1q

0
1, (3.1)

where r1 = r(q = 1) is the minor radius at the q = 1 surface, q01 = dq(r)/dr|r1 , and

r1q
0
cr ' 1.4 (mi/2mpZeff )

1/6 �2/3|n0
eR/ne|2/3|p0eR/pe|1/3 (3.2)

is evaluated at r1, where mp is the proton mass. Sawteeth are suppressed when Eq. 3.1 is

met. From this relation, the local electron density/pressure gradients are the main stabilizing

forces on the m = 1 mode. When this condition was tested against data from the Tokamak

Fusion Test Reactor (TFTR) in Levinton et al. (1994), good agreement was found as can be

seen in Fig. 3.3. In this plot, data from separate discharges on TFTR are displayed according

to Eq. 3.1; sawteeth did not occur (black points) when the threshold relation was met, and

sawteeth occurred (white points) otherwise, with few exceptions. This agreed with previous

numerical results on the diamagnetic stabilization of linear m = 1 internal kink modes (Basu

and Coppi , 1981; Pegoraro et al., 1989).
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Figure 3.3: Figure 3 from Levinton et al. (1994) showing a correlation of sawtooth data from TFTR to the
quasi-linear sawtooth suppression condition Eq. 3.1 derived in Zakharov et al. (1994). Sawteeth
are stable for su�ciently high values of diamagnetic e↵ects.

However, the quasi-linear diamagnetic stabilization condition discussed in Zakharov et al.

(1994) and Levinton et al. (1994) failed to account for sawtooth-free periods in higher �

discharges in TFTR. In Rogers and Zakharov (1995), nonlinear, two-fluid simulations in a

simplified toroidal geometry were performed that showed the m = 1 reconnection mode was

stabilized early in the nonlinear phase of the evolution for su�ciently large values of the ion

and electron diamagnetic frequencies

!⇤i,e = �
cp0i,e

nqi,eBr

����
r1

(3.3)

compared to the growth rate of the ideal m = 1 kink mode. Rogers and Zakharov (1995)

found that the early nonlinear evolution of the reconnection mode works to weaken the ideal

MHD drive of the kink mode, and also enhance the e↵ective values of !⇤i,e. While this
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Figure 3.4: Figure 1 adapted from Biskamp and Sato (1997) showing normalized growth rates as a function
of normalized time for di↵erent values of poloidal beta �p for a density gradient length scale
rn = n/n0 (a) rn = 10 and (b) rn = 0.7. While all simulations exhibit a nonlinear acceleration
of the growth rate of the mode, only for larger density gradients with rn = 0.7 do the modes
abruptly slow their growth, and even change to negative growth.

model was e↵ective in describing the suppression of sawteeth, there was no discussion about

whether the nonlinear evolution could lead to incomplete reconnection in sawteeth.

Where Rogers and Zakharov (1995) discusses the importance of !⇤ e↵ects for the sup-

pression of sawteeth in the early nonlinear phase of reconnection, Biskamp and Sato (1997)

discusses the importance of !⇤ e↵ects during the late nonlinear phase to explain incomplete

reconnection. In Fig. 3.4, the evolution of the kinetic energy growth rates of a series of sim-

ulations employing reduced two-fluid equations are shown, which cover the parameter space

of beta based on the poloidal magnetic field �p and the length scale of the density gradient

rn = n/n0, where (a) rn = 10 and (b) rn = 0.7 in dimensionless units based on the minor

radius at the q = 1 surface. The growth rates are normalized to the linear growth rate of

each simulation, and while each displays an acceleration in the late nonlinear phase, only for

the simulations with rn = 0.7 does the normalized growth rate rapidly transition to a phase

of deceleration and even negative growth for several simulations.

Thus for larger density gradients, the late nonlinear dynamics are dominated by diamag-
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netic drift physics as compared to magnetic reconnection physics. From the series of runs

performed they stated a semi-quantitative condition for suppressing reconnection

!⇤ > �max, (3.4)

where !⇤ is either diamagnetic frequency given by Eq. 3.3 and �max is the maximum nonlinear

growth rate. However, they stress that this is not a particularly useful criterion since the

nonlinear enhancement of � is only known “a posteriori”. An additional interesting feature

of the simulations where reconnection was suppressed is the appearance of turbulence in

the reconnection outflows, caused by the Kelvin-Helmholtz instability due to the strong

collimated flow from the reconnection region.

3.3 New Model of Incomplete Reconnection

In this section, we propose a model for incomplete reconnection in sawteeth due to the

self-consistent dynamics of magnetic reconnection, building on established properties of dia-

magnetic e↵ects (Rogers and Zakharov , 1995; Biskamp and Sato, 1997; Swisdak et al., 2003).

To understand incomplete reconnection, we first examine why reconnection is complete in

Kadomtsev’s model.

Begin by observing the (m,n) = (1, 1) reconnection plane sketched in Fig. 3.5. The

reversed magnetic field B⇤ is in red, the high pressure core is in grey, and the reconnection

site is the black X. When reconnection begins, outflow jets (in blue) are driven by tension

in newly reconnected field lines. Mass continuity induces plasma inflow from upstream (also

in blue). This flow convects more magnetic flux (if available) towards the reconnection site,

which reconnects. Thus, reconnection is self-sustaining.
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We argue that the key to explaining incomplete reconnection is the e↵ect of reconnection

dynamics on the pressure gradient at the reconnection site. Suppose the core is initially

centered at the yellow X. The pressure gradient at the reconnection site (the green arrow) is

radially inward and relatively weak. As the reconnection inflow self-consistently convects the

core outward, the pressure gradient at the reconnection site increases. The outward motion

of the core has long been seen in observations [e.g. Yamada et al. (1994)].

In the presence of a strong out-of-plane (guide) magnetic field Bh, in-plane pressure

gradients lead to in-plane diamagnetic drifts, sketched in Fig. 3.5. Recalling Fig. 2.10,

diamagnetic drifts v⇤i,e are perpendicular to the local magnetic field and pressure gradient,

so they are parallel to the reconnection outflows for pressure gradients across the reconnection

site in the inflow direction as seen in Fig. 3.5. Recalling Eq. 2.22, it was argued (Swisdak

et al., 2003) that reconnection does not occur if

|v⇤e|out > vout, (3.5)

where vout is the reconnection outflow speed, v⇤e = rpe ⇥B/(eneB2) is the electron diamag-

netic drift velocity measured at the reconnection site, and the “out” subscript refers to the

outflow direction.

We propose that the increase in v⇤e as the pressure gradient self-consistently increases due

to reconnection causes the left-hand side of Eq. 3.5 to increase. If Eq. 3.5 is never satisfied,

reconnection is complete, but if the pressure gradient becomes large enough, reconnection

ceases. Since Eq. 3.5 can be satisfied even when free magnetic energy remains, this provides

a possible mechanism for incomplete reconnection. This model departs from previous ones

(Biskamp, 1981; Biskamp and Sato, 1997; Park et al., 1987) as it concerns the evolution of
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Figure 3.5: Sketch of the (m, n) = (1, 1) reconnection plane. Reconnecting magnetic fields B⇤ are in red
with the rational surface rs indicated by the dotted red line. Plasma inflows vin and outflows
vout are in blue with the reconnection site at the black X. The grey core moves from its initial
position centered at the yellow X. The pressure gradient is the green arrow. The helical guide
field Bh and the diamagnetic drift velocities v⇤i and v⇤e are shown.

pressure gradients local to the reconnection site rather than those set by the equilibrium or

at the magnetic islands.

3.3.1 Self-Consistent Electron Pressure Gradient Increase

While Rogers and Zakharov (1995) and Biskamp and Sato (1997) both emphasized the im-

portance of the pressure (density) gradients, and Rogers and Zakharov (1995) even observed

that the reconnection mode nonlinearly increased the diamagnetic frequencies !⇤i,e, there

was no explanation of how reconnection brings this about. In Fig. 3.6 we qualitatively show

how reconnection self-consistently increases gradients locally at the reconnection site. The

horizontal direction is the inflow direction. The red bar shows the electron layer width,

which is set by the electron inertial length de for antiparallel reconnection and the electron

Larmor radius ⇢e for component reconnection (Horiuchi and Sato, 1997). These lengths are

seen to be approximately constant throughout the reconnection phase, e↵ectively setting the



63

vin 

vin P2 

δ

      increases here 
as system evolves 
rp

P1 

Figure 3.6: The electron pressure gradient increases self-consistently at the X-line due to the reconnection
inflows. Since the electrons do not decouple from the magnetic field until electron Larmor
scales �, this length scale is set by reconnection, and additional hot (dense) and cold (less
dense) plasma, P2 and P1 respectively, brought into the X-line increases the local pressure
gradient.
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Figure 3.7: Evolution of the electron temperature gradient (black), and the island widths on the low and
high field side (blue and red, respectively) for the experimental data presented in Chapman
et al. (2010).

gradient length scale [rn in Biskamp and Sato (1997)]. As reconnection proceeds, plasma

is convected towards the X-line from the hot core and cold edge, increasing the pressure

di↵erence on either side of the electron layer, and accordingly the electron pressure gradient.

3.3.2 Qualitative Consistency with MAST

This model complements, and may explain key global features of, recent observations at

MAST (Chapman et al., 2010). They observe that |rTe| increases during a sawtooth period,

peaking at the end of the crash as seen in Fig. 3.7, qualitatively consistent with the model.

They also show that secondary ideal-MHD instabilities are destabilized at the end of the crash

cycle. Reconnection would also play an important role in this process. When reconnection

ceases, the electron-scale current sheet broadens, reducing the magnetic shear in a region

where |rp| is large. Decreased shear is known to destabilize interchange instabilities between

regions with disparate pressures [e.g. Freidberg (1987)].



65

3.4 Two-fluid Simulations in a 2D Slab Geometry

3.4.1 The F3D Code

To test the model for incomplete reconnection given in the previous section, here we explore

proof-of-principle numerical simulations. They are performed using the two-fluid code F3D

(Shay et al., 2004), which evolves the following set of model equations:

@n

@t
= �r · Ji, (3.6)

@Ji

@t
= �r · (JiJi/n) + J ⇥ B � 1

n
rpe, (3.7)

@pe
@t

= �ue · rpe � �eper · ue, (3.8)

@B0

@t
= �r ⇥ E0, (3.9)

E0 =
J

n
⇥ B0 � Ji

n
⇥ B � 1

n
rpe, (3.10)

B0 =
�
1 � d2er2

�
B, (3.11)

J = r ⇥ B, (3.12)

where the ion current is given by Ji = nui and the ratio of electron specific heats is �e = 5/3.

The first two equations evolve the density and the momentum in the system, which are

the same as the MHD Eqs. 2.2 and 2.3, except Eq. 3.7 assumes ions are cold. Electron

pressure is evolved assuming an adiabatic ideal gas, analogous to Eq. 2.4. Since ions are

assumed cold, there is no evolution equation for the ion pressure; this is compatible with

testing the threshold condition Eq. 3.5, where the electron diamagnetic speed is the key

parameter. Primed quantities in Faraday’s law [Eq. 3.9] are defined in Eqs. 3.10 and 3.11.

This form of Faraday’s law is equivalent to Eq. 2.5 with E given by the generalized Ohm’s
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Figure 3.8: Diagram showing one of the reconnection sites simulated in the F3D simulation domain as a
local simulation of reconnection at the q = 1 rational surface. The reconnecting magnetic field
B⇤ is antiparallel in the x, y (radial, poloidal) plane, with a strong guide-magnetic field in the
out-of-plane (helical) ẑ direction.

law in Eq. 2.11. The form of Eqs. 3.10 and 3.11 use a technique to fold the electron inertia

term into the equations that is expedient for performing numerical simulations. While the

condition r · B = 0 is not explicitly enforced by the code, we note that test simulations

employing a “cleaner” to enforce the divergence free property of the magnetic field have

shown no qualitative di↵erence.

F3D evolves the model equations in time utilizing an explicit, trapezoidal leap-frog nu-

merical method (a predictor-corrector scheme) for approximating temporal derivatives; ex-

plicit means that spatial derivatives are evaluated using known data at the timestep be-

ing advanced. The spatial representation is a rectangular mesh with a regular grid; a

fourth-order finite di↵erence numerical method is used for approximating spatial deriva-

tives. Magnetic fields and densities are normalized to arbitrary values B0 and n0, velocities

to the Alfvén speed cA0 = B0/(4⇡min0)1/2, lengths to the ion inertial length di0 = c/!pi =

(m2
i c

2/4⇡n0Z2
e↵e

2)1/2, times to the ion cyclotron time ⌦�1
ci0 = (Ze↵eB0/mic)�1, electric fields

to E0 = cA0B0/c, and pressures to p0 = B2
0/4⇡.

For the proof-of-principle simulations in this chapter, we employ a two-dimensional slab

geometry with periodic boundary conditions that feature two reconnection sites being evolved
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Figure 3.9: Equilibrium profiles of reconnecting magnetic field By, magnetic guide-field Bz, and electron
pressure pe. By has the form of a double Harris sheet, giving two rational surfaces per simula-
tion. pe has a gradient upstream from the rational surfaces, which convects inward due to the
reconnection inflows. Bz has a profile that ensures total pressure balance and also B2

z � B2
y

at the reconnection site.

simultaneously. This geometry is appropriate for a proof-of-principle study because motion

in the plane normal to the guide magnetic field is well-described in two dimensions. In e↵ect,

we are choosing to simulate the region local to the reconnection site of the q = 1 rational

surface as depicted in Fig. 3.8, where we show a poloidal plane with the reconnection site

expanded onto a 2D slab geometry. While we save the discussion of the reconnection plane

geometry in the toroidal system for the next chapter, here we note that the magnetic field

in the reconnection plane has an antiparallel reconnecting field B⇤ as shown in Fig. 3.8.

3.4.2 Simulation Setup

As shown in Fig. 3.8, the simulation coordinate system has x parallel to the inflow (radial),

y parallel to the outflow (poloidal), and z in the out-of-plane (helical) direction, invariant

in the present two-dimensional simulations. The equilibrium for the principal simulation is
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shown in Fig. 3.9, and has an in-plane magnetic field profile of a double Harris sheet,

By(x) = tanh

✓
x � Lx/4

w0

◆
� tanh

✓
x+ Lx/4

w0

◆
+ 1, (3.13)

where Lx ⇥Ly = 102.4⇥ 204.8 is the system size and w0 = 0.5 is the initial thickness of the

current sheet. For this equilibrium, the toroidal mode number is n = 0 manifestly (not to be

confused with the density), so the rational surfaces are at xs = ±Lx/4 = ±25.6. We focus

on a single mode because there is typically a dominant mode in sawteeth [(m,n) = (1, 1)];

the n = 0 mode is chosen for simplicity, but is not expected to alter the conclusions.

The density for the principal simulation is initially n = 1. The initial electron pressure

profile shown in Fig. 3.9 is given by

pe(x) =
1

2
(p1 + p2) +

1

2
(p1 � p2)⇥


tanh

✓
x+ 3Lx/8

wp

◆
� tanh

✓
x � 3Lx/8

wp

◆
� 1

�
. (3.14)

The pressure gradient is localized near x = ±3Lx/8 = ±38.4 rather than at the rational

surfaces xs. Thus, pe at the reconnection site is initially uniform. The length scale of the

pressure gradient is wp = 2. The guide magnetic field Bz(x) has a mean value of 5 with a

profile that ensures total pressure balance, p+B2/2 = constant.

The principal simulation employs p1 = 5, p2 = 25 so v⇤e is large enough to exceed vout

when the high pressure plasma convects in. Other simulation parameters are carefully chosen:

Bz � By as is relevant to sawteeth and pe is large enough so the ion Larmor radius ⇢s =

cs/⌦ci exceeds the electron skin depth de = c/!pe at the reconnection layer, allowing fast

reconnection to proceed (Aydemir , 1992; Rogers et al., 2001).
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The principal simulation employs a grid scale of � = 0.05, where a test simulation with

� = 0.025 confirms the resolution is su�cient. Equations 3.6-3.9 include fourth-order nu-

merical di↵usion with a coe�cient D4 = 2 ⇥ 10�5 to damp noise at the grid scale; D4 has

been varied to ensure the key physics is not sensitive to it. The explicit numerical di↵usion

smoothes out noise at the grid scale, but is not responsible for balancing the out-of-plane

reconnection field at the X-line. The electron to ion mass ratio is 1/25. Simulations in-

clude no resistivity because experimental crash times are faster than collisional reconnection

times, and it has been seen that fast reconnection in a 2D slab geometry is insensitive to

the dissipative mechanism breaking magnetic fields at the X-line (Birn et al., 2001). The

presented simulations do not employ a parallel thermal conductivity �k, but test simulations

with �k = 0.08 reveal no significant changes. Tearing is initiated by a small coherent pertur-

bation to the in-plane magnetic field of amplitude 0.01. It is known that secondary islands

can spontaneously arise in reconnection simulations; due to symmetry, such islands would

stay at the original X-line (Loureiro et al., 2005). To prevent this, initial random magnetic

perturbations of magnitude 2.0 ⇥ 10�5 (di↵erent from D4) break symmetry so secondary

islands are ejected.

3.4.3 Cessation of Reconnection

Upon evolving the system, Hall reconnection occurs initially and the high pressure plasma

convects towards the reconnection site as expected. The reconnection rate E, measured as

the time rate of change of the di↵erence between the magnetic flux between the X-line and

O-line, is plotted as the solid (red) line in Fig. 3.10(a). It increases from zero to its expected

value near 0.1 (Shay et al., 1999) by t ⇠ 90, where it reaches a steady-state with a single

X-line. (The variation between t = 40 and 90 is due to transient secondary island formation
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Figure 3.10: (a) Reconnection rate E as a function of time t with and without an upstream pressure
gradient. (b) Diamagnetic drift speed v⇤e at the reconnection site and average outflow speed
vout vs. t for the simulation with an upstream pressure gradient that convects into the
reconnection site, causing the self-consistent increase in v⇤e.

and coalescence.) At t ' 195, E begins decreasing. It decreases to below zero, where it

fluctuates for a number of Alfvén crossing times. Thus, reconnection has shut o↵.

To determine the cause, the electron diamagnetic speed v⇤e at the reconnection site is

plotted as a function of time in Fig. 3.10(b) as the dashed (black) line. For comparison, the

average reconnection outflow speed vout is plotted as the solid (red) line. Asymmetric outflows

occur when there is a pressure gradient in the outflow direction (Murphy et al., 2010), and

since such gradients self-consistently generate here, vout is calculated as the average of the

maximum electron outflow speeds from either side of the reconnection site, averaged over

5de when turbulent. We revisit the asymmetric outflows in the next section.

Figure 3.10(b) reveals that v⇤e is small initially, but increases in time once the pressure

gradient reaches the reconnection site at t ' 140. It increases until it becomes comparable

to vout at t ' 195 (the vertical dashed line), the same time E begins to decrease. Therefore,

reconnection is throttled when Eq. 3.5 is first satisfied.
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Table 3.1: Parametric simulations where the equilibrium magnetic guide-field, density, and electron pres-
sure are varied to explore how the system evolution depends on electron diamagnetic e↵ects.

Run n0.5,5 n1,5 n2,5 n2,5⇤ n4,5 B1,3.75 B1,5 B1,7.5 B1,10

Bz,0 5 5 5 5 5 3.75 5 7.5 10
n0 0.5 1 2 2 4 1 1 1 1
pe,min 5 5 5 20 20 5 20 20 20
pe,max 12.5 15 15 30 30 15 40 40 40

To ensure the observed e↵ect is caused by the pressure gradient, simulations with other

pressure profiles are performed. When there is no gradient with p1 = p2 = 5, there is

no decrease in E, plotted as the dashed (blue) line in Fig. 3.10(a). The same is true for

p1 = p2 = 25 (not plotted). When p1 = 5, p2 = 7, no drop in reconnection rate is observed

because the maximum v⇤e only reaches ⇠ 1, but vout ⇠ 2 so Eq. 3.5 is never satisfied. In

summary, the simulations confirm the basic prediction of the model: reconnection ceases

when large enough pressure gradients self-consistently convect into the reconnection site

despite the presence of free magnetic energy.

3.4.4 Evolution of Reconnection Due to Diamagnetic E↵ects

From Fig. 3.10, we see that the self-consistent growth of electron diamagnetic e↵ects at

the X-line can cause magnetic reconnection to cease; essentially, reconnection shuts itself o↵.

With this proof-of-principle simulation being consistent with the model presented in Sec. 3.3,

we next perform a series of parametric simulations to test the dependence of the cessation

process on di↵erent parameters contributing to electron diamagnetic e↵ects.

3.4.4.1 Parametric Scalings

In order to probe the interaction between diamagnetic and reconnection physics, we perform

a series of simulations with various densities and guide-field strengths as given in Table
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Figure 3.11: Out-of-plane current density Jz zoomed in near the X-line with magnetic field lines superim-
posed for run n1,5 (a) before (t = 145) and (b) after (t = 185) the pressure gradient reaches
the X-line, (c) after the threshold condition is reached (t = 210), and (d) after the X-line be-
comes turbulent (t = 225). The x and y axes correspond to the radial and poloidal directions,
respectively.

3.1, where runs denoted by na,b varied the density and Ba,b varied the magnetic guide-field,

where a, b refers to the value of density and guide-field. The equilibrium parameters for

all simulations were chosen to maintain proper ordering to obtain fast tearing/reconnection

(Rogers et al., 2001), given by de < ⇢s < di, as discussed earlier. The maximum and minimum

pressures setting the external pressure gradient were set to ensure that the diamagnetic drift

speed can exceed the outflow speed as the system evolves.

This set of simulations shows that reconnection with an equilibrium upstream pressure

gradient has four relatively distinct phases as can be seen in Fig. 3.11, which shows plots of

the out-of-plane current density Jz near the X-line for run n1,5 with in-plane magnetic field

lines superimposed. First in (a), as the system begins to evolve, reconnection proceeds as
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normal with the external pressure convecting towards the X-line. Second in (b), the pressure

gradient impinges upon and interacts with the X-line. Next in (c), as additional high pressure

continues to convect inwards, the diamagnetic e↵ects increase locally at the X-line, and an

instability arises in the exhausts. Finally in (d), the instability is seen to grow and the entire

region near the X-line becomes turbulent. Viewed across the parametric simulation set, each

of the simulations have this general behavior. The timescales associated with the phases

(a)-(c) exhibit a linear relationship according to the square root of the density (not shown),

consistent with the reconnection inflow scaling with the Alfvén speed. However, we did not

find a significant scaling with the guide-field, suggesting that the characteristic timescales

were independent of the magnitude of v⇤e ⇠ B�1
g .

3.4.4.2 X-line Convection

To study diamagnetic e↵ects, we again look at Fig. 3.11. As indicated, the guide field is

in the z-direction and rpe is in the x-direction. The reconnection site drifts in the �y-

direction, the direction of v⇤e (Rogers and Zakharov , 1995; Swisdak et al., 2003). Note

the appearance in panel (c) of secondary instabilities in the exhausts. We suspect the

instability in the left exhaust is Kelvin-Helmholtz, and the instability in the right exhaust

is a drift instability. The appearance of these instabilities have also been observed in gyro-

kinetic simulations (Kobayashi et al., 2014). The instabilities result in widespread turbulence

through the reconnection site in panel (d). The increased variability of v⇤e and E after t ' 205

in Fig. 3.10 are attributed to these instabilities. Additionally, as v⇤e at the X-line increases

from its initial value of zero, the distance the X-line convects increases. From Fig. 3.11(a)

to (b), the X-line convects very little, but from (c) to (d) convects much further.

To observe how the reconnection site convects throughout the series of parametric sim-
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Figure 3.12: Scatter plot of the calculated electron diamagnetic drift v⇤e and the measured X-line drift at
the beginning (red) and end (blue) of the third phase shown in Fig. 3.11(c) for the simulations
in Table 3.1.

ulations, Fig. 3.12 shows a scatter plot of the calculated electron diamagnetic drift at the

X-line and the measured X-line drift at the beginning (red) and end (blue) of the third

reconnection phase in Fig. 3.11(c). As expected, we see a definite correlation between the

diamagnetic and X-line drifts. Furthermore, as we commented on at the end of the last

paragraph, as the simulation evolves, v⇤e and the X-line drift both increase (blue is larger in

magnitude than red), consistent with the observations in Fig. 3.11.

Interestingly, Swisdak et al. (2003) revealed a 1 : 1 correspondence between v⇤e and the

X-line drift, while we find a 5 : 1 correspondence. However, that study di↵ered in their use

of particle-in-cell (PIC) simulations, and their initial pressure gradient was located at the

rational surface. A possible future study would use PIC simulations with the equilibrium

used for runs included in this chapter.

3.4.4.3 Asymmetric Outflows

As was mentioned in Sec. 3.4.3, the reconnection outflows evolve asymmetrically. This can

be seen in Fig. 3.13(a), which plots the maximum downstream electron outflow speeds in the
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Figure 3.13: Evolution of (a) the maximum downstream electron flow speeds vmin,max (blue and red traces)
and v⇤e (green trace) at the reconnection site, and (b) the electron pressure gradient at the
location of the maximum ve (blue corresponding to the outflow with vmin and red for the
outflow with vmax) and the X-line (green). The vertical dashed black lines separate the
four phases of reconnection displayed in Fig. 3.11. In phase 1) the outflow speeds and outflow
pressure gradients are identical, while in phase 2) when the external pressure gradient impinges
on the X-line they diverge while the pressure gradient at the X-line increases along with v⇤e

through phase 3) and 4) where instability leads to turbulence.

two reconnection exhausts denoted as vmin,max (blue, red trace) and the electron diamagnetic

speed v⇤e at the reconnection site (green trace). The vertical dashed black lines separate

the reconnection phases shown in Fig. 3.11. In phase (1) the external pressure gradient is

upstream of the reconnection site, and the outflow velocities are symmetric with v⇤e = 0.

In phase (2) the external pressure gradient impinges on the X-line, and as v⇤e increases

from its initial value, the outflows become distinctly asymmetric. During this phase, the

X-line also begins to move, contribuing to the outflow asymmetry. In phase (3) as the

outflow asymmetry and v⇤e continue to increase, an instability arises in the exhaust, which

throughout the series of parametric simulations is coincident with the time that v⇤e exceeds

the smaller electron outflow speed

v⇤e � vout,min. (3.15)

The external pressure gradient continues to convect into the reconnection site, exacerbating

the asymmetry and feeding the instability until the site becomes turbulent in phase (4).
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Figure 3.14: Representation of the reconnection outflows and quadrupole pressure gradients (a) before
and (b) after the external pressure gradient impinges on the reconnection site. The opening
angle of the X-line is shown in red, the reconnection inflows by the small blue arrows and
the outflows by the large blue arrows [red and blue for the asymmetry in (b)], the pressure
gradient at the X-line by the green arrow, and the quadrupole pressure gradients by the
blue(red)/green checkered arrows. Due to the polarity of the outflow pressure gradients, the
external pressure gradient asymmetrically a↵ects the outflows, leading to asymmetric outflow
speeds. Additionally, the width of the outflows are also observed to be altered asymmetrically
by the external pressure gradient as shown.

While the convection of the X-line due to the local electron diamagnetic drift contributes

to the development of the asymmetry in the reconnection outflows, the external pressure

gradient also a↵ects the reconnection process in another way. Looking at Fig. 3.13(b), the

electron pressure gradients at the locations of both maximum downstream electron flows

(blue and red traces) and at the X-line (green trace) are plotted. As expected, the pres-

sure gradient at the X-line evolves similarly to v⇤e (it would be more correct to say that

v⇤e increases with the electron pressure gradient). However, the downstream pressure gra-

dients begin to evolve asymmetrically as the external pressure gradient impinges upon the

reconnection site in phase (2), similar to the outflow speeds.

Physically, this observation can be understood by recalling our discussion at the end of

Sec. 2.4.2 on electron diamagnetic e↵ects local to the reconnection site. For two-fluid, guide-

field reconnection, there is a gas pressure quadrupole needed to maintain total pressure

balance with the out-of-plane magnetic field quadrupole consistent with the Hall currents.

The pressure quadrupole sets up pressure gradients in outflows of the ion dissipation layer,

which, with a guide-field present, are consistent with v⇤e flows. In Fig. 3.14(a), the recon-
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nection site is illustrated prior to the inward convection of the external pressure gradient,

where the reconnection flows and outflow pressure gradients are symmetric, similar to that

seen in the bottom panel of Fig. 2.7. When the external pressure gradient impinges on the

reconnection site, as depicted in Fig. 3.14(b), the polarity of the gas pressure quadrupole is

such that the external gradient a↵ects the outflow pressure gradients asymmetrically, leading

to asymmetric v⇤e components of the reconnection outflows.

Together, the motion of the X-line and the asymmetry of the outflows lead to the asym-

metry of the opening angle of the X-line as depicted in Fig. 3.14(b) and seen in Fig. 3.11(c).

A full analysis of the evolution of the gas pressure quadrupole and its e↵ect on reconnection

with asymmetric outflows is saved for a future study.

3.5 Quantitative Comparison with MAST

The simulations shown in the Sec. 3.4 support the e�cacy of the new model for incomplete

reconnection presented in Sec. 3.3. When the threshold in Eq. 3.5 was satisfied, reconnection

stabilized due to the increased presence of electron diamagnetic e↵ect. In this section, we

assess the threshold condition with experimental data from MAST (Chapman et al., 2010).

MAST is a spherical tokamak located at the Culham Centre for Fusion Energy in the UK.

The aspect ratio R/r is near unity, where poloidal field coils are used to create a highly-

shaped plasma cross-section. The smaller aspect ratio is beneficial because a similar Lawson

criterion to that of conventional tokamaks can be achieved with approximately a tenth of the

magnetic field. Interestingly, the increased plasma shaping lowers the instability threshold for

the internal kink mode, making spherical tokamaks prime experiments for studying sawteeth.
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Figure 3.15: Figure 1(e) reproduced from Chapman et al. (2010) showing the electron temperature profile
towards the end of the reconnection phase of the sawtooth crash. The overlaid vertical lines
correspond to the center of the plasma (black) and the calculated q = 1 rational surface (red).

3.5.1 Diamagnetic Cessation Threshold

To test the prediction quantitatively, we need to transform into the plane of reconnection

perpendicular to the (m,n) = (1, 1) helical direction. The reconnecting field B⇤ is related

by Eq. 1.8 to the toroidal B� and poloidal B✓ fields as B⇤(r) = B✓ � (r/R0)B�. At MAST,

R0 = 0.85 m (Appel et al., 2008) while B� ' 0.4 T and B✓ ' 0.15 T (Chapman, 2011b).

The minor radial location of the rational surface rs is where B⇤ = 0 in Eq. 1.8, which gives

rs ' 0.32 m. This result agrees well with Fig. 1(e) of Chapman et al. (2010) towards the

end of the reconnection phase of the sawtooth crash, reproduced in Fig. 3.15, which has

rs = 0.85 m�0.56 m = 0.29 m. The helical guide field at rs is Bh = B�(1+rs/R0) ' 0.55 T.

To test the model, Eq. 3.5 must be evaluated at the end of the sawtooth crash. The

outflow speed scales with cAe, the electron Alfvén speed based on the field B⇤e upstream

of the electron current layer. Assuming the large guide field limit with Bh � B⇤ in the

vicinity of rs, the thickness of the electron current layer scales as the electron Larmor radius

⇢e = vth,e/⌦ce (Horiuchi and Sato, 1997), where vth,e = (�ekBTe/me)1/2 is the electron
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thermal speed and ⌦ce = eB/mec is the electron cyclotron frequency. Using Te ' 500 eV at

rs (Chapman et al., 2010) and �e = 5/3, we find ⇢e ' 0.013 cm. To find B⇤e, we evaluate

Eq. 1.8, at rs ± 2⇢e (Jemella et al., 2003), which gives B⇤e ' 5.9 ⇥ 10�5 T, justifying the

strong guide field assumption. Using this value, with ne ' 6 ⇥ 1019 m�3 estimated from

Fig. 2 in Chapman et al. (2010), gives vout ⇡ 14.2 km/s.

To estimate v⇤e, note |rpe|/ne = |rTe| + Te(|rne|/ne). The right-hand side is esti-

mated at the end of the crash from Figs. 1(e), 2 and 3 of Chapman et al. (2010) to be

|rpe|/ne ' 7400 eV/m. Then, the electron diamagnetic speed is v⇤e = |rpe|/(qneBh) ⇡

13.5 km/s. Thus, the two speeds agree rather well, showing the agreement of the model with

the experimental data is also quantitative.

As a further consistency check, we compare the speed of the core to the inflow speed.

The the core’s speed is estimated from Figs. 1(d-f) of Chapman et al. (2010) by dividing its

displacement (' 0.08 m) by the elapsed time (' 0.04 ms), giving a speed of ⇠ 2 km/s. The

reconnection inflow speed scales like 0.1cAi (Shay et al., 2004), where cAi is the ion Alfvén

speed based on the field B⇤i upstream of the ion current layer. The ion layer thickness with

a large guide field scales like the ion Larmor radius ⇢s (Zakharov et al., 1993). Using Ze↵ ⇠ 1

(Tournianski et al., 2005) and mi = 2mp for a deuterium plasma (Appel et al., 2008), we

find ⇢s ⇠ 0.77 cm. As in the calculation of B⇤e, we evaluate Eq. 1.8, at rs ± 2⇢s, giving

B⇤i = 6.7 ⇥ 10�3 T. Then, cAi ⇡ 13 km/s, so the inflow speed is ' 1.3 km/s. Thus, the

inflow speed is comparable to the speed of the core, as predicted.

3.5.2 Secondary Instabilities

Post-cessation features are important for the subsequent dynamics. Figure 3.11(d) shows

Jz significantly after the pressure gradient reaches the reconnection site. The current layer
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Figure 3.16: Profiles of the reconnecting magnetic field By taken through the reconnection site in the inflow
direction (a) before and (b) after the reconnection site becomes turbulent in the principal
simulation. It is observed that the local magnetic shear significantly decreases due to the
turbulence that widens the current sheet.

broadens as reconnection stops, reducing the magnetic shear at the reconnection site. This

can also be seen in Fig. 3.16, where profiles of the reconnecting field By taken through the

reconnection site in the inflow direction are plotted before (blue) and after (red) the recon-

nection site becomes turbulent for the principal simulation. In addition to the turbulence

that broadens the current sheet, when reconnection shuts o↵, magnetic flux ceases to con-

vect toward the X-line, further decreasing the stabilizing magnetic shear there. The reduced

shear would make the system more prone to interchange instabilities [e.g. Freidberg (1987)],

which were argued to occur in Chapman et al. (2010). In tokamaks, it is the curvature of

the magnetic fields that supplies the free energy to drive the interchange instability. Unfor-

tunately, the slab geometry simulations here lack that energy source. Thus, while our model

appears consistent with experimental observations, toroidal simulations are necessary for a

direct comparison.
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3.6 Threshold Condition for Toroidal Geometry

For tokamak applications, Eq. 3.5 may be recast in terms of more familiar quantities. First,

we assume vout ⇠ cAe = B⇤e/
p
4⇡mene is the speed of the reconnection exhaust. Next, we

rewrite Eq. 1.8 in terms of safety factor q = rB�(r)/R0B✓(r) to give B⇤(r) = B✓(r)[1 �

q(r)]. Finally, we expand q(r) to lowest order in r for a small displacement (2⇢e) from rs,

to approximate the reconnecting magnetic field at the electron dissipation layer as B⇤e '

B✓q02⇢e, where the prime denotes a radial derivative. With these substitutions, Eq. 3.5

becomes

|p0e|
eneBh

>
2⇢eB✓p
4⇡mene

|q0| , (3.16)

where all quantities are evaluated at rs. This expression is reminiscent of the condition on

p0 and q0 for the suppression of sawteeth derived from quasi-linear tearing theory (Zakharov

et al., 1993, 1994; Levinton et al., 1994), and can be directly tested with experimental

observations.

3.7 Conclusions

To summarize this chapter, we have proposed a new model of incomplete reconnection in

sawteeth, whereby collisionless reconnection self-consistently increases the electron pressure

gradient at the reconnection site, leading to the suppression of reconnection if the pressure

gradient reaches a threshold. We tested the basic physics of the proposed model with two-

fluid numerical simulations in a slab geometry, and showed that the model is consistent with

simulations and with data from MAST. Equation 3.5 may be useful for low-dimensional

transport modeling, which currently use ad hoc models to achieve incomplete reconnection
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(Bateman et al., 2006). The present results are machine independent, so they should apply

both to existing tokamaks and future ones such as ITER.

However, while these proof-of-principle simulations have supported our new incomplete

reconnection model, additional simulations must be performed to directly connect to exper-

imental results. In a slab geometry, the model should be tested with other extended-MHD

e↵ects such as ion diamagnetic e↵ects and higher thermal conductivity �||. The restriction on

toroidal mode number n should be relaxed as well. The e↵ect of the electron pressure profile

on reconnection dynamics and the secondary (KH-drift) instability should be addressed; this

may need to utilize gyro-kinetic or particle-in-cell simulations.

Including 3D toroidal geometry is critical for exploring how reconnection self-consistently

evolves the stabilizing diamagnetic e↵ects during the sawtooth crash phase in tokamaks and

the subsequent secondary ideal-MHD instabilities. In the following chapter, we will explore

sawtooth simulations employing the extended-MHD, 3D toroidal geometry code, M3D-C1.
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Chapter 4

3D Toroidal Sawtooth Simulations

To investigate reconnection in sawteeth in a 3D toroidal geometry, in this chapter we ana-

lyze simulations employing this geometry for simulations using resistive-MHD and two-fluid

physics models. We will examine these simulations from both a holistic perspective and,

unlike all previous studies, also study the reconnection local to the reconnection site. To

view data local to the reconnection site, we employ a novel method that samples data in the

plane perpendicular to the local magnetic field, rather than at a constant toroidal angle, as

is customary. By viewing data in the plane of reconnection, we find that collisionless recon-

nection is crucial, and that the pressure gradient at the X-line self-consistently increases, as

predicted in Ch. 3. Because the model for incomplete reconnection in Ch. 3 relies on local

diamagnetic and reconnection physics, we also concentrate on how these processes vary at

di↵erent toroidal locations.



84

4.1 The M3D-C1 Code

In order to properly diagnose the magnetic reconnection phase of the sawtooth crash, it

is necessary to run simulations in a toroidal geometry compared to the slab geometry of

the last chapter, which undoubtedly a↵ects the evolution due to the plasma shaping and

curved geometry. For this task we employ the extended-MHD code M3D-C1 (Ferraro and

Jardin, 2009). Compared to the F3D code discussed in the last chapter, M3D-C1 uses vastly

di↵erent numerical methods. For the spatial representation, M3D-C1 has 3D finite elements

with continuous first derivatives between elements (C1 means continuous first derivatives),

e↵ectively approximating the form of solution by expanding it in a series of basis functions

and evolving their weights rather than approximating the spatial derivatives in the numerical

method, as is the case for a finite di↵erence code like F3D. In the poloidal plane M3D-C1

uses a reduced-quintic (fourth order polynomial with additional constrained coe�cients)

representation for the solution on an irregular triangular grid, and a cubic (third order

polynomial) representation toroidally; this gives the elements a triangular prism shape. If

the average length of an element edge in the poloidal plane is �x, the reduced-quintic

representation has an error on the order of (�x)5 (Jardin, 2004). M3D-C1 also uses an

unconditionally stable, fully-implicit time stepping method to evolve the model equations

in time; implicit schemes evaluate spatial derivatives at the time step being solved for,

allowing for timesteps much larger than the Courant-Friedrichs-Lewy condition constraining

the timestep in explicit methods requires.

Adapted from Ferraro and Jardin (2009), the system of extended-MHD equations that

M3D-C1 steps forward for the density n, velocity v, ion and electron pressure pi and pe, and
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magnetic field B is:

@n

@t
+ r · (nv) = 0, (4.1)

nMi

✓
@v

@t
+ v · rv

◆
+ rp = J ⇥ B � r · ⇧GV � r · ⇧µ, (4.2)

E+ v ⇥ B = ⌘J+
1

ne
(J ⇥ B � rpe), (4.3)

3

2


@pe
@t

+ r · (pev)
�
= �per · v + ⌘J2 � r · qe, (4.4)

3

2


@pi
@t

+ r · (piv)
�
= �pir · v +⇧µ · rv � r · qi, (4.5)

@B

@t
= �r ⇥ E, (4.6)

r · B = 0, (4.7)

µ0J = r ⇥ B. (4.8)

Eqs. 4.1, 4.6, 4.7, and 4.8 are the same as in previous chapters for the density evolution

and electromagnetic equations. Eq. 4.2 for momentum evolution is similar to that seen in

previous chapters with the addition of ⇧GV , the Braginskii gyroviscosity pressure tensor

(Braginskii , 1965), and ⇧µ, a generic isotropic viscosity given by ⇧µ = �µ
�
rv + rvT

�
,

where µ is an arbitrary scalar field set to 3.058 ⇥ 10�5 in the following simulations and

rvT is the matrix transpose of rv. Eq. 4.3 is the generalized Ohm’s law recognized from

previous chapters, where the resistivity ⌘ has a Spitzer form given by ⌘ = ⌘r + ⌘0/T
3/2
e

(we discuss the values used in the next section). The electron and ion pressure evolutions

equations, Eqs. 4.4 and 4.5, are similar to those seen in previous chapters with the ratio

of specific heats for both species set to 5/3, and qe,i are the electron and ion heat fluxes

given by qe,i = �0rTe,i � kbb · rTe,i, where 0 = 4.0 ⇥ 10�6p/T 3/2
e controls the isotropic

conduction and k = 10 the parallel conduction. The code can simulate di↵erent physical
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Figure 4.1: A checkered-green circular cross-section torus overlaid with a red clockwise-helical (m, n) =
(1, 1) field line.

models: ideal-MHD for the terms in black, resistive-MHD where the red terms are used as

well, and full two-fluid including all the terms. Additionally, the electrons are assumed to

be massless for simplicity.

The system of units for all quantities appearing hereafter is derived from a charac-

teristic length, density, and magnetic field. These normalizations are L0 = 1 m, n0 =

1020 particles/m3, and B0 = 1 T. This sets the normalization for velocity to

v0 = B0/(µ0n0Mi)1/2 = 2.2⇥106 m/s, the Alfvén speed based o↵ the characteristic magnetic

field and density, the time to ⌧A0 = L0/v0 = 0.46 µs, the pressure to p0 = B2
0/2µ0 = 3.9 atm,

the electric field to E0 = v0B0 = 2.2 ⇥ 106 V/m, and the current to J0 = B0/µ0L0 =

0.80 MA/m2. The blue terms in Eqs. 4.2 and 4.3 are also normalized by db = di/L0, allowing

the user to specify the strength of the two-fluid e↵ects. In the main two-fluid simulation

presented later db = 0.1, giving di = 10 cm as compared to the value calculated from n0 of

2.28 cm.
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4.1.1 Toroidal Representation

It is useful to reintroduce the toroidal geometry, and in the process investigate how the

magnetic and velocity fields are represented. In Fig. 4.1 a green checkered, circular cross-

section torus is shown, and an (m,n) = (1, 1) helical field line is overlaid in red. We can

either use the cartesian (x, y, z) or cylindrical (R,�, Z) coordinate system to keep track of the

system variables; M3D-C1 uses cylindrical coordinates. In this representation, the positive

direction of � is counter-clockwise looking down from the top of the torus in Fig. 4.1. The

helical field line shown has a clockwise helicity relative to the �-direction. R is the major

radial direction from the azimuthal axis, and Z is the vertical direction, as introduced in

Sec. 1.1.4.

Using the cylindrical coordinate system, M3D-C1 represents the velocity field, magnetic

vector potential, and magnetic field in terms of the (red) scalar variables �,!,�, , f as

adapted from Breslau et al. (2009):

v = Rr� ⇥ �̂+R!�̂+
1

R2
r?�, (4.9)

A = R�̂⇥ rf +
 

R
�̂� F0 lnRẐ, (4.10)

B ⌘ r ⇥ A =
1

R
r ⇥ �̂� r?

@f

@�
+

F

R
�̂, (4.11)

where F is an auxiliary variable, given by F = F0+R2r·r?f , where r?·V = R�1
⇣
RV · R̂

⌘

R
+

⇣
V · Ẑ

⌘

Z
for any vector V, where subscripts denote partial di↵erentiations. Note that the

gauge condition implied by this representation is r? · R�2A = 0. � is the usual stream-

function describing incompressible flow in the poloidal plane, ! is the toroidal angular fre-

quency, and � captures the e↵ect of compressible flow in the poloidal plane. The form of

the velocity field allows the numerical method evolving the scalar variables to separate the
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physics of the Alfvén and fast and slow magnetosonic waves for the toroidal system with a

strong B� field (Jardin, 2012).  is the usual magnetic flux function describing the magnetic

field in the poloidal plane, F0 is a constant proportional to the current in the (modelled)

toroidal field magnets, and f is a poloidal field component keeping r · B = 0 when the

toroidal magnetic field varies in strength with the toroidal angle. Aside from ensuring the

divergenceless of the magnetic field, the form of the magnetic vector potential conveniently

allows for the first derivative of the current density to be continuous with the chosen finite

element representation.

Compared to the 2D slab simulations using F3D in Ch. 3 that employed periodic bound-

ary conditions, the 3D toroidal simulations using M3D-C1 require more involved boundary

conditions. The flow v has “no-slip” boundary conditions, where the flow tangential to the

boundaries is held constant. There is no flow into the boundary, satisfying n̂ · v = 0, where

n̂ is the direction normal to the boundary. The normal and toroidal magnetic fields have

Dirichlet boundary conditions n̂ · B = �̂ · B = constant, and the poloidal magnetic field

B✓ satisfies Neumann boundary conditions n̂ · rB✓ = constant. Additionally, the plasma

parameters n, p, and T are all held constant on the boundary.

4.1.2 Simulation Setup

The evolved solution to the set of equations 4.1-4.6 for the main simulations are computed

on the elements defined by the grid shown in Fig. 4.2, where the average edge of an element

is equal to 0.04 m, as seen in the zoomed-in panel (b). This grid is used on 16 toroidal slices,

with a total of 123936 elements solved simultaneously each timestep1. This resolution is

1Each finite element contains 60 integration points for solving the assumed form of the solution, which
leads to approximately 80 extra sub-elements. In total, the code solves approximately 10 million sub-elements
simultaneously each timestep.
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Figure 4.2: (a) View of the toroidal current at a constant toroidal angle over-plotted with the triangular
finite element mesh. (b) Zoomed in portion of the domain in (a) to show the resolution of the
mesh, which was chosen to have an average edge length of 0.04 m.

chosen by running multiple toroidal, nonlinear resistive-MHD simulations where we vary the

resolution while keeping all other parameters constant. We check that there is no qualitative

change in the solution. In the nonlinear two-fluid model, the system of equations to be solved

through the implicit numerical method is much more complex than that of the resistive-

MHD case. Because the iterative solver employed has a limit on the number of iterative

loops for solving each timeslice, the maximum timestep that could be used was limited by

a factor of ⇠ 10 smaller than for the resistive-MHD simulations. This restricted our ability

to parametrically scan the resolution for the nonlinear two-fluid simulations, and will be a

part of future studies.

The simulations start from an axisymmetric equilibrium determined from solving the

Grad-Shafranov (G-S) equation (Grad and Rubin, 1958; Shafranov , 1966), using a module

included in M3D-C1. The G-S equation prescribes an equilibrium by finding the toroidally-

axisymmetric solution to rp = J⇥B, which is the non-dissipative, steady-state force balance

equation from Eq. 4.2. The solver assumes the magnetic field and gas pressure profiles have

a polynomial form, and a relaxation technique is employed to approach the exact solution.

Input parameters include the toroidal plasma current Ip, the central safety factor q0 and
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Table 4.1: Parameters used to solve the G-S equation, which determine the equilibrium used to initialize
the main simulations in the M3D-C1 code.

Parameter Ip q0 B0 p pi pedge n0 expn
Value 0.8 0.6 1.0 0.006 0.003 0.0003 1.0 0.2

toroidal magnetic field B0, the central total and ion pressures p and pi, the total edge

pressure pedge, central density n0, and a variable named ‘expn’ to set the density profile o↵

of the pressure profile as n = pexpn. Values used to generate the equilibrium for the main

simulations are given in Table 4.1. The equilibrium generated for this set of inputs has a

plasma column with a minor radius of approximately 0.9 m about a central major radius of

R0 = 3.28 m, where the q = 1 rational surface is located at a minor radius of r1 = 0.59 m.

The magnetic surfaces in the core and around the q = 1 surface have a predominantly circular

cross-section with a small elongation (stretching in the Z direction), while those towards the

edge have a modest elongation and triangulation (peaking toward the outboard edge). We

note here that this equilibrium does not correspond to a particular tokamak, but is instead

chosen to study the basic physics of reconnection in sawteeth.

After setting the equilibrium, simulations are perturbed by a small random perturbation

in the poloidal flow on the order of 0.1cA✓, where cA✓ is the Alfvén speed based o↵ the

poloidal magnetic field. The magnitude of the initial perturbation has been varied to ensure

the resulting evolution is not sensitive to it.

4.1.3 Numerical Convergence

In preparation to simulate the nonlinear set of resistive-MHD or two-fluid model equations

in the full 3D toroidal geometry, we perform M3D-C1 simulations in its 2D axisymmetric

nonlinear and 3D linear forms. This allows us to run a series of computationally inexpensive



91

simulations to probe the equilibrium parameter space, spatial and time resolution, and also

the simulated plasma controllers. By running a current through the metallic vacuum vessel

wall and controlling the associated “loop voltage”, current controllers on tokamaks induc-

tively keep the plasma current Ip constant. Another tokamak controller for the density, either

pu�ng gas or shooting pellets into the plasma from the edge of the device, keeps the density

constant. After setting the density controller to hold the number of particles at 8.8 ⇥ 1020

and the current controller to hold Ip at 0.8, we find where the perpendicular and parallel

thermal conductivities do not qualitatively alter the evolution by running simulations with

the 2D nonlinear version of the code. The values of conductivity we selected for the principal

simulations were listed in Sec. 4.1.2.

There is also a 3D linear version of the code. The system of equations is expanded by

making the fields complex and setting A = A0 + A1, where A0 is the equilibrium field

and A1 the perturbation for all fields, then keeping only the linear terms in Eqs. 4.1-4.8.

With the fields complex, the toroidal derivatives are replaced by a multiplier of in, with n

being the chosen number of the toroidal mode. Employing these simplified simulations for

a single n mode at a time, by holding the two-fluid parameter db constant and changing the

resistivity, and vice-versa, we find a value of the resistivity, ⌘ ⇠ 1.5 ⇥ 10�6 at the q = 1

surface, where the two-fluid e↵ects dominate at db = 0.1, and are well-resolved when db = 0

for n = 0, 1, 2.

4.2 Macroscopic Observations

To begin our analysis of sawteeth in extended-MHD toroidal simulations, we study the

evolution of various modes in the linear and non-linear phase and look at data in the poloidal
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plane, to make contact with the approach used in previous studies. We begin by comparing

between simulations with resistive-MHD physics and two-fluid physics by looking at the

kinetic energy contained in the lowest order toroidal modes and comparing poloidal cross-

sections of the electron temperature. We then compare the diamagnetic physics at the q = 1

surface to the growth of the kinetic energy in the n = 1 toroidal mode associated with the

tearing/reconnection mode. We end the section by exploring signatures of the reconnection

and diamagnetic physics in the poloidal plane.

4.2.1 Resistive Vs. Two-Fluid Simulations

Recall our discussion from Ch. 2, where we explored studies in simple geometries that showed

two-fluid e↵ects solve the timescale problem of Kadomtsev’s model. There are only limited

direct comparisons between sawteeth in 3D toroidal simulations with resistive-MHD and two-

fluid models (Breslau et al., 2007). We show that the inclusion of two-fluid physics in the

model equations is essential for recovering timescales more closely in line with experimental

results compared to resistive-MHD and contrast the dynamics in the two models. In Fig. 4.3,

the evolution of the kinetic energy in di↵erent toroidal modes is shown for the (a) resistive-

MHD and (b) two-fluid models. The only di↵erence between the simulations is db = 0 for (a)

and db = 0.1 for (b). Repeated again for reference, with the chosen normalizations the time

unit corresponds to ⌧A0 = 0.46 µs. The first striking di↵erence between the two simulations

is the disparity in the timescales, where the two-fluid simulation evolves from t = 0 to its

maximum kinetic energy in roughly a quarter of the time it takes for the resistive-MHD

simulation. To reinforce this point because the panels in Fig. 4.3 use di↵erent time scales,

the calculated growth rate of the kinetic energy in the n = 1 toroidal mode is ⇠ 0.005 for

the resistive case and ⇠ 0.015 for the two-fluid case.
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Figure 4.3: Kinetic energy in toroidal modes n = 0� 5 in (a) resistive-MHD and (b) two-fluid simulations.
Note the much faster timescales associated with the growth of the modes in the two-fluid
simulations, and also the late nonlinear acceleration of the growth for the two-fluid case as
compared to the deceleration of the mode growth in the resistive case.

A second important observation in Fig. 4.3 is the nonlinear acceleration of the kinetic

energy growth rates for the two-fluid simulation from t ⇠ 1400 � 1500 and a deceleration of

the mode growth for the resistive simulation after t ⇠ 5000. This implies that reconnection

is not only faster for the two-fluid simulation, but also increases in rate as the reconnection

phase proceeds, while the resistive simulation has slower reconnection that slows even further

during the reconnection phase. The acceleration of the mode growth rate is similar to results

from Biskamp et al. (1997), where reduced, two-fluid simulations showed an accelerating

growth rate during the reconnection phase across a parameter space of poloidal beta and

density gradient widths.

A third important di↵erence between the resistive-MHD and two-fluid simulations is the

time it takes for reconnection to process the magnetic fields and expel the hot plasma in

the core, the timescale of the sawtooth crash phase. Shown in Figs. 4.4 and 4.5 for the

resistive and two-fluid simulations, respectively, is the electron temperature in the poloidal

plane at a constant toroidal angle for di↵erent times throughout the reconnection phase,

where the white x’s mark the location of the reconnection site as determined from Poincaré

plots and poloidal plane velocity data. More closely in line with experimental observations,
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Figure 4.4: Poloidal cross-sections of the electron temperature during the reconnection phase of the saw-
tooth crash for the resistive-MHD simulation. The white x’s show the location of the recon-
nection site as determined from Poincaré sections, where the counter-clockwise poloidal drift
is due to the external neutral beam adding torque to the system and causing the helical mode
to rotate toroidally.
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Figure 4.5: Poloidal cross-sections of the electron temperature throughout the reconnection phase of the
sawtooth crash for the two-fluid simulation. The white x’s show the location of the reconnection
site as determined from Poincaré sections. Note that the timescale of the core expulsion is over
a factor of 15 shorter than for the resistive simulation.

reconnection processes the hot core in the two-fluid simulation in ⇠ 50 µs, approximately

15 times more rapidly than in the resistive-MHD simulation, which processes the core in

⇠ 750 µs.

Another di↵erence between Fig. 4.4 and Fig. 4.5 is the poloidal drift of the reconnec-

tion site in the counter-clockwise poloidal direction for the resistive case, while it is not

prominent for the two-fluid case. Torque imparted by the simulated neutral beam causes

the helical mode to rotate in the positive toroidal direction, which appears as a counter-

clockwise poloidal drift of the reconnection site. This is consistent with the experimental

results of Yamaguchi et al. (2004) discussed in Ch. 1. However since their plasma current Ip

was directed opposite to the toroidal field and neutral beam, they observed rotation in the
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Figure 4.6: Early time evolution of the kinetic energy in di↵erent toroidal modes for two-fluid simulations
with central pressure (a) p0 = 0.007 and (b) p0 = 0.006. The n = 1 mode is stabilized for the
higher central pressure in (a) corresponding to increased electron diamagnetic e↵ects at the
q = 1 rational surface that stabilize magnetic tearing, while the mode grows in (b).

clockwise poloidal direction as seen in Fig. 1.11. Since the reconnection phase starts much

later in the resistive simulation and also evolves over a longer timescale, the toroidal rotation

is apparent for this simulation. However there is much less time for torque to be imparted

in the two-fluid simulation, and because of this, the poloidal drift of the reconnection site

due to the neutral beam is not observed in Fig. 4.5.

4.2.2 Diamagnetic Suppression

A main subject discussed in the proceeding chapters has been how electron diamagnetic

physics a↵ects magnetic reconnection, and in this section we discuss how diamagnetic e↵ects

appear in toroidal simulations. The origin of diamagnetic physics in tokamaks begins with

the equilibrium pressure profile consistent with the solution to the G-S equation for a given

magnetic field and current profile and the toroidal geometry of the system. To change the

pressure profile in our simulations, we change the central total and ion pressures p and pi

used to find an equilibrium. By changing the central pressures while keeping their edge

values constant, we are able to vary the value of the electron pressure gradient at the q = 1
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Figure 4.7: Evolution of the two terms in Eq. 4.12, the n = 1 toroidal mode growth rate �n=1 (blue)
compared to the electron diamagnetic frequency !⇤e = �crpe/enBr|r1 (red), for the two-fluid
simulation with p0 = 0.007. While �n=1 eclipses !⇤e for a short time, it drops back down and
becomes negative, showing that tearing is diamagnetically suppressed for this value of p0.

rational surface. For higher central pressures, tearing is stabilized by diamagnetic e↵ects.

This is seen in Fig. 4.6, showing the time evolution of the kinetic energy associated with the

first six toroidal modes n = 0 � 5. In (a) the central total pressure is set at p0 = 0.007;

the n = 1 tearing mode (the blue trace) remains relatively flat. Conversely in (b) where

p0 = 0.006 is only slightly lower (and all other parameters are identical), the n = 1 mode

grows continually. This suggests diamagnetic e↵ects are playing a key role.

To make the observation of the stabilized n = 1 mode in Fig. 4.6(a) more quantitative, we

recall that Rogers and Zakharov (1995) discussed the importance of the linear m = 1 mode

growth rate �m=1 compared to the diamagnetic frequency !⇤ = �crp/qnBr|r1 , and Biskamp

et al. (1997) emphasized that the maximum nonlinear growth rate as the system evolves is

the important growth rate to compare to !⇤e. Coupling these results give a quantitative
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threshold condition that predicts the stabilization of reconnection as

!⇤e > �m=1. (4.12)

Since M3D-C1 outputs data for the toroidal modes n that contain information on all poloidal

modes m, and also since our previous discussion suggests the (m,n) = (1, 1) mode is domi-

nant, we expect �m=1 ⇠ �n=1. Thus, Fig. 4.7 shows �n=1 compared to !⇤e for the simulation

with p0 = 0.007 during the early nonlinear evolution. We evaluate !⇤e by finding the radial

electron pressure gradient, density, and toroidal magnetic field at the q = 1 surface along the

midplane (z = 0) at the toroidal angle where the reconnection site is on the inboard side.

Fig. 4.7 shows that while �n=1 eclipses !⇤e for a short time, it quickly decreases to below

zero, and stays small for the rest of the simulated time so Eq. 4.12 is satisfied and tearing

is diamagnetically suppressed. It would be worth extending this simulation to later times

to ensure the result does not change (future studies), but to our knowledge Figs. 4.6(a) and

4.7 show the first observed stabilization of the (m,n) = (1, 1) tearing mode due to electron

diamagnetic e↵ects in nonlinear, non-reduced, toroidal simulations. Rogers and Zakharov

(1995) employed a reduced set of the two-fluid equations and neglected toroidal curvature

at the q = 1 surface.

For the two-fluid simulation in Fig. 4.6(b) with p0 = 0.006, where the n = 1 toroidal

mode continues to grow past the early nonlinear phase, we show the same two terms in the

threshold relation Eq. 4.12 extended over a time range encompassing the full reconnection

phase in Fig. 4.8. As we saw in the last section, the time range from ⇠ 1400 � 1500, where

the �n=1 mode grows rapidly, corresponds to the sawtooth crash phase. Since �n=1 is greater

than !⇤e throughout the late nonlinear evolution, reconnection is never stabilized. The
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Figure 4.8: Time history of Eq. 4.12, the n = 1 toroidal mode growth rate �n=1 (blue) compared to the
electron diamagnetic frequency !⇤e (red), throughout the full sawtooth cycle for the two-fluid
simulation with p0 = 0.006. Since �n=1 is always greater than !⇤e, the threshold is never met,
so reconnection is complete.

core plasma is completely processed during the crash for the chosen simulation parameters;

reconnection is complete.

Thus, these two simulations result in complete reconnection or complete suppression. We

note that neither was incomplete, so we are unable to test the model in Ch. 3. Since the

outflows due to reconnection scale with the Alfvén speed and therefore with the density as

⇠ n�1/2, while the diamagnetic drift speed scales with density as ⇠ n�1, in order to test

the model of incomplete reconnection given in the last chapter, future work will employ

simulations at an intermediate value of the central pressure or lower values of density where

diamagnetic e↵ects play a larger relative role during the reconnection phase.



100

Figure 4.9: Poincaré sections for an annulus centered around the q = 1 surface spanning from the be-
ginning of tearing of the (m, n) = (1, 1) mode to the reconnection phase for the two-fluid
simulation. With the toroidal field directed into the plane and an electron pressure directed
towards the core, the black x’s show the tearing/reconnection site drifting poloidally in the
electron diamagnetic drift direction.

4.2.3 Reconnection and Diamagnetic Physics in the Poloidal Plane

Moving from the discussion of macroscopic signatures of reconnection compared between

the resistive-MHD and two-fluid simulations, we now look at data in the poloidal plane to

ascertain details of two-fluid reconnection in sawteeth. At the end of the last section, we

saw that the reconnection site in the two-fluid simulation showed little to no drift in the

poloidal plane. However, we expect electron diamagnetic physics to convect the magnetic

field structure in the clockwise poloidal direction for B� in the positive toroidal direction and

an electron pressure gradient directed towards the core, and the neutral beam to rotating

the helical mode toroidally. In Fig. 4.9, we show Poincaré plots encompassing the early

tearing/reconnection phase of the two-fluid simulation, where the tearing site is marked by

black x’s. At t = 810 and t = 1090 in Fig. 4.9(a) and (b), by measuring quantities along

the midplane at the q = 1 surface for a toroidal angle where the tearing site intersects the

inboard side, we calculate v⇤e to be 0.0056 and 0.0058, consistent with a drift distance of
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Figure 4.10: Profiles of the (blue) toroidal and (red) poloidal currents taken through the midplane of a
poloidal cross-section, where the positive poloidal direction is taken to be clockwise. Since
the helical mode is clockwise when moving in the positive toroidal direction, the current at
the reconnection site located around R = 2.63 m is opposite to the helical direction.

⇠ 1.6 m in the clockwise direction during this time interval.

In the Poincaré plots a drift of only ⇠ 0.25 m is observed over the same time interval in

the clockwise direction. However this is consistent with results from the two-fluid simulations

in the last chapter, where the reconnection site drifted at a speed ⇠ 1/5 of that calculated

for v⇤e. This suggests there is physics in addition to diamagnetic e↵ects that control the

X-line drift. Future work should investigate this further.

Shown in Fig. 4.10 are profiles of the toroidal and poloidal (with positive in the clockwise

direction) components of the current through the midplane for time unit t = 1460 at toroidal

angle � = 279
�
, where the reconnection site is directly on the inboard side. The q = 1 rational

surface is located near R = 2.63 m, and both components of the current are directed opposite

to their direction over the rest of the domain. Thus, while the current consistent with the

confining magnetic configuration is in the positive toroidal and clockwise poloidal direction,

the reconnection current sheet is opposite, in the negative helical direction. A consequence
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Figure 4.11: Self-consistent increase of the electron pressure profile through the reconnection site as re-
connection progresses. Profiles are taken at the midplane of the poloidal cross-section where
the reconnection site is directly on the inboard side of the helical mode. The vertical, dashed
lines indicate the location of the q = 1 rational surface at the corresponding time.

of the reconnection current being directed opposite to current at the core is that there is

a motion of the q = 1 rational surface towards the edge (since oppositely directed currents

repel each other). This is consistent with the observations in Figs. 4.4 and 4.5. We expect

that for a di↵erent value of central safety factor q0 closer to unity, the reconnection current

would be along the helical mode, in the same direction as the confining current. This is

borne out in 3D linear simulations (not shown), and will be a focus of future work. The

motion of the q = 1 surface during reconnection could play a role in the seeding of NTMs

and disruptions. If the surface expands radially, the reconnection mode would be more likely

to trigger disruptive activity, but if the surface contracts into the core, the mode would be

sequestered.

A central part of the diamagnetic cessation model for incomplete sawteeth presented and

investigated in Ch. 3 is that reconnection self-consistently increases the pressure gradient at

the reconnection site, shutting o↵ reconnection if the gradient becomes large enough. While
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the two-fluid simulations presented in this chapter do not produce incomplete reconnection,

we can test to see if the pressure at the X-line self-consistently increases as the model

suggests. Fig. 4.11 shows that reconnection causes the pressure gradient to increase at the

q = 1 rational surface, which are shown by the vertical, dashed lines for t = 1360, 1410,

and 1460 during the evolution. This is qualitatively consistent with the model and with the

experimental results of Chapman et al. (2010) which detailed a rise of rpe in Fig. 3.7.

4.3 Local Properties of Reconnection in 3D Toroidal

Geometry

To properly diagnose reconnection in a 3D toroidal geometry, it is necessary to find the

plane perpendicular to the magnetic field located at the reconnection site; in this plane, the

magnetic field is antiparallel about the rational surface. While looking at data in the poloidal

plane as done in Sec. 4.2 is su�cient to gain a qualitative understanding of the reconnection

physics, we must sample our data in the correct plane to quantitatively diagnose reconnection

in a tokamak. Here, we present the first analysis of the reconnection plane in a 3D toroidal

geometry.

4.3.1 Finding the Reconnection Plane

In Fig. 4.12 the reconnection geometry is shown at the location indicated by the red dot for

a circular toroidal geometry. While reconnection takes place all along the (m,n) = (1, 1)

field line shown, in Fig. 4.12 the reconnection site is shown on the inboard side of the torus.

We note here that the discussion in this section is limited to looking at the reconnection

site on the inboard of the torus for simplicity, but an analysis of the toroidal dependence of
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Figure 4.12: A checkered-green circular cross-section torus overlaid with a red clockwise-helical (m, n) =
(1, 1) magnetic field line. A location of the reconnection site is marked by the red dot, the
direction of the local field is denoted by ĥ, the normal to the q = 1 surface is the direction of
the reconnection inflow denoted by î, and the reconnection outflow completes the orthogonal
set denoted by ô. The reconnection (blue) plane is spanned by î and ô, perpendicular to ĥ.

reconnection will be explored in Sec. 4.4.

We find the reconnection site by using Poincaré plots and data sampled in the poloidal

plane. First, Poincaré plots allow us to estimate the location of the reconnection site. Then,

we expect the pressure gradient to be an extremum at the reconnection site, so we refine the

minor radial location of the site to match this extremum. We note that while the field line

tracing algorithm used to generate the Poincaré plots from M3D-C1 data accurately finds

the q = 1 surface, there also exists a separate IDL analysis code that estimates the q = 1

surface by averaging the magnetic field over the toroidal and poloidal angles. However, the

latter method is not accurate enough for our purposes as the (m,n) = (1, 1) reconnection

mode evolves and varies in the toroidal and poloidal directions.

Having an approximate location of the reconnection site in the poloidal plane, we next
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find the reconnection plane. The direction of the local magnetic field at the reconnection site

is denoted by ĥ (for “helical”) in Fig. 4.12. This unit vector defines the blue plane shown in

the figure, which we expect to be the reconnection plane. We then use the fact that we limited

our analysis2 to the reconnection site at the inboard side of the torus to set the tangent to the

q = 1 rational surface ĉ = Ẑ (not shown in Fig. 4.12). The cross product ĉ ⇥ ĥ is normal to

both the magnetic field and the q = 1 rational surface, corresponding to the inflow direction;

we normalize the result, and denote it as the inflow direction î. Then by taking the cross

product ĥ⇥ î, we find the outflow direction ô, which completes the orthonormal reconnection

frame. By sampling data3 in the plane defined by ĥ and spanned by î and ô, we can properly

diagnose magnetic reconnection during the crash phase of sawteeth.

4.3.2 Quantifying Properties of Reconnection

4.3.2.1 Resistive Versus Two-Fluid Reconnection

In the reconnection plane, we continue our quantitative analysis of magnetic reconnection

during the crash phase of sawteeth. We start by comparing reconnection between simulations

with resistive-MHD and two-fluid model equations. In Fig. 4.13 the current sheet of the out-

of-plane (helical) current Jh is shown for (a) resistive-MHD and (b) two-fluid. The times

are chosen for where the two-fluid simulation is well into the accelerated nonlinear phase

t = 1460, and where the resistive simulation has an island size comparable to that of the

two-fluid case at t = 5625. The dominant feature in this figure is that the resistive current

sheet is elongated compared to the two-fluid current sheet. By measuring where Jh falls to

2While we discuss the case of the reconnection site only on the inboard side, a simple extension is
applicable to other toroidal angles.

3Data is sampled locally by interpolating between the simulation data computed at each node of the
finite element mesh, where the order of interpolation is consistent with the spatial representation of the
finite elements.
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Figure 4.13: Helical current Jh as viewed in the reconnection plane for the (a) resistive-MHD and (b)
two-fluid simulations. By finding where the current falls to half its maximum, �/L can
be calculated for both sheets; �/L ⇠ 0.07 for the resistive case and ⇠ 0.17 for the two-fluid
simulation, which is consistent with the elongated current sheet of Sweet-Parker reconnection,
and the localized current sheet of collisionless reconnection.

half its maximum value in the inflow and outflow directions, we find the thickness � and the

length L of the current sheet. The resistive sheet is elongated with �/L = 0.07 compared

to the two-fluid current sheet, where �/L = 0.17. The two-fluid result is in reasonable

agreement with values seen in 2D slab geometry simulations, while resistive reconnection

with smaller �/L forms a nozzle which slows reconnection. Interestingly, due to our choice

of ⌘ = 1.5 ⇥ 10�6 and db = 0.10, the resistive current sheet is thinner than the two-fluid

current sheet, which may seem counter-intuitive. However this is a nice consistency check

that two-fluid physics are dominant in the simulation shown in Fig. 4.13(b). It justifies our

choice for ⌘; if the width of the current sheet for the resistive simulation was larger than for

the two-fluid simulation, the two-fluid e↵ects would be washed away for the simulation with

db = 0.10.

To further quantify the di↵erence between the reconnection process in the resistive-MHD
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Figure 4.14: Profiles of the reconnecting field Bo, the inflow velocity vi, and the helical current Jh. Where
Jh drops to half its maximum value, denoted by the vertical, dashed black lines, upstream
quantities are evaluated and used in scaling expressions. The inflow velocity profile has been
shifted into the moving frame of the reconnection site outward from the core at vi,xl =
2.3 ⇥ 10�3, and the reconnecting field exhibits a weak asymmetry.

and two-fluid simulations, we must boost into the reference frame of the reconnection site,

which drifts in the positive î direction, towards the tokamak edge, as discussed earlier. This

drift vi,rec is quantified by assuming that the out-of-plane electric field Eh is uniform in the

reference frame of the reconnection site, and since this field is primarily comprised of the

convective electric field upstream in the inflow direction, from Mozer et al. (2002):

vi,rec =
E1 � E2

B1,o +B2,o
, (4.13)

where E↵ = v↵,iB↵,o is the convective electric field in either inflow region, v↵,i is the inflow

velocity, and B↵,o is the reconnection magnetic field for ↵ = 1, 2 referring to the inflow region

for positive i and negative i, respectively.

Values for B↵,o and v↵,i on either side are determined by taking a cut of Jh in the inflow

(̂i) direction. Fig. 4.14 shows Jh as a function of position for the two-fluid simulation as the
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Figure 4.15: Profiles of terms in the out-of-plane component of the generalized Ohm’s law taken through
the reconnection site of data sampled in the reconnection plane. In (a), the resistive-MHD
results are shown, with contributions from resistive di↵usion balancing convection. In (b) are
the two-fluid simulation results. The contribution due to di↵usion is very minor while the
contributions due to convection and the Hall term are appreciable.

blue trace. Vertical dashed lines denote where Jh falls to half of its absolute maximum. This

defines the thickness of the reconnection site in the inflow direction, and is where values for

B↵,o and v↵,i are taken. With these values, the calculated drift speed of the reconnection site

from Eq. 4.13 toward the edge are 1.2⇥10�4 and 2.6⇥10�3 for the resistive and two-fluid cases.

This value of vi,rec is used to boost into the reference frame of the reconnection site. The

inflow speed vi in this frame of reference is given by the green trace in Fig. 4.14. Additionally,

the reconnecting field Bo is shown by the red trace, exhibiting a weak asymmetry (B1,o is

slightly di↵erent than B2,o).

After boosting into the reference frame of the moving X-line, we look at profiles of

contributions to the out-of-plane electric field Eh in the generalized Ohm’s law taken through

the reconnection site in the inflow direction at o = 0. These profiles are shown in Fig. 4.15

for the (a) resistive and (b) two-fluid simulations. For the resistive simulation, the only terms

that contribute are convection � (v ⇥ B)h and di↵usion due to resistivity ⌘Jh, shown by the

dark blue and red lines respectively. They essentially balance, as one expects for steady-state

2D reconnection. For the two-fluid simulation, the dominant terms are convection and the
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Hall term (J ⇥ B)h shown as the mint green line. The resistivity has a negligible contribution

to Eh. The sums of all the terms are also shown in both figures as the light blue line.

In the moving frame of the reconnection site, the profiles are recognizable as similar to 2D

reconnection in a slab geometry. However, here the toroidal geometry gives the convective

electric field a profile that decreases towards the edge, rather than being flat throughout

the domain. Still, we find that the measured reconnection electric field for the two-fluid

simulation is ⇠ 2 ⇥ 10�4, which is 40 times larger than that of the resistive simulation at

⇠ 5 ⇥ 10�6, in line with collisionless reconnection being much faster than resistive recon-

nection. In Fig. 4.15(b) the plotted terms in Ohm’s law are seen to be around zero at the

origin. This is because in two-fluid reconnection, the physics that breaks the magnetic field

is not due to resistive di↵usion, but rather electron inertia or o↵-diagonal elements of the

electron pressure tensor. In this simulation without these e↵ects, the mechanism breaking

the frozen-in condition is undoubtedly numerical. Fortunately, the large scale e↵ects of col-

lisionless reconnection are relatively insensitive to this physics (Birn et al., 2001). Testing

how the present results are a↵ected when the dissipation mechanism is explicit should be the

subject of future work. In summary, we find that the local measure of the reconnection rate

shows that two-fluid is much faster than collisional reconnection, consistent with the global

measures discussed earlier.

4.3.2.2 Comparing Asymmetric Reconnection Rates

In this section and the remainder of the chapter, we turn our discussion exclusively to the

two-fluid simulation. Here, we calculate the rate of reconnection by employing analytical

predictions and then compare it to the measured value for the inboard reconnection site at

t = 1460 discussed in the last section. The in-plane magnetic field structure is displayed in
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Figure 4.16: Magnetic fields in the (a) ô direction and (b) î direction sampled in the reconnection plane.
The reconnection site is at (i, o) = (0, 0) and the field structure there is consistent with both
components changing directions.

Fig. 4.16, showing the magnetic fields in the (a) ô and (b) î directions. The color table used

here and throughout the remainder of the chapter is set with white being 0, red positive,

and blue negative. The polarity of these fields at the origin is consistent with an X-type null.

Furthermore, the magnetic field in the ô direction is the reconnecting field, and it exhibits

a weak asymmetry as was also seen in Fig. 4.14. An asymmetry in the reconnecting field is

consistent with the drift of the reconnection site in the inflow direction (Ugai , 2000; Cassak

and Shay , 2007, 2008; Hoshino and Nishida, 1983; Scholer , 1989b; Rijnbeek et al., 1991).

Using the values for the reconnecting field Bo and the inflow velocity vi evaluated at the

upstream locations shown by the vertical black dashed lines in Fig. 4.14 as discussed in the

last section, we can calculate the reconnection electric field (reconnection rate) from Mozer

et al. (2002):

Erec,1 =
E1B2 + E2B1

B1 +B2
, (4.14)
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where E↵ and B↵,o are defined as before. The calculated value Erec,1 = 8.2⇥10�5 is within a

factor of 2.5 of the measured value of Eh = 2⇥ 10�4 from Fig. 4.15(b). We can also evaluate

the reconnection electric field from Cassak and Shay (2007) as

Erec,2 ⇠
✓

B1B2

B1 +B2

◆
vout

2�

L
, (4.15)

where vout is the flow velocity downstream from the reconnection site. Using the measured

value of vout, we get Erec,2 ⇠ 6.8 ⇥ 10�5, which is within a factor of 4 of Erec,1 and Eh.

The disparity between calculated and measured values may be due to uncertainties in the

measured data and also numerous e↵ects not included in the scaling arguments, such as

guide-field e↵ects and curved magnetic geometry.

4.3.3 Two-Fluid Reconnection Signatures

4.3.3.1 Separation of Two-Fluid Scales

Due to the disparity between the ion and electron masses, where me is set to zero for the

two-fluid simulation used here and Mi is scaled by setting db, there should be a separation

of the scales over which the ion and electron dynamics decouple. Shown in Fig. 4.17 are

the (a) ion and (b) electron velocities, where ve = vi � (db/ne)J in the reconnection plane.

The maximum electron outflow velocity is larger than that of the ions by over a factor of

2, which is consistent with two-fluid and PIC slab reconnection studies, where the electron

flow eclipses the ion flow in the reconnection exhausts [e.g. Shay et al. (1998)]. Furthermore,

the electron outflows are noticeably thinner than those of the ion outflows, consistent with

the two-scale structure due to the inclusion of the Hall term in the generalized Ohm’s law.

While hard to determine from the figure, the maximum electron velocity is peaked closer to
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Figure 4.17: (a) Ion and (b) electron flows in the ô direction in the reconnection plane located on the
inboard side of the tokamak. The maximum electron flows are a factor of two larger than the
ion flows and are peaked closer to the reconnection site. Additionally, the dominant electron
flow is in the electron diamagnetic direction, and the flow is also in this direction at the
reconnection site.

the reconnection site than the maximum ion velocity, also consistent with known properties

of collisionless reconnection (Shay et al., 1998). These results suggest that two-fluid physics

is playing a role in these simulations as is expected, but has not previously been diagnosed

in 3D toroidal simulations.

A particularly interesting observation is that both the ion and electron flows are in the

direction of v⇤e at the reconnection site, which is consistent with the 2D slab simulations

shown in the previous chapter. This suggests that electron diamagnetic e↵ects are playing a

role in the local flow dynamics at the reconnection site.

4.3.3.2 Helical Magnetic Field Quadrupole

As discussed in Sec. 2.3, an important signature in collisionless reconnection is the existence

of a quadrupole in the out-of-plane magnetic field. Due to the Hall e↵ect, where the ion

and electron physics decouple, the magnetic field is convected with the electron flow that
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Figure 4.18: (a) Toroidal magnetic field perturbation B̃� in the poloidal plane with the profile at the mid-
plane subtracted out of every horizontal slice, which leaves a dipolar structure. (b) Helical
magnetic field perturbation B̃h in the reconnection plane with the profile through o = 0 sub-
tracted out, which leaves a quadrupolar structure that has polarity consistent with collisionless
reconnection due to the Hall term.

has a strong out-of-plane component due to its contribution to the reconnection current

sheet. Recalling Fig. 2.4, as this electron flow convects the X-type magnetic configuration,

it drags the field out-of-the plane, forming a quadrupolar structure in the out-of-plane field.

As was discussed in Ch. 2, this has been observed experimentally in dedicated reconnection

experiments, but the 3D field structure and small reconnection scales in a tokamak makes

viewing this structure prohibitively di�cult. Furthermore, to the best of our knowledge, it

has not been identified in fully 3D toroidal simulations either.

In Fig. 4.18(a), we first show the toroidal magnetic field B̃� in the poloidal plane at

the inboard side of the torus, the typical plane where reconnection has been studied, where

we have subtracted the profile of B� at the midplane form every slice of B� to get the

di↵erence from the background profile. The dotted lines mark axes through the location

of the reconnection site as determined from a Poincaré plot, and the solid line shows the

calculated q = 1 surface from averaging over the magnetic field in the toroidal and poloidal
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directions, revealing the latter technique’s lack of accuracy as discussed in Sec. 4.3.1. From

this figure, it is evident that there is no quadrupolar field signature in B̃� when viewed from

the poloidal plane.

However, by sampling the data in the reconnection plane, we find a quadrupolar magnetic

field signature in the helical magnetic field Bh as shown in Fig. 4.18(b). Similar to how the

data is processed in (a), the profile of Bh through the reconnection site at o = 0 is subtracted

out from each horizontal slice of Bh, leaving only the perturbed helical field B̃h. With the

polarity of the in-plane magnetic fields shown in Fig. 4.16, the polarity of the quadrupole

out-of-plane field is consistent with that of the expected Hall magnetic field.

Because the helical (guide) field is strong compared to the relatively weak reconnecting

field, with a ratio of Bo/Bh ⇠ .039/1.23 = 3.2%, it is expected that the helical quadrupole

field would be accompanied by a quadrupole gas pressure profile, as discussed in Sec. 2.4.1 in

order to maintain total pressure balance. However, we find no gas pressure quadrupole in the

reconnection plane for this two-fluid simulation. Additionally, the scaling of the ratio of the

quadrupolar field to the reconnecting field departs from predictions by Rogers and Denton

(2003), where B̃h ⇠ Bo. We hypothesize that the curved geometry of the toroidal system

and extremely large Bh/Bo dictates that additional physics due to magnetic field bending

be kept in the scaling relations, but we leave this analysis for a future study. In summary,

we have shown evidence local to the reconnection site demonstrating that Hall reconnection

takes place.
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Figure 4.19: Views of the helical reconnection current density Jh in the reconnection plane at di↵erent
toroidal angles corresponding to where the reconnection site is at the (a) inboard, (b) top, (c)
outboard, and (d) bottom of the torus. The maximum magnitude of the reconnection current
is on the inboard side, where the toroidal field is the strongest. Note also that �/L is greater
towards the inboard side, and lower towards the outboard side.

4.4 Toroidal Dependence

Thus far, the discussion has been limited to the reconnection site located on the inboard

side of the torus. In this section we explore how reconnection changes for di↵erent toroidal

angles, where the reconnection site is located at di↵erent poloidal locations. Because the

threshold condition for incomplete reconnection is concerned with parameters local to the

reconnection site, it is important to understand how reconnection behaves throughout the

tokamak.

4.4.1 Toroidal Variation of Collisionless Reconnection

We begin our discussion in this section by looking at the reconnection current sheet of Jh at

di↵erent toroidal angles. In Fig. 4.19, Jh is shown where the reconnection site is on the (a)

inboard, (b) top, (c) outboard, and (d) bottom of the torus as determined from Poincaré
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plots. The principal feature of Fig. 4.19 is that the maximum Jh in the current sheets at

di↵erent toroidal angles is greater on the inboard side, and is smaller on the outboard side.

Since the out-of-plane current is a reflection of the in-plane magnetic field shear and the

width of the current sheet is set by the reconnection physics, on the inboard where the

toroidal magnetic field is larger, we would expect the current to be larger, consistent with

our simulations.

We have listed measured parameters associated with reconnection in Table 4.2. Using the

methodology in Sec. 4.3.2.1 for finding upstream values, we find the reconnecting magnetic

fields in the inflows of the core Bo,core and the edge Bo,edge.Since the toroidal field varies as

B� ⇠ 1/R, the reconnecting fields are larger on the inboard side, consistent with the larger

current on the inboard side. We also measure the density n at the X-line, and the average of

the maximum downstream ion vout,ave and electron ve,ave flows in the reconnection exhausts.

Consistent with the reconnection outflows scaling with the Alfvén speed, which scales as

⇠ n�1/2, the average ion and electron flows are the smallest on the inboard side where the

density is largest. The length of the reconnection current sheet 2L is found by locating

where Jh falls to half its maximum along both outflow directions. We attribute the toroidal

variation in the length of the current sheet to toroidal curvature. By looking at Fig. 4.1, for

a helical field line with a circular cross-section, the path length from the top to the bottom

on the inboard side is shorter than the path length connecting the top and bottom on the

outboard side because B is stronger on the inboard side. The width of the reconnection

current sheet 2� = �1 + �2 is also listed, where the thicknesses are found by measuring from

the X-line to the location where the upstream magnetic fields are found.

While the width of the current sheet varies slightly with toroidal (poloidal) location, the

length of the current sheet increases towards the outboard side due to the toroidal curvature,
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Table 4.2: Measured characteristic values of two-fluid reconnection, where the reconnection site is located
at di↵erent toroidal (and poloidal) angles. Tabulated values are the reconnecting magnetic field
in the inflows toward the core and edge Bo,core and Bo,edge, the density n at the X-line, the
average ion outflow velocity vout,ave, the average electron outflow velocity ve,ave, the total length
of the current sheet 2L, and the total thickness of the current sheet 2� = �1 + �2.

Location Bo,core Bo,edge n vout,ave ve,ave 2L �1 + �2
Outboard 0.02 0.014 0.83 0.028 0.063 0.45 0.051
Top 0.044 0.01 0.91 0.025 0.059 0.28 0.048
Inboard 0.034 0.044 1.1 0.021 0.047 0.29 0.049
Bottom 0.024 0.038 0.95 0.024 0.051 0.35 0.057

Table 4.3: Aspect ratio of the reconnection site �/L, measured Eh and calculated Erec,1 and Erec,2 values of
the reconnection rate, where the reconnection site is located at di↵erent toroidal (and poloidal)
angles. Erec,1 is calculated using Eq. 4.14 and Erec,2 is calculated using Eq. 4.15.

Location �/L Eh Erec,1 Erec,2

Outboard 0.11 7.3 ⇥ 10�5 2.6 ⇥ 10�5 2.6 ⇥ 10�5

Top 0.17 1.0 ⇥ 10�4 2.3 ⇥ 10�5 3.4 ⇥ 10�5

Inboard 0.17 2.0 ⇥ 10�4 8.2 ⇥ 10�5 6.8 ⇥ 10�5

Bottom 0.16 1.4 ⇥ 10�4 6.5 ⇥ 10�5 5.7 ⇥ 10�5

decreasing �/L as shown in Table 4.3. Recalling Eq. 2.1, this aspect ratio is indicative of the

rate of reconnection, implying that reconnection proceeds more slowly towards the outboard

side of the tokamak. The decrease in the rate of reconnection toward the outboard side is

also visible in the measured Eh helical electric field and the reconnection electric fields Erec,1

and Erec,2 calculated from Eq. 4.14 and Eq. 4.15, respectively, where the measured electric

fields are generally larger on the inboard and smaller on the outboard.

We notice in Fig. 4.19, that while the inboard and outboard current sheets are mostly

centered around the midplane, the top and bottom current sheets are shifted towards the

inboard side of the torus. A similar asymmetry is also seen in Fig. 4.20 of the ion outflows

on the (a) top and (b) bottom reconnection sites, where the stronger outflow jets are toward

the outboard side for both sites. This asymmetry in the outflows can be explained by how

the toroidal magnetic field varies in the major radial direction, decreasing as ⇠ 1/R. At
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Figure 4.20: Ion flows in the ô direction where the reconnection site is at the (a) top and (b) bottom of the
torus. The outflows are asymmetric due to the magnetic pressure gradient in the major radial
direction due to the varying toroidal magnetic field, consistent with Murphy et al. (2010) that
shows the outflow with a lower pressure has a faster flow.

the inboard and outboard reconnection sites, the toroidal magnetic field changes through

the inflow direction, contributing to the helical current, but at the top and bottom sites the

toroidal magnetic field changes through the outflow direction. Murphy et al. (2010) showed

that if there is a gas pressure gradient in the outflow direction, there is an outflow asymmetry

with the faster outflow where the gas pressure is less. Similarly here, there is a magnetic

field pressure gradient towards the outboard side of the torus, and for the top and bottom

sites this gradient is in the outflow direction, consistent with the polarity of the asymmetric

outflows.

Interestingly enough, there is also an asymmetry of the electron temperature for the

top and bottom reconnection sites, as seen in Fig. 4.21. The temperature in the outflow

toward the outboard side is greater than that in the outflow toward the inboard side, giving

the appearance that the high temperature core is o↵set toward the outboard side. This

observation is consistent with the experimental result of Yamaguchi et al. (2004) shown in
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Figure 4.21: Electron temperature sampled in the reconnection plane where the reconnection site is at the
(a) top and (b) bottom of the torus. Consistent with the results of Yamaguchi et al. (2004),
the hot core bulges toward the outboard side of the torus.

Fig. 1.11, where the hot core was shifted toward the outboard side when the sawtooth mode

was on the top and bottom sides of the tokamak.

The last feature we discuss in this section is the separation of the ion and electron flows

in the ô direction, shown in Fig. 4.22 for the outboard side of the device. Comparing this

to Fig. 4.17, which shows the same data at the inboard side, there are many similarities.

The electron flow is significantly larger in magnitude than the ion flow, the ion outflow jets

are thicker than the electron jets, and the ion and electron flows are in the direction of v⇤e

at the reconnection site. However, there are di↵erences as well. The magnitudes of both

the ion and electron flows increase towards the outboard side, as recorded in Table 4.2, and

the locations of the maximum flow are located further downstream on the outboard side,

consistent with the elongation of the reconnection current sheet.
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Figure 4.22: (a) Ion and (b) electron flows in the ô direction of the reconnection plane for the two-fluid
simulation, where the reconnection site is located on the outboard side of the helical mode, as
compared to the inboard side in Fig. 4.17. Note that the maximum electron flows are greater
in magnitude, and both the ion and electron flow maxima are located further downstream
from the reconnection site on the outboard side.

Table 4.4: Parameters determining the electron diamagnetic e↵ects evaluated at the reconnection site for
di↵erent toroidal (and poloidal) locations. Tabulated values are the helical magnetic field Bh,
the electron pressure gradient rpe, the density n, and the electron diamagnetic drift speed v⇤e.

Location Bh rpe n v⇤e
Outboard 0.86 -0.027 0.83 0.0040
Top 0.99 -.022 0.91 0.0026
Inboard 1.23 -0.033 1.1 0.0027
Bottom 0.99 -0.025 0.95 0.0028
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4.4.2 Diamagnetic E↵ects

We end the chapter by commenting on how the electron diamagnetic e↵ects vary at the

reconnection sites at di↵erent toroidal angles in order to understand how the incomplete re-

connection condition varies around a tokamak. Table 4.4 lists values of parameters measured

locally at the reconnection sites at the outboard, top, inboard, and bottom of the torus. As

expected, the helical magnetic field is stronger on the inboard than the outboard side, and

as we commented on in the last section, so is the density. The electron pressure gradient

at the reconnection site is largest on the inboard and outboard sides, and slightly less on

the top and bottom. Combining the measured values, v⇤e is basically constant over the top,

inboard, and bottom sides, while it is increased on the outboard.

While the electron diamagnetic flows are larger on the outboard side of the torus due to

the decreased toroidal field and density, the electron flows due to reconnection are also faster

there as well, consistent with the observation of complete reconnection. Compared to Eq. 3.5

for the suppression of reconnection, even at the outboard where v⇤e is greatest, the electron

outflows from the reconnection site are still over a factor of 20 larger for this simulation.

In future simulations aimed to observe incomplete reconnection, we will need to explore a

parameter space that allows the electron diamagnetic e↵ects to increase more as reconnection

evolves. This may be accomplished by changing the geometry of the equilibrium, lowering

the density as was commented upon in Sec. 4.2.2, or lowering db to narrow the two-fluid

current sheet and substantially increase rpe during the reconnection phase.
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4.5 Conclusions

Because of the breadth of topics covered in this chapter, it is prudent to summarize the

results of the toroidal simulations. By utilizing the extended-MHD code M3D-C1, we have

undertaken a comparison of the tearing/reconnection of the (m,m) = (1, 1) helical mode

between resistive-MHD and two-fluid simulations. Compared to the resistive-MHD model,

we find that the growth of the kinetic energy in di↵erent toroidal modes for the two-fluid

reconnection process is substantially greater and exhibits a nonlinear acceleration, which

is more closely in line with experimental results. Additionally, for the two-fluid model, we

showed the first observation of early nonlinear stabilization of tearing by electron diamagnetic

e↵ects in a toroidal geometry. When the equilibrium electron pressure gradient was then

lowered, tearing and eventually reconnection proceeded completely.

By sampling simulation data in the poloidal plane, the typical plane in which sawteeth are

studied, we confirmed the known result that reconnection processes the hot core di↵erently

in the resistive and two-fluid models, being faster in the latter. The toroidal rotation due to

the externally-applied neutral beam causes poloidal rotation of the helical mode during the

longer timescale of the resistive simulation consistent with experimental results (Yamaguchi

et al., 2004). During the tearing phase in the two-fluid simulations, the tearing site drifted

in the direction of v⇤e, which shows that the magnetic field configuration drifts with the

electron diamagnetic flow rather than with the ion flow. Furthermore, this poloidal drift

is consistent with the initial findings of von Goeler et al. (1974), which reported that the

sawtooth mode propagates in the v⇤e direction. It was also shown that the reconnection

current was directed opposite to the plasma current Ip for the chosen equilibrium, flowing

in the negative helical direction, which causes the q = 1 surface to expand radially outward
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and has the potential to trigger disruptive behavior. Also in the poloidal plane, we saw how

reconnection causes the electron pressure gradient to increase, which is consistent with the

results of Chapman et al. (2010) and a central part of our incomplete reconnection model in

Ch. 3.

By sampling the two-fluid simulation data in the plane perpendicular to the local mag-

netic field at the reconnection site, we have shown the first observation of the quadrupole

out-of-plane magnetic field appearing during sawtooth reconnection with the Hall term. This

is an important result because it shows that the inclusion of the Hall term leads to fast recon-

nection in sawteeth, leading to crash times that are more in line with experimental results as

compared to simulations without Hall physics. We compared the relative rates of resistive

and two-fluid reconnection, where the reconnection electric field was a factor of 40 larger in

the latter. It was seen that the reconnecting fields and inflows were asymmetric leading to

a drift of the reconnection site towards the edge of the torus.

We also explored how reconnection as viewed in the proper plane varies toroidally, where

reconnection was stronger on the inboard even though the outflow speeds of the ions and

electrons were faster on the outboard side. We posit that toroidal curvature a↵ected the

aspect ratio of the reconnection geometry, elongating the reconnection site on the outboard

side, while the varying toroidal magnetic field causes an outflow asymmetry on the top and

bottom of the torus. Because these asymmetries and current sheet variations alter the rate of

reconnection, this is important for understanding how the reconnection mode evolves locally

throughout the tokamak. Due to the decrease of the helical field and density with major

radius, the electron diamagnetic e↵ects were stronger on the outboard side. However, the

reconnection flows were also stronger there, leading to dominance of the reconnection physics

over diamagnetic e↵ects throughout the tokamak and complete reconnection. To test our
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incomplete reconnection model from Ch. 3, additional simulations will need to be performed

where the reconnection physics and diamagnetic physics are comparable during the sawtooth

crash phase.
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Chapter 5

Conclusions and Future Work

5.1 Summary of Results

In summary, the sawtooth crash is an internal disruption in tokamaks where the magnetic

field of the (m,n) = (1, 1) helical mode reconnects at the q = 1 rational surface. This

disruption allows for increased transport of the hot, core plasma to the edge of the tokamak.

While many experimental results and numerical simulations have provided data to explain

sawteeth, many questions still exist. Foremost is the appearance of incomplete reconnection,

where the sawtooth crash phase ends before all available core magnetic field is reconnected.

Multiple models exist to explain these observations, but none have been unequivocally proven

using simulations or data available from experiments.

In this dissertation, we suggest that reconnection self-consistently increases diamagnetic

e↵ects that can cause the suppression of reconnection, a model that would explain incomplete

reconnection in sawteeth. We tested this model with 2D slab geometry, two-fluid simula-

tions, and utilized 3D toroidal geometry, two-fluid simulations to diagnose reconnection and

diamagnetic physics during the sawtooth crash phase and confirm some key aspects of the
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model.

5.1.1 A New Model for Incomplete Reconnection

Building on the previous work of the stabilizing e↵ect of diamagnetic physics on magnetic

reconnection, we have proposed a new model for incomplete reconnection in sawteeth. Since

reconnection at the q = 1 surface convects in hot plasma from the core and cold plasma

from the edge, the pressure gradient across the q = 1 surface will increase self-consistently as

reconnection proceeds. If the pressure gradient is increased to a su�cient level, the associated

diamagnetic e↵ects suppress reconnection. We tested the basic physics of this proposed

model with 2D slab, two-fluid numerical simulations. A simulation including an external

pressure gradient showed that reconnection was indeed suppressed as the system evolved,

while a simulation without an external pressure gradient proceeded until all magnetic flux

was processed. We also showed that the model was consistent with experimental data from

MAST. The model is quantified by the threshold condition given in Eq. 3.5, which states

that if the electron diamagnetic flow at the reconnection site ever eclipses either electron

reconnection outflow, reconnection ceases.

5.1.2 3D Toroidal Simulations of Sawteeth

We then extended our analysis of incomplete reconnection in sawteeth by utilizing the

extended-MHD code M3D-C1 which has a 3D toroidal computational domain. We began by

comparing tearing/reconnection of the (m,n) = (1, 1) helical mode between resistive-MHD

and two-fluid simulations. We found that compared to simulations using the resistive-MHD

model, in two-fluid simulations the growth of the kinetic energy was more in line with ex-

perimental observations. To our knowledge, this is the first time this has been done in
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3D toroidal simulations. We also saw that for a two-fluid simulation with a relatively high

central pressure, that the tearing/reconnection mode was suppressed during the early non-

linear phase. However, when we lowered the central pressure, which lowered the pressure

gradient at the q = 1 surface, reconnection proceeded, and completely processed the core

plasma. Thus, for the simulation parameters tested, we observed either complete suppression

or complete reconnection, again the first time this has been observed in simulations.

5.1.2.1 Reconnection and Diamagnetic Physics in the Poloidal Plane

To make contact with previous studies of sawteeth in a 3D toroidal geometry, we analyzed

data sampled in the poloidal plane defined by a constant toroidal angle. By looking at

the evolution of the electron temperature, we confirmed the known result that reconnection

processes the core more rapidly in the two-fluid case than the resistive case. During the

longer timescales of the resistive simulation, toroidal rotation due to the applied torque

of the neutral beam caused poloidal rotation of the helical mode, which is consistent with

experimental results. Also in line with experimental results, the tearing/reconnection site

was observed to drift poloidally with the electron diamagnetic flow v⇤e in the two-fluid

simulation. By looking at profiles of the electron pressure taken through the midplane for

toroidal angles where the reconnection site was located on the inboard side, we observed the

increase in the electron pressure gradient at the q = 1 surface, consistent with a prediction

of our new model for incomplete reconnection and experimental results.

5.1.2.2 Local Signatures in Reconnection Plane

After looking at data sampled in the poloidal plane, we outlined a new method for obtaining

the plane of reconnection in 3D toroidal simulations, where the plane is perpendicular to
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the local magnetic field at the reconnection site as opposed to a poloidal plane. Looking

at data sampled in the appropriate plane for reconnection, we compared the reconnection

sites on the inboard side of the torus between resistive-MHD and two-fluid simulations. We

found that the current sheet has a larger �/L in the latter, consistent with collisionless recon-

nection, while the current sheet in the former was elongated, consistent with Sweet-Parker

reconnection. We quantified the contributions to the reconnection electric field, showing

that resistivity balanced it at the X-line in resistive-MHD, but not in the two-fluid case.

The two-fluid simulation had a reconnection electric field a factor of 40 times greater than

the resistive simulation. Additionally, both reconnection sites were asymmetric in the in-

flow direction, which was compatible with the observation that the q = 1 surface expanded

toward the edge of the tokamak in both simulations. When comparing the measured value

of the reconnection rate for the two-fluid case to analytical predictions based on fields and

velocities in the inflows, we found they scaled reasonably well, but there were discrepancies.

We also observed that the ion and electron flows exhibited a two scale structure, which were

consistent with the observation of an out-of-plane quadrupolar field due to the inclusion of

the Hall physics. This was the first observation of this signature in 3D toroidal simulations,

and shows that the inclusion of the Hall term in the generalized Ohm’s law leads to fast

crash times that are more in line with experimental results than resistive-MHD simulations.

5.1.2.3 Toroidal Variation of Reconnection and Diamagnetic Physics

Next, we explored how two-fluid reconnection as viewed in the proper plane varies toroidally.

We found that the reconnection rate was larger on the inboard side, while the ion and electron

outflows were larger on the outboard side. We proposed that due to the toroidal magnetic

field scaling like B� ⇠ 1/R, the reconnection fields are weaker on the outboard side, which
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lowered the local reconnection rate. Because the threshold condition proposed to explain

incomplete reconnection depends on local reconnection parameters, understanding how re-

connection varies through the toroidal direction is significant. We observed that since the

toroidal magnetic field decreases with increasing major radius, there is an asymmetry in the

reconnection outflow speeds at the top and bottom sides of the tokamak. Furthermore, the

decrease in toroidal magnetic field leads to a decrease in the helical magnetic field with major

radius, and when coupled with the observation of a decrease in the density at the reconnec-

tion site with major radius, leads to an increase in the electron diamagnetic drift speed

on the outboard side of the torus. However, since the reconnection flows were also larger

there, the incomplete reconnection threshold condition was not satisfied, and reconnection

was complete for these simulation parameters.

5.2 Future Work

Throughout the presented work, we commented on additional lines of study that would

further test our predictions and develop important concepts involved in the incomplete re-

connection process. We conclude this dissertation by gathering them here.

5.2.1 Analytical Predictions

Analytical expressions in Rogers and Denton (2003) give predictions for the magnitudes of

characteristic values associated with the Hall magnetic fields when there is a magnetic guide

field. However, our results did not agree with these predictions. In the 3D toroidal geometry

simulations, we did not observe a quadrupole perturbation to the electron pressure. Future

work to address these observations should include a detailed analytical treatment including
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curved geometry, extreme guide-field, and drift e↵ects. Also in 3D toroidal simulations, we

showed how the rates of reconnection consistent with the out-of-plane electric field Eh scaled

reasonably well with analytical predictions conceived for 2D slab configurations. However,

there were di↵erences, so a better predictive model for the reconnection rate in sawteeth

would require a more thorough analysis of the local reconnection site, including curved

geometry, magnetic guide field, and a drifting reference frame.

5.2.2 2D Slab Geometry Simulations

For the 2D slab geometry simulations where reconnection was suppressed due to the increase

in local diamagnetic e↵ects, further simulation work should be carried out that includes ad-

ditional extended-MHD e↵ects such as ion diamagnetic e↵ects and higher thermal conduc-

tivity �||. In the simulations presented, we observed a secondary instability, which suggested

a Kelvin-Helmholtz or drift instability arose in the reconnection outflows due to the interac-

tion of the external pressure gradient. While gyro-kinetic simulations have been performed

over a parameter space where pressure gradients were located across the reconnection site,

a study employing an equilibrium with an upstream pressure gradient would be useful for

investigating the role these secondary instabilities play.

For the two-fluid simulations in both the 2D slab and 3D toroidal geometries, we observed

that the X-line drifted with a speed that was approximately 1/5 of the electron diamagnetic

drift speed v⇤e, while PIC simulations showed a 1 : 1 correspondence. Because the PIC simu-

lations started from an equilibrium with a pressure gradient initially across the reconnection

site, a steady-state was not reached before the influence of the diamagnetic e↵ects. By

running PIC simulations with the pressure gradient initially upstream, it would be possible

investigate the additional physics controlling the drift speed of the reconnection site.
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5.2.3 3D Toroidal Geometry Simulations

There are also several places where the work done in our 3D toroidal simulations should be

extended. Since the amount of resources needed to perform two-fluid nonlinear simulations

is substantial, our ability to undertake a convergence study of the spatial resolution was

limited, so doing more to test the numerics, including increasing the number of toroidal

planes would be important. The model equations should be augmented to included multiple

ion species to better connect to experiments. The two-fluid simulation for the higher central

pressure, where the tearing mode was suppressed in the early nonlinear phase, should also

be extended in time to ensure the suppression is robust over longer times.

While 2D simulations in a slab geometry have shown that collisionless reconnection has a

reconnection rate that is insensitive to the dissipative mechanism breaking magnetic fields at

the X-line, testing how the present results in 3D toroidal, two-fluid simulations are a↵ected

when the dissipation mechanism is altered is necessary. By using an explicit, high-order, nu-

merical di↵usion in the evolution equations, this study could be undertaken with a controlled

approach.

Since all the simulations covered in this dissertation were proof-of-principle, it is essential

that the model is assessed with parameters of specific devices. Also, we expect that for

equilibria where the value of the central safety factor q0 is closer to unity, which are more

indicative of experimental devices, the reconnection current would interact di↵erently with

the confining plasma current than in the present simulations. By choosing equilibria with

lower values of density, we can explore conditions where diamagnetic e↵ects play a larger

relative role during the reconnection phase in order to evaluate our new model for incomplete

reconnection.
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5.2.4 Application to Experiments

The crash time of sawteeth, including the e↵ects of incomplete reconnection, is important

for fast-ion transport by sawteeth. The magnitude of the transport depends crucially on

the relative magnitude of the sawtooth crash time and the characteristic times for energetic-

ion orbits (Muscatello et al., 2012). Accurate crash times are needed to provide reasonable

predictions of the e↵ect of large sawteeth on alpha-particle confinement in the ITER baseline

scenarios.

The dynamics of sawteeth are also important for the seeding of disruptions through

seeding NTMs. NTMs require an initial perturbation to being growing, and sawteeth can

couple their energy through the n = 1 or n = 2 toroidal mode to create seed islands for

(m,n) = (2, 1) and (3, 2) NTMs. Understanding the rate at which the magnetic island

due to reconnection grows, and how large it grows compared to the location of the q = 1

surface relative to higher-order rational surfaces determines the strength of this coupling. By

understanding how diamagnetic e↵ects change the reconnection rate during the crash phase

and how the reconnection current relative to the core plasma current convects the q = 1

surface, our work has the potential to describe how sawteeth seed NTMs.

The new model for incomplete reconnection may be useful for low-dimensional transport

modeling codes that are used to predict the extent of plasma transport in tokamak discharges.

They currently use an ad hoc description of incomplete reconnection, so the results give an

avenue for a first-principles approach. Since the model only depends on the local electron

diamagnetic e↵ects and reconnection physics, it is machine independent, and should apply

both to existing tokamaks and future ones such as ITER.
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