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ABSTRACT

We describe a systematic development of kinetic entropy as a diagnostic in fully kinetic particle-in-cell (PIC) simulations and use it to
interpret plasma physics processes in heliospheric, planetary, and astrophysical systems. First, we calculate kinetic entropy in two forms—the
“combinatorial” form related to the logarithm of the number of microstates per macrostate and the “continuous” form related to flnf, where f
is the particle distribution function. We discuss the advantages and disadvantages of each and discuss subtleties about implementing them in
PIC codes. Using collisionless PIC simulations that are two-dimensional in position space and three-dimensional in velocity space, we verify
the implementation of the kinetic entropy diagnostics and discuss how to optimize numerical parameters to ensure accurate results. We
show the total kinetic entropy is conserved to three percent in an optimized simulation of antiparallel magnetic reconnection. Kinetic entropy
can be decomposed into a sum of a position space entropy and a velocity space entropy, and we use this to investigate the nature of kinetic
entropy transport during collisionless reconnection. We find the velocity space entropy of both electrons and ions increases in time due to
plasma heating during magnetic reconnection, while the position space entropy decreases due to plasma compression. This project uses colli-
sionless simulations, so it cannot address physical dissipation mechanisms; nonetheless, the infrastructure developed here should be useful
for studies of collisional or weakly collisional heliospheric, planetary, and astrophysical systems. Beyond reconnection, the diagnostic is
expected to be applicable to plasma turbulence and collisionless shocks.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5098888

I. INTRODUCTION

Dissipation of energy in nearly collisionless plasmas is a key com-
ponent of understanding many fundamental plasma processes, such as
magnetic reconnection, plasma turbulence, and collisionless shocks. In
magnetic reconnection, dissipation can change magnetic topology1,2

and may play a role in thermalizing plasma in the exhausts.3 In plasma

turbulence, dissipation at kinetic scales is required to terminate the
energy cascade.4,5 A number of mechanisms for this conversion in
weakly collisional plasmas have been discussed, including resonant
and nonresonant wave-particle interactions and dissipation in coher-
ent structures (i.e., intermittency) such as through reconnection.6

In collisionless shocks, dissipation is necessary to convert the upstream
plasma bulk flow energy into thermal energy.7 These three
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fundamental processes underlie a staggering array of important appli-
cations in heliospheric, planetary, and astrophysical sciences, including
supernova shocks,8 astrophysical jets,9 pulsar winds,10 interstellar
shocks,11 shocks in galaxy cluster mergers,12 solar eruptions,13 coronal
heating,14 solar wind turbulence,15 solar wind-magnetosphere cou-
pling and magnetospheric storms and substorms,16 and planetary
shocks.17

The study of dissipation is at the forefront of research in these
processes and settings, but it has been challenging to study it observa-
tionally, experimentally, numerically, and theoretically.2,6 Recently,
dissipation has become more accessible to study numerically through
increases in computer power and observationally through the develop-
ment of high cadence satellite measurements. For example, the pri-
mary objective of the Magnetospheric Multiscale (MMS) mission18 is
dissipation accompanying reconnection,19 and it has also been used to
study magnetosheath turbulence20,21 and the bow shock.22 Studying
dissipation in solar wind turbulence would have been a key goal of the
Turbulence Heating ObserveR (THOR) mission.23

From a theoretical perspective, there have been efforts to identify
regions where dissipation occurs. These measures have had some suc-
cess in identifying the electron diffusion region (EDR)24 of magnetic
reconnection19,25–27 and dissipation in reconnection exhausts,28 and
dissipation in plasma turbulence.29–31 However, it is not clear which, if
any, uniquely identifies genuine dissipation.

The present study is based on the premise that entropy is a
natural candidate to identify and quantify dissipation. Entropy in a
closed system is conserved in the absence of dissipation and monoton-
ically increases when dissipation is present.32,33 Here, we interpret
“dissipation” as a process that causes a total entropy increase in a
closed, isolated system.

The fluid (thermodynamic) form of the entropy per particle for
an isotropic plasma is related to p/qc, where p is the (scalar) pressure,
q is the mass density, and c is the ratio of specific heats. This quantity
has been studied in various settings for a long time. For example, sta-
bility of Earth’s magnetotail plasma sheet to the interchange instability
is governed by fluid entropy.34–43 Fluid entropy was specifically inves-
tigated in the context of magnetic reconnection, finding that it is con-
served very well in magnetohydrodynamic (MHD) and particle-in-cell
(PIC) simulations of reconnecting flux tubes.44,45 Fluid entropy has
been used to identify nonadiabatic heating during reconnection.46,47

Lyubarsky and Kirk48 used fluid entropy in their study of reconnection
in pulsar winds. Rowan et al.49 subtracted adiabatic heating from mea-
sured heating in the exhaust of a reconnection event in PIC simula-
tions to find the leftover nonadiabatic contribution. A similar
approach was used to study entropy production in collisionless shocks
in PIC simulations.50,51

Many heliospheric, planetary, and astrophysical settings are only
weakly collisional, so the fluid approximation may or may not be
applicable. Instead, a kinetic approach is likely necessary in such
settings, especially in regions with fine-scale spatial or temporal struc-
tures. We follow the convention by Kadanoff52 and refer to the version
of entropy in kinetic theory as “kinetic entropy.” The theory will be
reviewed in Appendix A 1.

Kinetic entropy has been a useful diagnostic in studies using the
gyrokinetic model. In this model, the second order perturbed distribu-
tion function is related to the perturbed kinetic entropy53,54 and the
kinetic entropy production rate is related to the heating rate.55 Using

gyrokinetic and related models, energy dissipation and plasma heating
have been studied in simulations of magnetic reconnection56,57 and
plasma turbulence.58–66 Kinetic entropy has also been investigated in
studies of turbulence using the Vlasov-hybrid (Vlasov ions, fluid elec-
trons) approach67 and in shocks.68

Meanwhile, the investigation of kinetic entropy in fully kinetic
plasma systems, i.e., without any degrees of freedom integrated out,
has been carried out in some observational and theoretical studies.
Observational data was used to study kinetic entropy in Earth’s plasma
sheet69,70 and Earth’s bow shock.71 Dynamics of the magnetosphere
was investigated using various entropy measures from statistics.72

Generalizations of kinetic entropy to kappa-distributions in the solar
wind have been studied.73 The permutation entropy was used to ana-
lyze solar wind turbulence.74 The entropy production in a kinetic-
based fluid closure75 was recently investigated.76 Kinetic mechanisms
for the increase in entropy have been discussed for reconnection with
an out-of-plane (guide) magnetic field.77 A recent model of the turbu-
lent cascade employs the kinetic entropy in a renormalization group
approach.78 However, we are not aware of any studies calculating
kinetic entropy from first principles in fully kinetic PIC simulations.

There are challenges to use entropy as a diagnostic in a real sys-
tem. First, the entropy can vary due to inhomogeneous plasma param-
eters, such as density and temperature, but mere convection should
not be mistaken for dissipation. Moreover, equating an entropy
increase with dissipation requires a closed system, but naturally occur-
ring systems tend not to be closed. Despite these challenges the present
approach is based on the view that studying entropy in fully kinetic
models (from collisionless to collisional) in closed systems is useful to
understand entropy production. The insights gained can be applied to
understanding dissipation in real systems. Therefore, we argue that
kinetic entropy can be a useful measure in collisionless systems, and
can be crucial in collisional systems to identify dissipation. This is
especially the case in the modern age of observational assets like MMS
that measure particle distribution functions with a cadence of a frac-
tion of a second and with high resolution in velocity space.

In this work, we describe a systematic development of kinetic
entropy as a diagnostic in fully kinetic PIC simulations and investigate
some of its uses to interpret plasma physics processes in heliospheric,
planetary, and astrophysical systems. We implement two forms of
kinetic entropy32,79 in our PIC code, the “combinatorial” and
“continuous” forms.80,81 We use the kinetic entropy diagnostic on a
two-dimensional in position space, three-dimensional in velocity space
collisionless PIC simulation of antiparallel magnetic reconnection,
though we expect it will be equally useful for simulations of plasma
turbulence and collisionless shocks. Here, we summarize the new
numerical and physical contributions resulting from this study:

1. We perform the first implementation (that we are aware) of the
direct calculation of the combinatorial kinetic entropy in a PIC sim-
ulation, and provide a definitive assessment of its advantages and
disadvantages relative to the more standard continuous kinetic
entropy form.

2. We perform a careful validation of the kinetic entropy diagnostics as
a function of numerical parameters, which is important to ensure
proper application of this approach in future studies of reconnection
or other applications. The discussion includes how to choose the
velocity space grid scale and the number of macroparticles per grid
cell (PPG). We point out that macroparticles (also known as super-
particles) in a PIC simulation represent a large number of actual
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particles in the system being simulated, and this needs to be properly
accounted for to compare to observations or experiments.

3. We show the kinetic entropy increases by only 3% in a carefully
constructed collisionless PIC simulation of magnetic reconnection.
This gives the first estimate that we are aware of the fidelity one can
expect from a collisionless PIC simulation in conserving kinetic
entropy. The impact of this result on physics is that it shows it will
be possible to include collisions into a PIC code and expect to be
able to resolve its effect on the production of entropy through irre-
versible collisional processes. This is crucial for PIC studies of irre-
versible dissipation (which is a topic of future work).

4. We show that kinetic entropy is not reliably produced in simulations
with a low number of particles per grid cell. We confirm simulations
with a reduced number of particles can reproduce macroscopic
quantities like the reconnection rate, but it may (depending on the
PIC algorithm) give unphysical results for dissipation. This suggests
caution is needed for low macroparticle per grid cell simulations on
matters of kinetic entropy production, including particle acceleration
and plasma heating. The present study provides a blueprint for how
studies with a low number of particles per grid can determine if their
numerics are impacting their physical results.

5. We decompose the total kinetic entropy into the sum of a position
space and velocity space kinetic entropy. That this decomposition is
possible seems to have been known previously in mathematical
applications of plasma physics including Landau damping,80,81 but
to our knowledge this has not been exploited in applications to mag-
netized physical processes like magnetic reconnection (or turbulence
or shocks). There are significant reasons this contribution is impor-
tant to studies of entropy and dissipation. We show that this decom-
position is helpful to understand the dynamics. For both electrons
and ions, the position space entropy decreases in time during recon-
nection, while the velocity space entropy increases. This result has a
clear physical interpretation, as the heating of particles leads to an
increase in temperature and therefore an increase in velocity space
entropy, while the compression of upstream particles into the cur-
rent sheet and the magnetic islands leads to a decrease in position
space entropy. Therefore, in collisionless systems in which total
kinetic entropy is conserved, there is a conversion between the two
types of kinetic entropy. This result is potentially important for
observational studies of kinetic entropy. It reveals that an increase in
the local velocity space kinetic entropy need not be associated with
dissipation, as it also includes contributions from reversible energy
conversion due to compression. Thus, caution must be employed
when studying velocity space kinetic entropy.

Another reason decomposing kinetic entropy into position and
velocity space contributions is useful is that in nearly collisionless
plasmas of heliophysical, astrophysical, and planetary interest, parti-
cle distributions can become strongly non-Maxwellian. The decom-
position of a distribution into a thermal and nonthermal part is not
possible for such complicated distributions. In a closed system that
does not include collisions, the conservation of total kinetic entropy
implies that any increase in velocity space entropy is balanced by an
equal decrease to the position space entropy, and vice versa. In a
closed collisional system, the two will not be balanced, and the net
change of kinetic entropy gives a measure of the rate of dissipation.
An example of a use of this is that one can tell by comparing the
position and velocity space entropy what portion of the increase in
velocity space kinetic entropy is reversible (the part that goes to posi-
tion space kinetic entropy) and what portion is irreversible. This can
be done from a calculation of the distribution function as a whole,
without having to break it up into a thermal and nonthermal part, so
it even works for distributions that are strongly non-Maxwellian.

It is worth noting that in the present study we develop a frame-
work and perform a preliminary study, but we do not address the
physical cause of dissipation because its presence in these simulations
is purely numerical. One can show analytically that kinetic entropy
increases only in the presence of collisions.33 Since we use a collision-
less PIC code for this study, the small kinetic entropy production we
detect is due to numerical effects. We leave studies of mechanisms of
dissipation for future work using a collisional PIC model.

This paper is organized as follows: in Sec. II, we briefly list the
forms of kinetic entropy that we investigate. The existing theory of
kinetic entropy including the fact that kinetic entropy can be decom-
posed into position and velocity space entropies is reviewed in
Appendix A. Appendix B contains a thorough discussion of imple-
menting the kinetic entropy diagnostic into PIC codes. Section III
describes the setup of the simulations we employ. Section IV shows
the simulation results, including a discussion of how to choose the
diagnostic and simulation parameters to achieve robust results and a
discussion of using kinetic entropy to obtain physical insights. Finally,
conclusions, applications, and future work are discussed in Sec. V.

II. KINETIC ENTROPIES IN THIS STUDY

In this section, we review the forms of kinetic entropy that we
calculate in this study. The detailed derivation and discussion of the
kinetic entropy expressions are given in Appendix A.

The “combinatorial Boltzmann entropy” S is defined in Eq. (A4)
as

S ¼ kB lnN!�
X
j;k

lnNjk!
� �

; (1)

where Njk is the number of particles in phase space bin spanning
ð~r j;~vkÞ ! ð~r j þ D~r ;~vk þ D~vÞ and N ¼

P
j;k Njk is the total number

of particles. Since the total number of particles in a closed system is
fixed, percentage changes in entropy are calculated based solely on the
second term.

By using Stirling’s approximation and ignoring constant terms,
one obtains the “continuous Boltzmann entropy” S in Eq. (A8) as

S ¼ �kB
ð
d3rd3vf ð~r ;~vÞ ln f ð~r ;~vÞ½ �; (2)

where f ð~r ;~vÞ is the distribution function at position~r and velocity~v
in phase space. The continuous Boltzmann entropy per unit volume,
i.e., the continuous Boltzmann entropy density sð~rÞ, is defined in Eq.
(A9) as

sð~rÞ ¼ �kB
ð
d3vf ð~r ;~vÞ ln f ð~r ;~vÞ½ �: (3)

The continuous Boltzmann entropy density sMð~rÞ for a 3D drifting
Maxwellian velocity distribution in local thermodynamic equilibrium
(LTE) for a species of massm, number density nð~rÞ, bulk flow velocity
~uð~rÞ, and temperature Tð~rÞ, with f ð~r ;~vÞ ¼ fM ¼ nð~rÞ½m=2pkB
Tð~rÞ�3=2e�m½~v�~uð~r Þ�2=2kBTð~r Þ, follows directly. The result is in Eq. (A10):

sMð~rÞ ¼
3
2
kBnð~rÞ 1þ ln

2pkBTð~rÞ
mn2=3ð~rÞ

 !" #
: (4)

We use Eq. (4) to validate the implementation of the kinetic entropy
diagnostic in our PIC code.
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Both the combinatorial and continuous kinetic entropies can be
decomposed into a sum of a position space entropy and a velocity
space entropy. The derivation and discussion of the physical meaning
of these two terms are reviewed in Appendix A2. We define the com-
binatorial position space entropy Sposition and velocity space entropy
Svelocity in Eqs. (A12) and (A13) as

Sposition ¼ kB lnN!�
X
j

lnNj!
� �

; (5)

Svelocity ¼
X
j

kB lnNj!�
X
k

lnNjk!
� �

; (6)

where Nj is the total number of particles in the jth spatial bin by sum-
ming Njk only over velocity space. The continuous position space
entropy Sposition and velocity space kinetic entropy Svelocity are
expressed in Eqs. (A18)–(A20) as

Sposition ¼ kB N ln
N

D3r

� �
�
Ð
d3rnð~rÞ ln nð~rÞ

� �
; (7)

Svelocity ¼
ð
d3rsvelocityð~rÞ; (8)

svelocityð~rÞ ¼ kB nð~rÞ ln nð~rÞ
D3v

� �
�
ð
d3vf ð~r ;~vÞ ln f ð~r ;~vÞ

� �
; (9)

where D3r and D3v are the volumes of the bins in position and velocity
space, respectively, and svelocityð~rÞ is the continuous velocity space
kinetic entropy density whose spatial integral gives Svelocity. While it is
possible in principle to define a continuous position space kinetic
entropy density, it is not unique and it does not have a physical inter-
pretation as the permutation of particles in position space, so we do
not define a position space kinetic entropy density. Rather, we point
out that the first term in Eq. (7) is a constant, so the time evolution of
the position space kinetic entropy is solely determined by the spatial
integral of –nlnn.

Details about how to implement kinetic entropy diagnostics into
a PIC code are discussed in Appendix B. The discussions include the
importance of the actual number of particles per macroparticle, bin-
ning particles in phase space, obtaining the distribution function
and kinetic entropies, and a comparison between combinatorial and
continuous Boltzmann entropies.

III. SIMULATIONS

Simulations are carried out using the P3D code,82 though we
expect the diagnostic and analysis would be possible with any explicit
PIC code. The code uses the relativistic Boris particle stepper83 for the
particles and trapezoidal leapfrog84 on the electromagnetic fields, with
the fields allowed to have a smaller time step than the particles (half as
big for our simulations). The divergence of the electric field is cleaned
(every 10 particle time steps unless otherwise noted for our simula-
tions) using the multigrid approach.85 Boundary conditions in every
direction are periodic. The normalization is based on an arbitrary
magnetic field strength B0 and density n0. Spatial and temporal scales
are normalized to the ion inertial length di ¼ c/xpi and the ion cyclo-
tron time X�1ci , respectively, where xpi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0e2=e0mi

p
is the ion

plasma frequency and Xci ¼ eB0/mi is the ion cyclotron frequency
based on n0 and B0. Thus, velocities are normalized to the Alfv�en
velocity vA ¼ diXci. Electric fields are normalized to vAB0. Pressures

and temperatures are normalized to B2
0=l0 and mv2A=kB, respectively.

Entropies are normalized to Boltzmann’s constant kB, though see
Appendix B 4 for a discussion of the units of the continuous
Boltzmann entropy.

For simplicity in this initial study, we only consider 2D in posi-
tion space, 3D in velocity space simulations of symmetric antiparallel
magnetic reconnection. The simulation domain is Lx � Ly ¼ 51.2
� 25.6. A double current sheet initial condition is used, with magnetic
field given by BxðyÞ ¼ ftanh½ðy � 3Ly=4Þ=w0� � tanh½ðy � Ly=4Þ=
w0� þ 1g, where w0 ¼ 0.5 is the initial half-thickness of the current
sheet. The initial velocity distribution functions are drifting Maxwellians
with temperatures Te ¼ 1/12 and Ti ¼ 5/12 for electrons and ions,
respectively; both temperatures are initially uniform over the whole
domain. We use these temperature values so that vth,e and vth,i are simi-
lar and a common velocity space bin size can be used (see the Appendix
B2). The density is set to balance plasma pressure in the fluid sense,
with nðyÞ ¼ sech2½ðy � Ly=4Þ=w0� þ sech2½ðy � 3Ly=4Þ=w0� þ nb,
where nb ¼ 0.2 is the background (lobe) density. Therefore, the
total upstream plasma b for this simulation is nbkBðTe þ TiÞ=
ðB2

0=2l0Þ ¼ 0:2. Unlike the Geospace Environmental Modeling (GEM)
magnetic reconnection challenge simulations,86 there is only one
Maxwellian component in the current sheet. The ion-to-electron mass
ratio mi/me ¼ 25 and the speed of light c is 15. These choices enforce
that the plasma is nonrelativistic (the speed of light exceeds the thermal
and Alfv�en speeds), which is appropriate for the nonrelativistic treat-
ment of kinetic entropy being considered here.

We use a small enough spatial grid scale and time step to ensure
excellent conservation of energy and minimize numerical dissipation.
We employ a time step of Dt ¼ 0:001X�1ci ¼ 0:025X�1ce ¼ 0:075x�1pe ,
which is a factor of about 2.67 smaller than what would typically be
used for these simulation parameters. The smallest electron Debye
length for this simulation (based on the maximum density of 1þ nb) is
kDe ¼ 0.018. We select a grid scale of Dx ¼ Dy¼ 0.0125 � 0.6944 kDe,
again smaller than what is typically used for these simulation parame-
ters to improve energy conservation.

Additional to the parameters for the PIC simulation, the kinetic
entropy diagnostic requires a number of other parameters, which are
discussed in detail in Appendix B. These parameters are only for the
kinetic entropy diagnostic; they do not influence the rest of the simu-
lation. As discussed in Appendix B 1, in order to calculate the combi-
natorial Boltzmann entropy S properly, the number of actual
particles per macroparticle a has to be specified at run time.

We first estimate a using the method described in Appendix B 1.
For the “base” simulation, the particle weight is proportional to the
local density at t¼ 0, with a value of W¼ 0.2/1.44 in the lobe and
W¼ 1.2/1.44 at the center of current sheet. We use PPG ¼ 100 in the
base simulation and, as calculated above, a grid scale of Dx ¼ 0.6944
kDe. To relate to the actual number of particles, we appeal to the system
of interest being simulated. For a simulation representing the plasma in
a solar active region, Table I gives nk3De ’ 1:3� 107, so Eq. (B1) gives
Ncell ’ 4.3� 106 actual particles per grid cell. Using W¼ 0.2/1.44, Eq.
(B3) gives a¼ 3.13� 105 actual particles per macroparticle. For the
plasma sheet in Earth’s magnetotail, Table I gives nk3De ’ 1:0� 1013,
so assuming the same weight and grid scale gives a¼ 2.5� 1011. For
what we refer to as the base simulation, we use a¼ 3.13� 105.

We also need to choose the velocity space bin size Dv and the
initial number of macroparticles per grid cell PPG per species. For
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each, we must optimize these parameters, which is discussed in
detail in Secs. IVD–IV F. For the base simulation, we use Dv ¼ 1
and PPG ¼ 100. The velocity range for binning the particles is
from �12 to 12 in each dimension. Since the plasma is in the non-
relativistic regime in this simulation, the choice of a broader veloc-
ity range than this should not make much difference.

IV. RESULTS

The layout of this section is as follows. We start with a validation
of the implementation of the kinetic entropy diagnostics in the code in
Sec. IVA. The time evolution and conversion of energy and kinetic
entropy is discussed in Sec. IVB. We discuss the position and velocity
space entropies in Sec. IVC. Sections IVD–IVF contain results on
varying a, PPG, and Dv, respectively. Unless otherwise noted, the
results presented here employ the implementation discussed in
Appendix B on the base simulation described in Sec. III.

A. Validation of the kinetic entropy diagnostic

Figure 1(a) shows a 2D plot of the continuous Boltzmann entropy
density seð~rÞ from Eq. (3) at time t¼ 0 for electrons; results for ions
are analogous. The center of the plot is shifted to the position of the
X-line (x0, y0) of the top current sheet at y0 ¼ 3Ly/4. Panel (b) shows
the electron density ne at the same time. The structure of se is strongly
determined by the density, as expected from Eq. (4) for Maxwellian
distributions such as those at the initial conditions of the present simu-
lations. Panels (c) and (d) show similar plots, but for t¼ 41, showing a
similar relationship between kinetic entropy and density even though
distribution functions are no longer all Maxwellian at this time.

The initial distribution functions for this simulation are drifting
Maxwellians, so we can validate the implementation of the diagnostic
by comparing the calculated se with the analytic calculation in Eq. (4).
In the upstream region where the density is 0.2, Eq. (4) predicts a
value (in normalized code units) of ð3=2Þð0:2Þ½1þ ln ð2pð1=12Þ=
ð0:04� 0:22=3ÞÞ� ¼ 1:39; in the center of the sheet where the density is
1.2 the analytic prediction is 6.21. Panel (e) shows a vertical cut of the
continuous Boltzmann entropy density at t¼ 0 in black, with the ana-
lytical prediction overplotted as the red line, revealing excellent agree-
ment of the theory and simulations. In Sec. IVD, we confirm that the
combinatorial S and continuous S Boltzmann entropies are in agree-
ment, as they should be. We conclude that the kinetic entropy diagnos-
tics implemented here successfully determine the kinetic entropy.

B. Energy and kinetic entropy conservation and
conversion

A principal diagnostic of momentum-conserving PIC codes is the
conservation of total (particle plus electromagnetic) energy. Departures
from perfect conservation occur only as a result of numerical effects

TABLE I. Representative values of the plasma parameter nk3De in a number of
plasma settings.101–103

Setting Density (cm–3) Te (eV) nk3De

Solar active region 109 100 1.3 � 107

Magnetotail 0.2 500 1.0 � 1013

MRX reconnection
experiment

(0.1–1) � 1014 5–15 450–7000

Solar wind at 1 AU 10 10 4.1 � 109

Magnetosheath 20 50 3.2 � 1010

Earth’s ionosphere 106 0.01–0.1 410–13 000
High energy density
laser plasma

1020 1000 1300

FIG. 1. 2D plots, zoomed in near the reconnection X-line at (x0, y0) of (a) electron
kinetic entropy density se and (b) electron density ne at time t¼ 0. (c) and (d) are
the same except at t¼ 41. (e) A vertical cut of se through the X-line (black) at
t¼ 0, with the theoretical prediction (red) overplotted.
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including finite time step, finite grid scale, and noise introduced by hav-
ing a finite number of macroparticles. In a collisionless PIC code, as is
the case for the one employed in this study, kinetic entropy should also
be conserved,33 with departures from perfect conservation again only
arising due to numerical effects. Here, we investigate energy and kinetic
entropy conservation in our base simulation.

The time evolution of the system is shown using the reconnection
rate as a function of time t in Fig. 2(a). The reconnection rate is the
time rate of change of magnetic flux between the X-line and O-line,
identified at each time t using the saddle and extremum of the mag-
netic flux function wð~rÞ defined by~B ¼ ẑ �rw, where~B is the mag-
netic field. As is typical in 2D PIC simulations in periodic domains,
the reconnection rate starts to grow from zero (visibly at t� 10),
reaches a peak (at t� 21.5), and then falls back down to a reasonably
steady state (for t> 34).

Figure 2(b) shows total energy density Etotal (black solid curve),
total kinetic energy density Ekin (red dashed curve) including both
bulk and thermal kinetic contributions, and total electromagnetic
energy density EEM (blue dashed curve), as a function of time t for the
base simulation. The total energy only increases 0.24% by t¼ 41; this
is excellent total energy conservation. This is the result of our inten-
tional use of a small time step and grid scale. The expected conversion
of electromagnetic energy to kinetic energy during the reconnection

process (starting in earnest at about t¼ 20) is also seen in the time
histories.

Now, we investigate how the kinetic entropy changes in time dur-
ing the simulation, including both relative and absolute changes in
kinetic entropy since both provide useful insights. For the relative
change of the combinatorial Boltzmann entropy S in Eq. (1), it is
important to note that ½SðtÞ � Sðt ¼ 0Þ�=Sðt ¼ 0Þ is not a meaning-
ful measure of the relative kinetic entropy change. This is because the
combinatorial Boltzmann entropy S can be written as a sum of two
terms [see Eq. (1)], and the first term is a large constant term. Thus,
calculating the relative change in kinetic entropy merely as ½SðtÞ
�Sðt ¼ 0Þ�=Sðt ¼ 0Þ would be misleading, because each has a large
term that does not change but skews the ratio. For this reason, we sub-
tract out the constant term and report the change in kinetic entropy
relative to the initial portion of the combinatorial kinetic entropy that
can change, which is Sðt ¼ 0Þ � kB lnN!.

Figure 2(c) shows the change of the combinatorial Boltzmann
entropy in time from Eq. (1) normalized to Sðt ¼ 0Þ � kB lnN! for
the base simulation, with values for electrons in red, ions in blue, and
their total in black. The relative changes are about 4.5%, 2.1% and
3.2% by t¼ 41 for electrons, ions, and total, respectively. In general,
the kinetic entropies are conserved reasonably well, given that recon-
nection occurs and there is a conversion of nearly one-third of the
electromagnetic energy into particle kinetic energy. Interestingly, the
kinetic entropy due to numerical effects is monotonically increasing. If
the code had physical collisions, one would expect the kinetic entropy
would monotonically increase. We find that the numerical effects, in
this sense, mimic physical collisions.

The absolute change to the kinetic entropy is now used to study
the partition between electrons and ions. Figure 2(d) shows the total
combinatorial Boltzmann entropy S (in black) for electrons (solid
line) and ions (diamonds) as a function of time t. Each has its initial
value subtracted so that the plotted values are the change relative to
the initial time. Notice the change in the absolute kinetic entropies are
quite large, at the 1013 level in code units (corresponding to the 10�10

level in units of J/K). This ostensibly large number is a result of the
number of actual particles represented in the simulation being large.
In particular, the base simulation has 100 PPG and 4096� 2048 cells,
for a total of 838,860,800 macroparticles. With a¼ 3.13� 105, the total
number of particles represented is N¼ 2.6� 1014. The first term in the
kinetic entropy in Eq. (A5) is lnN!, which is approximately 8.5� 1015.
This sets the scale of kinetic entropies for this system; we find the total
kinetic entropies after the subtraction due to the second term in Eq.
(A5) are at the 1014 level, and the change in kinetic entropy in time is
at the 1013 level, as seen in Fig. 2(d).

Comparing the total kinetic entropies for each individual species,
we see that both increase in time as might be expected, but the elec-
trons gain more than the ions in an absolute sense. This is very reason-
able, as numerical effects arising at small scales are expected to
disproportionately affect electrons.

C. Position and velocity space entropies

We now discuss the position and velocity space entropies dis-
cussed in Appendix A2. The two terms are calculated from Eqs. (5)
and (6) using the combinatorial Boltzmann entropy S. Their evolution
is shown in Fig. 2(d), with position space entropies in blue and velocity
space entropies in red with electrons given by the solid lines and ions

FIG. 2. Time histories from the base simulation of the following quantities: (a)
reconnection rate, (b) total energy density Etotal (black solid line), total kinetic
energy density Ekin (red dashed line), and electromagnetic energy density EEM
(blue dashed line), (c) relative change of the nonconstant term in the combinatorial
Boltzmann entropy SðtÞ in Eq. (1) for electrons (red), ions (blue), and total (black),
(d) deviation from its initial value of velocity space entropy Svelocity (red), position
space entropy Sposition (blue), and total combinatorial Boltzmann S (black) for elec-
trons (solid curves) and ions (diamonds).
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by the diamonds. First, we note that the position space entropy is
essentially the same for electrons and ions. This is consistent with
expectations as a result of quasineutrality of the plasma.

The velocity space entropy increases for both electrons and ions,
a result of a temperature increase in both species due to the reconnec-
tion process, as expected from Appendix A2. The increase in velocity
space entropy is associated with a decrease in the position space
entropy. If kinetic entropy is perfectly conserved, as the governing
equations would have in this closed system, then any increase in veloc-
ity space entropy would necessarily be offset by a decrease in position
space entropy. In the simulation, total kinetic entropy is not conserved
perfectly, but we still observe a decrease in position space entropy for
both electrons and ions. Physically, this decrease is associated with the
enhanced density in the island as reconnection proceeds and upstream
plasma is compressed. Compression leads to more particles in some
phase space bins, lowering the position space entropy as discussed in
Appendix A2.

This explanation is predicated on the notion that the temperature
increase is physical rather than numerical, so we investigate this
here. The increase in total entropy due to numerical effects is less than
5%, as discussed in Sec. IVB. One might expect the thermal energy
change from numerical effects DEth,numerical to scale like Qnumerical

’TDSnumerical from the first law of thermodynamics, so DEth,numerical

would be at the 5% level. However, in the simulation, the thermal
energy gain for electrons and ions are 103% and 77%, respectively.
This implies that physical heating is much more significant than the
contribution due to numerical effects.

This result also underscores a point about temperature and
entropy that is important to take into account in laboratory and satel-
lite measurements of kinetic entropy. In this simulation, there is a
significant increase in thermal energy, but only a small change in
kinetic entropy. This shows that a temperature increase is not neces-
sarily associated with an increase in total kinetic entropy.

To get a sense for what the different kinetic entropies look like as
a function of space, Fig. 3 includes plots of (a) continuous Boltzmann
entropy density seð~rÞ [from Eq. (3)], (b) velocity space entropy density
se;velocityð~rÞ [from Eq. (9)], and (c) the �neð~rÞ ln neð~rÞ density related
to the position space entropy [from Eq. (7)], each evaluated at t¼ 41.
These plots are all for electrons and are showing the whole domain in
x and are zoomed in to the upper current sheet in y.

Caution is needed in interpreting these plots. The regions of
highest entropy in panels (a) and (b) do not necessarily reflect regions
of increased kinetic entropy because the kinetic entropy at t¼ 0 is not
uniform in space since the plasma density is higher close to the center
of the initial current sheet, as is shown near the current sheet in Fig.
1(a). Similarly, assessing the temporal change in total kinetic entropy,
as plotted in Fig. 2 is nontrivial solely from these plots, because Fig. 2
represents the total kinetic entropy integrated over all space. Thus,
assessing the change in total kinetic entropy at later times requires
integrating the 2D plots in Fig. 3 over all space and comparing with
the initial integrated kinetic entropy.

Panels (a) and (b) reveal elevated levels of kinetic entropy in the
islands, which is the combined result of the higher density (higher
entropy) plasma initially in the current sheet getting corralled into the
island, and the plasma in the island being heated which increases its
velocity space kinetic entropy. The blue swath in the island in panel
(c) shows that the change in the position space kinetic entropy is

negative there, which is consistent with the plasma being compressed
in the island.

Further evidence of this interpretation is shown in Figs. 3(d)–3(f)
which has plots analogous to panels (a)–(c) but evaluated at t¼ 35,
near the global minimum in position space kinetic entropy as seen in
Fig. 2(d). There is clearly a secondary island clearly present near
(x – x0, y – y0) ¼ (10, 0), and the island has a significant decrease in
�neð~rÞ lnneð~rÞ where compression is most significant. This justifies
the stated comment that compression in the islands leads to a decrease
in position space kinetic entropy. For the parameters in the base simu-
lation, the difference between seð~rÞ and se;velocityð~rÞ is at about the
10% level.

D. Importance of including actual particles per
Macroparticle for the combinatorial Boltzmann
entropy

As discussed in Appendix B 1, to calculate the combinatorial
Boltzmann entropy S, one must include the number of actual particles
per macroparticle a. Here, we show this is the case in the simulations.

FIG. 3. 2D plots of various electron kinetic entropies: (a) continuous Boltzmann
entropy density seð~r Þ, (b) velocity space entropy density se;velocityð~r Þ, (c) the
�neð~r Þ ln neð~r Þ term that arises in the calculation of Sposition, all evaluated at t¼ 41.
(d)–(f) are analogous plots at t¼ 35, near the minimum in total position space kinetic
entropy when there is a secondary island further compressing the plasma.
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Furthermore, since the combinatorial S and continuous S Boltzmann
entropies should be nearly identical for a large number of particles,
and the two are coded in separately rather than S following from S
from the explicit use of Stirling’s approximation, we can use this as a
further test of the implementation of the diagnostics.

We perform three simulations that are identical except for the
use of different values of a. An a¼ 1 case has each macroparticle rep-
resenting a single particle, and we also use values of a¼ 100 and the
base simulation using a¼ 3.13� 105. The a¼ 1 case warrants further
discussion; one could be concerned that there are not enough particles
to maintain the plasma approximation. However, that is not the case
for our simulations. Our simulations employ PPG ¼ 100 for each spe-
cies. The (position space) grid cell in our simulation is about (2/3)kDe.
Thus, these 2D simulations have approximately (3/2)2� 100¼ 225
particles per Debye sphere. This is much larger than 1, as is required
for the plasma approximation, and is only a factor of two or so lower
than the number of particles per Debye sphere in the MRX experiment
and Earth’s ionosphere, as shown in Table I. Thus, the plasmas
being simulated continue to satisfy the plasma approximation, even
with a¼ 1.

Figure 4 contains results for the time evolution of the total com-
binatorial Boltzmann entropy SðtÞ integrated over the entire compu-
tational domain, shown as a difference from its initial value S(t¼ 0)
and divided by a, for the three simulations. Panel (a) is for electrons
and panel (b) is for ions. The reason to divide by a is that we know
from Eq. (B6) that the continuous Boltzmann entropy S is directly
proportional to a in the limit of large number of particles, so dividing
by a allows us to directly compare simulations that use different values
of a. The red diamonds show the corresponding value of the kinetic
entropy from Eq. (2), which follows after employing the Stirling
approximation.

First, we note that there is excellent agreement in the large a sim-
ulation between the combinatorial S and continuous S Boltzmann
entropies as there should be, which provides additional evidence for
the proper implementation of the diagnostic. For the a¼ 100 case, a
significant difference between the two is observed, especially for
the electrons. For the a¼ 1 case, the difference is at least an order of
magnitude. The results show that if a is not included, or is too low, the

combinatorial Boltzmann entropy S does not agree with the continu-
ous Boltzmann entropy S.

To be more specific, a typical maximum value of macroparticles
in a phase space bin is approximately 3 in the base simulation. Taking
into account the particle weight ofW¼ 0.2/1.44, analogous to the dis-
cussion in Appendix B 1 leading to Eq. (B2), for a simulation with
a¼ 100 implies that there are a maximum of about 3� (0.2/1.44)
� 100 ’ 40 actual particles in any phase space bin. The error due to
the Stirling approximation for an argument of 40 is about 1%. While
this is reasonably good, it represents the minimum error in any cell.
Bins with fewer particles contribute higher errors (4 actual particles
has a 15% error), leading to the larger errors approaching 30% we see
for the a¼ 100 simulation. For a¼ 3.13� 105, the maximum particles
per cell is 130 000, for which the error introduced by the Stirling
approximation is exceedingly small (3� 10�4%). This motivates the
approximate level of disagreement for the a¼ 100 simulation and why
the larger a gives good agreement. We note that there are a number
of physical systems for which a would be of order 100 for PPG near
100 and a weight of W¼ 1, such as Earth’s ionosphere, the MRX
reconnection experiment, and high energy density laser plasmas, as
seen in Table I, so there are physical systems for which errors could be
introduced by using the Stirling approximation.

Figure 4 indicates that use of the combinatorial form of the
kinetic entropy requires the use of the number of real particles per
macroparticle a to get physically appropriate results for real systems.
In contrast, the continuous flnf form of kinetic entropy does not
require inclusion of a to get physical appropriate results. (Fig. 4 also
provides validation that the implementation of the a factor in the PIC
code was carried out successfully.) A corollary of this is that it would
not be appropriate to run a PIC simulation with the idea that macro-
particles represent single particles. Instead, one must take into account
the fact that macroparticles represent a large number of real particles
in physical plasma systems, or one gets a wrong answer for the combi-
natorial kinetic entropy. Given that the combinatorial version of the
kinetic entropy is a perfectly viable approach to calculate the entropy,
it is important to make this point here.

E. Dependence on macroparticles per grid cell (PPG)

The limited number of macroparticles in PIC simulations leads
to a worse statistical representation of phase space than in the actual
system being simulated. Here, we investigate how this impacts the cal-
culation of kinetic entropy by comparing simulations with different
numbers of macroparticles per grid cell, keeping the actual number of
particles fixed by keeping a times PPG constant. This ensures there are
a sufficient number of particles to avoid accuracy issues as discussed in
Sec. IVD. We carry out simulations with PPG of 1, 25, 50, and the
base simulation of 100. For PPG ¼ 50, 25, and 1, we use a¼ 6.27
� 105, 1.25� 106, and 3.13� 107, respectively. The reasons we include
a case with PPG ¼ 1 are (1) some studies have used low PPG in PIC
simulations and (2) we can test what happens to the kinetic entropy
calculation when the statistics are poor.

Some extra details for the PPG ¼ 1 case are warranted. Since
numerical PIC noise is expected to be significant, we start by perform-
ing a simulation with the same divergence cleaning frequency as the
other simulations (every 10 particle time steps). We find the time
history of the reconnection rate is very different than the higher PPG
simulations due to the numerical noise and relatively bad energy

FIG. 4. Combinatorial Boltzmann entropy deviations from their initial value normal-
ized to a, i.e., ½SðtÞ � Sðt ¼ 0Þ�=a for (a) electrons and (b) ions. Solid, dashed,
and dotted lines are for a¼ 3.13� 105, 102 and 1, respectively. The red diamond
symbols indicate the value for the continuous Boltzmann entropy S from Eq. (2).
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conservation. Then, we perform another simulation with divergence
cleaning at every time step, which reduces the impact of the noise. The
total energy change in this simulation is 7.3%, and the reconnection
rate evolution is similar to the higher PPG simulations. We find the
magnitude of the kinetic entropy change is similar to the PPG ¼ 1
case with less frequent divergence cleaning. Consequently, we use the
PPG ¼ 1 simulation with the higher cadence divergence cleaning in
what follows.

Figure 5(a) shows the reconnection rate as a function of time for
the four simulations, with the colors defined in the plot and caption.
The plot clearly shows that the reconnection rate is quite insensitive to
PPG, even for a value of PPG ¼ 1 (with additional divergence clean-
ing). That the reconnection rate can be accurately simulated in PIC
simulations with few particles has been previously noted in astrophysi-
cal PIC simulation studies of reconnection.87–89

Panel (b) shows the deviation of the combinatorial Boltzmann
entropy S from its initial value for the four simulations with different
PPG. The PPG ¼ 1 case deviates from the others significantly, but the
results of the other three cases are similar. In order to examine the dif-
ferences among PPG¼ 100, 50 and 25, we further plot the time rate of
change of the combinatorial Boltzmann entropy dS=dt in panel (c).
The results for the PPG ¼ 50 and 100 cases are quite similar. This
suggests that these numbers for PPG are sufficient to give a relatively
stable regime of the kinetic entropy calculation for our simulations.

In contrast, the PPG ¼ 25 results differ from the higher PPG
results, showing that adverse numerical effects from the worse particle
statistics take place, especially late in time after reconnection occurs. It
is even more dramatic for PPG¼ 1, where there is a large discrepancy
approaching an order of magnitude. Moreover, a 2D plot of the kinetic
entropy density of the PPG¼ 1 simulation (not shown) is very similar
to the density, as expected, but the departure of the distribution from a
Maxwellian has very large noise which swamps out all other structures

(since a Maxwellian is not well described by a single macroparticle).
These important differences suggest that even though a PPG of 1 can
be made to reasonably produce the reconnection rate, one must pro-
ceed with caution on matters related to kinetic entropy, including
effects such as particle acceleration and plasma heating. A convergence
test of kinetic entropy and the effect of small PPG on energization,
heating, and energy partitioning would be useful in testing such
simulations.

It may seem counter-intuitive that the change of kinetic entropy
decreases with fewer PPG since the simulation should be more noisy
when PPG is low and one might think this would increase the entropy.
However, there is a subtle reason this is not the case, as we can see
with an extreme example. Consider a simulation with only a single
macroparticle corresponding to a real particles. All a real particles cor-
responding to that macroparticle are in the same cell in phase space.
The kinetic entropy of this macroparticle is equal to that of all a par-
ticles in a single cell of phase space (which is zero). Now let time
evolve. The macroparticle moves to a new cell in phase space. Since
the macroparticle still corresponds to all a particles, all a particles
move to the same new cell in phase space. Thus, their contribution to
the kinetic entropy at this later time is exactly the same—it is still zero.
Consequently, kinetic entropy is perfectly conserved for this simula-
tion even though the number of macroparticles is only 1. Moreover,
the low number of macroparticles makes the total entropy smaller
than it would be if there were more PPG. Thus, a decrease in PPG
counterintuitively leads to a decrease in the change of kinetic entropy
despite the increase in particle noise.

F. Dependence on Dv

While the kinetic entropy should not depend on grid scale for the
continuous form in Eqs. (2) and (A8), the discrete form in Eq. (A7) is
required for implementation in PIC and therefore is dependent on the
grid scale. Here, we discuss how to choose the size of the velocity space
bin size Dv. The dependence on spatial grid size could be determined
using the same approach, but this is left for future work. We choose the
optimal Dv by comparing simulation results for different Dv to analytical
results for knownMaxwellian distributions at t¼ 0 in the base simulation.

We show results from multiple simulations using velocity bin
sizes Dv of 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, and 8.0 relative to the ion
Alfv�en speed vA. Figure 6(a) shows the continuous Boltzmann entropy
S at the initial time t¼ 0 for both electrons (black) and ions (blue) as a
function of the velocity space grid scale Dv normalized to the ion
Alfv�en speed vA. As expected, the continuous Boltzmann entropy S of
both species increases with Dv for sufficiently large values. Below
Dv/vA of about 0.5 or 1, the variation strongly depends on Dv.

Also in panel (a) are black and blue horizontal dashed lines corre-
sponding to the analytical prediction of the continuous Boltzmann
entropy of electrons and ions, respectively, for the initial conditions
from the spatial integral of Eq. (4). By inspection, we see that the
numerically calculated value of electron kinetic entropy agrees well
with the analytical value for a velocity grid scale just over 1vA. This
suggests an appropriate value to use for the velocity space grid of elec-
trons. Similarly, the ion kinetic entropy agrees with the analytical value
for a velocity grid just under 1vA. These two results motivated our
choice of a grid scale of Dv ¼ 1vA, which is � 0.69 vth,e in terms of
the initial electron thermal speed vth,e for this simulation. That this is
slightly less than the electron thermal speed is consistent with

FIG. 5. (a) Reconnection rate, (b) deviation of the total combinatorial Boltzmann
entropy S from its initial value, and (c) time rate of change of the total combinatorial
Boltzmann entropy S for simulations with different PPG of 100 (black), 50 (red), 25
(blue), and 1 (green). In (c), the diamonds show the corresponding value using the
continuous Boltzmann entropy S instead of the combinatorial Boltzmann entropy S
for the PPG ¼ 1 case to confirm it is calculated properly.
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expectations, as discussed in Appendix B 2. Note, for both electrons
and ions, the velocity grid scale that gives best agreement with the
analytical calculation is near the species thermal speed (1.44 vA for
electrons, 0.65 vA for ions). Also, the base simulation used the same
velocity space grid scale for ions and electrons; this is not a require-
ment and could be relaxed.

While this approach can be used at t¼ 0 when all the distribution
functions are Maxwellian and exact solutions are known, there is no
assurance that the velocity space grid scale will continue to be suffi-
cient at later times. One way to address this would be to test systems
for which the distribution functions are known analytically as a func-
tion of time, such as the bump on tail instability.90,91 We leave such an
approach for future work. More generally, given that phase space
evolution can lead to very sharp structures in velocity space, this is a
very fundamental issue that has previously arisen in Vlasov model-
ing,92–94 and it likely has no general solution.

That said, we perform further analysis to assess whether the
velocity space resolution adversely impacts our study at later times.
First, we note that the temperature (i.e., the spread of the distribution
function in velocity space) in this reconnecting system tends to
increase in time throughout the domain, so this suggests the resolution
at t¼ 0 may remain sufficient at later times, at least in these simula-
tions. That this is the case can be seen in Fig. 6(b), which is analogous
to panel (a) but at t¼ 40. The results are quite similar to those at t¼ 0,
suggesting only a minor global effect. Indeed, the global change in
kinetic entropy is at the 3% level for this simulation.

A more careful approach is to identify the most non-Maxwellian
electron distribution in the system at the end of the simulation, t¼ 41,
and test the effect of the velocity space grid scale in finding its kinetic
entropy density. For the base simulation, the most non-Maxwellian
distribution occurs at the X-line at late time, when the electrons
undergo meandering orbits and produce familiar characteristic distri-
butions like those in Fig. 4 of Ng et al.95 This distribution function has
sharp structure and therefore is the hardest to resolve in velocity space,
so the error of its kinetic entropy density should be the most.

Using this local distribution in a single grid cell, we calculate the
electron kinetic entropy density as a function of velocity space grid
scale (not shown), which represents the local counterpart to the global
result in Fig. 6. As in the global results, we find that there is a medium
range between about 0.5vA and 2vA where the entropy is not strongly
dependent on the velocity space grid. The uncertainty in the kinetic
entropy density as a result of the velocity space grid scale is approxi-
mately 15%, in spite of the fact that the late time distribution function
has structures in velocity space that are not likely to be completely
resolved.

The key point to assess this result is that the change in the kinetic
entropy between t¼ 0 and t¼ 41 is approximately a factor of 2, from
about 1.3 (for the electrons far upstream of the current sheet at t¼ 0)
to about 0.7 (for the meandering electrons at the X-point t¼ 41).
Thus, the 15% uncertainty introduced by even the worst velocity space
grid resolution in our entire simulation is considerably smaller than
the physical change in entropy of nearly a factor of 2. This shows that
the velocity space grid scale resolution is sufficient for the purposes of
this study. However, we emphasize that a careful convergence study is
important for future studies and in other plasma applications.

V. DISCUSSION AND CONCLUSION
A. Summary

This manuscript presents a study of how to implement two forms
of the kinetic entropy into fully kinetic particle-in-cell simulations and
how to use these quantities to diagnose the physical system. The two
forms are the combinatorial Boltzmann entropy S ¼ kB lnX and the
continuous Boltzmann entropy S ¼ �kB

Ð
d3rd3vf ln f . These forms

of kinetic entropy, can be decomposed into a sum of two terms
describing the kinetic entropy in position space and velocity space
separately.

We then discuss how to implement the diagnostic into PIC simu-
lations, including considerations such as the optimal size of the veloc-
ity space grid scale, the number of macroparticles per grid cell, and the
number of actual particles per macroparticle. We compare and con-
trast the merits of each of the two measures of kinetic entropy.

Then, we validate the implementation using two-dimensional in
position space, three-dimensional in velocity space collisionless PIC
simulations of antiparallel symmetric magnetic reconnection. The ini-
tial conditions contain only drifting Maxwellian distributions which
has an analytical solution for the kinetic entropy. This allows for a
careful validation of the implementation at the initial time and pro-
vides an avenue for optimizing the velocity space grid size. Finally, we
discuss the interpretation of the results and how to extract physical
understanding from the kinetic entropy.

The results of the present study include the following:

1. The base simulation with very low Dt demonstrates good conserva-
tion of the total kinetic entropy (to 3.2%). The increase in kinetic
entropy is purely numerical, but increases monotonically as would
be expected for physical collisions and increases faster when recon-
nection proceeds. The level of increase of kinetic entropy is small
enough that simulations with a collision operator should produce
entropy at a level high enough to be resolved in future studies.

2. Electrons and ions show different kinetic entropy production rates,
with electrons gaining more than ions in the base simulation because
their dynamics occurs at smaller scales and therefore are dispropor-
tionately impacted by numerical effects.

FIG. 6. Continuous Boltzmann entropy S for electrons (black) and ions (blue) in
seven simulations with Dv/vA ¼ 0.125, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0 (a) at t¼ 0 and
(b) at t¼ 40. The dashed lines in (a) indicate the analytical values at t¼ 0 for elec-
trons (black) and ions (blue).
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3. We apply the decomposition of kinetic entropy into position space
and velocity space portions to a numerical system and use it to inter-
pret the physics of the system for the first time. Although the total
kinetic entropy is nearly conserved, the position and velocity space
entropies Sposition and Svelocity vary noticeably in time. For both elec-
trons and ions, Sposition decreases in time (for most of the simula-
tion), while Svelocity increases in time. This is physically related to the
electrons and ions getting heated during reconnection (increasing
their velocity space entropy) and getting compressed (decreasing
their position space entropy). This approach will be useful for distin-
guishing reversible and irreversible dissipation in future studies that
incorporate a collision operator, even for distribution functions that
are strongly non-Maxwellian.

4. Calculating the combinatorial Boltzmann entropy S requires specify-
ing the number of actual particles per macroparticle a for the calcu-
lation, while the continuous Boltzmann entropy only needs this
quantity to convert to real units for comparison with observations or
experiments.

5. We show how to choose the number of macroparticles per grid cell
PPG. For these simulations, a bin size that is close to the electron
thermal speed is a good size, and we need at least 50 PPG to get reli-
able kinetic entropy values for our choice of time step and spatial
grid scale. The minimum PPG that is sufficient to reliably calculate
the kinetic entropy likely depends on these quantities.

6. We show how to choose the velocity space bin size at the initial time
when the simulation has distributions such as Maxwellians for which
the entropy is attainable analytically. We find a grid scale slightly
smaller than the species thermal speed is a good bin size for our base
simulation. There is no clear path for ensuring the velocity space bin
size remains adequate for later times because sharp velocity space
structures are common in weakly collisional systems. However, for
the present study, we have shown that the least resolved distribution
at late time introduces only a 15% error in our simulation, far
smaller than the physical difference in the kinetic entropy, so the
velocity bin resolution is good enough for the purposes of this study.
Future work on this issue, for reconnection and for other problems
in plasma physics, will be very important.

7. We show that the kinetic entropy is not reliably produced in simula-
tions with a low number of particles per grid, even though the same
simulations can be made to reliably produce the reconnection rate.
This has important implications about studies of heating and dissi-
pation in systems with few particles per grid cell.

Our study shows that kinetic entropy can serve as a diagnostic of
the fidelity of a collisionless PIC code, alongside the often used energy,
but also can give key physical insights about the dynamics of a system.
The diagnostic developed here should be applicable to any explicit PIC
simulation, which should make it useful in many heliospheric, plane-
tary, and astrophysical processes including magnetic reconnection,
plasma turbulence, and collisionless shocks. It is useful for systems
with distributions with a thermal core and nonthermal tails, but also
more broadly for systems with strongly non-Maxwellian distributions.

B. Other insights and applications

This work provides a number of other insights that are important
for applying the kinetic entropy diagnostic for applications. Kinetic
entropy in a PIC simulation is sensitive to the phase space bin size,
both in position and velocity space. This is because the calculation is
discretized on a finite grid. Comparisons between different times in a
given simulation, between two different simulations, and between

simulations and data should be done with a fixed position and velocity
space grid scale to the extent possible.

An interesting result is that one needs to be careful to ensure the
bins in phase space have a large number of (actual) particles to obtain
accurate kinetic entropy values. Stirling’s approximation is good to
within 1% when the number of actual particles in a bin is 40 but has
15% error for 4 actual particles in a bin. Thus, computational and
observational studies alike should monitor the number of particles per
phase space bin. It is possible in either setting to have insufficient
counts to render the Stirling approximation valid. In such cases, the
combinatorial Boltzmann entropy S in Eq. (A1) is needed over the
continuous Boltzmann entropy S in Eqs. (2) and (A8). As discussed
in Sec. IVD, this is the case for some important plasma settings,
potentially including laboratory experiments, Earth’s ionosphere, and
laser plasmas.

We point out the importance of ensuring a stable regime of the
kinetic entropy with the number of numerical macroparticles per grid
cell PPG. For the base simulation with small time step and well-
resolved grid, we find we need at least 50 for PPG to have a stable
regime of the kinetic entropy. There have been a number of studies,
especially in the plasma astrophysics community, with smaller PPG
including as low as 1–4.87–89 We confirm their results that one can get
a reasonable reconnection rate in such systems, but for our code the
low PPG is insufficient to get a proper kinetic entropy. The study by
Ball et al.89 tested convergence of particle energy spectra with PPG of 4
and 16; it would be interesting to also check stability of the kinetic
entropy diagnostic. We suggest that using kinetic entropy to test for
stability for low PPG simulations is a useful technique which is poten-
tially important for studies of particle acceleration and plasma heating
in reconnection, turbulence, and shocks.

One challenge for applications is that the conservation of kinetic
entropy in ideal (collisionless) systems is only valid for closed, isolated
systems. This can easily be accomplished in idealized simulations, but
it is unlikely to be the case in naturally occurring systems. The expecta-
tion of this line of research is that the dissipation physics can be stud-
ied using idealized simulations, and then the insights obtained from
the simulations can be compared to real systems. This is already being
carried out with data from MMS and will be the subject of future
publications.

Another challenge is that typically the continuous Boltzmann
entropy density s ¼ �

Ð
d3vf ln f is mostly proportional to the num-

ber density, so a plot of kinetic entropy density by itself is unlikely to
reveal any new insights. We will demonstrate in a follow up study that
kinetic entropy can be useful for identifying non-Maxwellian distribu-
tions for electrons and ions and furthermore that the kinetic entropy
can be used to estimate the effective numerical collisionality of a
collisionless PIC code.

The initial implementation of the kinetic entropy diagnostic has
many ways to be improved, which we outline here. First, our treatment
is nonrelativistic, but the PIC code in use and many natural systems
relevant to study with this tool are relativistic.96 In addition, compari-
sons to implicit PIC simulations (which can employ much larger
spatial grids and time steps) and Vlasov simulations (which have no
PIC noise) would be interesting. More in depth studies into the depen-
dence of the kinetic entropy diagnostic on spatial grid scale and time
step would be useful, along with higher macroparticles per grid cell
PPG. Significant work is needed to choose velocity space bin sizes that
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do not introduce larger errors after the initial time. Our work used only
the linear shape function; it would be interesting to test other shape
functions. It would also be interesting to examine kinetic entropy in PIC
simulations with open boundary conditions. The present simulations
are 2D in position space and 3D in velocity space; simulations that are
3D in both position and velocity space should be carried out. Most
importantly, this work employs only collisionless PIC simulations,
which means that any dissipation (i.e., any increase in total kinetic
entropy) that occurs is through numerical effects. Thus, we are unable
to address physical mechanisms for dissipation in the present study.
Using a collisional PIC code would allow for an investigation of the
physical mechanisms of dissipation with the kinetic entropy diagnostic.

There are also numerous physics topics that are important for
future work. Future work should also address parametric studies of
kinetic entropy in magnetic reconnection, as well as in plasma turbu-
lence and collisionless shocks. Generalizations to other forms of
entropy, such as the Tsallis entropy which describes long-range inter-
actions and contains memory effects,97 should also be undertaken.
Whether chaotic behavior is sufficient to produce an entropy increase
should also be the subject of future work. It is important to see if
numerical kinetic entropy production can impact other physical
processes like particle acceleration and heating.
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APPENDIX A: THEORY OF KINETIC ENTROPY

In this section, we discuss the theoretical background of kinetic
entropy and its decomposition into position space entropy and
velocity space entropy.

1. Background on kinetic entropy

For a closed system (which in Nature could be thermally insu-
lated, but in a simulation can also be periodic), the form of kinetic
entropy S in a kinetic framework is32,79

SðtÞ ¼ kB lnXðtÞ; (A1)

where kB is Boltzmann’s constant and X(t) is the number of micro-
states of the system that produce the system’s macrostate at a time t.
In what follows, we suppress the time dependence to simplify the
notation. Each individual plasma species has its own associated kinetic

entropy, so there is an implicit subscript e or i for electrons or ions,
respectively, that is suppressed for clarity when possible. Following the
nomenclature in Frigg and Werndl,98 we refer to the kinetic entropy
in this form as the combinatorial Boltzmann entropy. This is one form
of kinetic entropy we implement in our PIC code.

To elucidate the meaning of kinetic entropy in this form, con-
sider a plasma with a fixed number of charged particles N for each
species. We treat classical, nonrelativistic systems (even though the
PIC code we use is fully relativistic).

For a three-dimensional (3D) system, phase space is 6D with
each particle described by its position and velocity ð~r ;~vÞ. To calcu-
late kinetic entropy, phase space is discretized into domains we call
bins. Figure 7 shows the discretization of an analogous 1D system.
Define Njk as the number of particles in the phase space bin span-
ning positions~r j to~r j þ D~r and velocities~vk to~vk þ D~v at a given
time t, where the components of D~r and D~v describe the extent of
the bin in each direction in phase space. At this point, we nominally
take these bins as finite in size (i.e., not infinitesimal) with an eye to
calculating kinetic entropy in PIC simulations. The volumes of the
bins in position and velocity space are D3r and D3v, respectively. In
a 1D system, subscripts j and k signify the bin in position space and
velocity space, respectively. In 3D, we continue to use j and k as
shorthand to identify the bin, even though we actually need to
specify each component of the position and velocity to identify a
bin. Thus, we think of j to mean jx, jy, jz for the x, y, z directions in
position space and k to mean kx, ky, kz for the vx, vy, vz directions in
velocity space. By definition,

N ¼
X
j;k

Njk: (A2)

A given macrostate is defined by the collection of all the Njk, which via
integration yields all the fluid quantities of the system. A microstate is
a possible way to choose the particles in the system to produce a given
macrostate, treating individual particles classically as distinguishable.

Using this construct, the number X of possible microstates for
a given macrostate is calculated using combinatorics;33 it is the
number of permutations that produce the macrostate with Njk

particles in the jkth cell by swapping individual distinguishable
particles between any of the bins, i.e.,

FIG. 7. Sketch of phase space (x, v) for a 1D system, discretized into a grid. The
number of particles in the bin spanning position xj to xj þ Dx and velocity vk to vk
þ Dv is Njk. This can be suitably extended to higher dimensional systems.
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X ¼ N!Q
j;k Njk!

: (A3)

Inserting this expression into Eq. (A1) and simplifying gives the
combinatorial Boltzmann entropy S in terms of Njk

S ¼ kB lnN!�
X
j;k

lnNjk!
� �

: (A4)

The first term is a constant assuming the total number of particles
N in the closed system is fixed. Since only changes in entropy are
physically important, we can drop the first term if desired
(though we retain it in the calculation of the combinatorial
Boltzmann entropy in our PIC simulations). Note, however, that
whether the first term is retained or not, quantities like percent-
age changes in entropy should be calculated solely relative to the
second term.

It is common to approximate Eq. (A4) using Stirling’s approxi-
mation lnNjk! � Njk lnNjk � Njk, which is valid when Njk� 1, as is
typically the case but may have exceptions. A short calculation
using Eq. (A2) yields

S ¼ kB N lnN �
X
j;k

Njk lnNjk

� �
; (A5)

where we write the approximate entropy as S instead of S. For use
in a kinetic description of a fluid or plasma, one writes the kinetic
entropy in terms of the distribution function f ð~r ;~vÞ. The distribu-
tion function at position~r j and velocity~vk is approximated as

f ð~r j;~vkÞ �
Njk

D3rD3v
: (A6)

Replacing Njk in Eq. (A5) with this expression and simplifying gives

S ¼ kB N ln
N

D3rD3v

� �
�
X
j;k

ðD3rD3vÞf ð~r j;~vkÞ ln f ð~r j;~vkÞ
� �" #

:

(A7)

As in Eq. (A4), the first term is a constant (for a fixed phase space
bin size) and can be discarded. In the limit in which D~r and D~v are
small, the second term yields the commonly used form of the
kinetic entropy

S ¼ �kB
ð
d3rd3vf ð~r ;~vÞ ln f ð~r ;~vÞ½ �; (A8)

where d3r and d3v are the infinitesimal spatial and velocity space
volumes. Following the nomenclature of Frigg and Werndl,98 we
refer to Eq. (A8) as the continuous Boltzmann entropy to distin-
guish it from the combinatorial Boltzmann entropy S. This is the
second form of kinetic entropy we implement in our PIC code.
Note that in dropping the first term of Eq. (A7), there is an issue
with the units of S in that the second term is no longer formally
dimensionless. Therefore, care is necessary when the continuous
Boltzmann entropy is desired in proper units. We discuss this in
more detail in Appendix B 4.

We note in passing that one can alternately normalize f to be a
probability density rather than a phase space density. In this con-
vention, the entropy would be related to the Shannon entropy and

information theory.99,100 We do not employ this convention here
with an eye to experiments and observations that directly measure
distribution functions.

The continuous Boltzmann entropy density, i.e., the continu-
ous Boltzmann entropy per unit volume, is denoted by sð~rÞ and
given by

sð~rÞ ¼ �kB
ð
d3vf ð~r ;~vÞ ln f ð~r ;~vÞ½ �: (A9)

We point out that the continuous Boltzmann entropy density sMð~rÞ
for a 3D drifting Maxwellian distribution in local thermodynamic
equilibrium (LTE) for a species of mass m, number density nð~rÞ,
bulk flow velocity ~uð~rÞ, and temperature Tð~rÞ, with f ð~r ;~vÞ ¼ fM
¼ nð~rÞ½m=2pkBTð~rÞ�3=2e�m½~v�~uð~r Þ�

2=2kBTð~r Þ, is exactly solvable with

sMð~rÞ ¼
3
2
kBnð~rÞ 1þ ln

2pkBTð~rÞ
mn2=3ð~rÞ

 !" #
: (A10)

This result shows the fluid entropy per particle s/n is related to p/qc,
where p ¼ nkBT is the (scalar) pressure, q ¼ mn is the mass density,
and c ¼ 5/3 is the ratio of specific heats. In an adiabatic process,
conservation of s/n is synonymous with conservation of p/qc, which
is typically used in fluid models. Equation (A10) is useful for vali-
dating the implementation of the kinetic entropy diagnostic into
kinetic codes.

2. Decomposition of kinetic entropy into position and
velocity space entropies

Boltzmann’s kinetic entropy is defined in terms of permuta-
tions of particles with any position and velocity in phase space. It is
tempting to interpret the kinetic entropy density in Eq. (A9) as the
entropy purely associated with permuting particles in velocity space,
but this is only correct if the plasma density is uniform. If the
density is nonuniform (i.e., n is a function of~r), it has been shown
that the total kinetic entropy can be decomposed into a sum of a
position space entropy and a velocity space entropy,80,81 as we now
review.

By adding and subtracting a common term in Eq. (A4),
kB
P

j lnNj!, where Nj ¼
P

k Njk is the total number of particles in
spatial cell j, i.e., with any velocity, the combinatorial Boltzmann
entropy S can be written as

S ¼ kB lnN!�
X
j

lnNj!
� �

þ kB
X
j

lnNj!�
X
k

lnNjk!
� �

: (A11)

The first two terms have the same form as Eq. (A4), except that the
second term has Nj! instead of Njk!, so they are defined as the posi-
tion space kinetic entropy,

Sposition ¼ kB lnN!�
X
j

lnNj!
� �

: (A12)

Similarly, the last two terms in Eq. (A11) have the same form as Eq.
(A4) with N replaced by Nj and the summation being only over veloc-
ity space, so they are defined as the velocity space kinetic entropy
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Svelocity ¼
X
j

kB lnNj!�
X
k

lnNjk!
� �

: (A13)

Consequently, Eq. (A11) can be written as

S ¼ Sposition þ Svelocity; (A14)

so the combinatorial Boltzmann entropy is decomposed into a sum
of position space kinetic entropy and velocity space kinetic entropy.

Note that there is an asymmetry between the treatment of posi-
tion and velocity space in this definition of the position space entropy
and velocity space entropy. The number of microstates per macrostate
is calculated in velocity space for each spatial cell to obtain velocity
space entropy, while the position space entropy is obtained by sum-
ming over velocity space first. Alternatively, one could interchange the
treatment of position and velocity space in this calculation. Therefore,
the decomposition used here is not unique. However, the decomposi-
tion employed here and elsewhere gives meaningful information about
local velocity space entropy changes that are indicative of heating or
dissipation, which makes it a preferred decomposition.

As in Appendix A 1, one can readily derive expressions for the
position and velocity space kinetic entropies in terms of the distri-
bution function and analogous expressions in terms of the plasma
density n; using Stirling’s approximation assuming there are a large
number of particles, one obtains the discrete forms of the continu-
ous Boltzmann position and velocity space kinetic entropies as

Sposition ¼ kB N ln
N

D3r

� �
�
X
j

ðD3rÞnð~r jÞ ln nð~r jÞ
" #

; (A15)

Svelocity �
X
j

ðD3rÞsvelocityð~r jÞ; (A16)

svelocityð~r jÞ ¼ kB nð~r jÞ ln
nð~r jÞ
D3v

� �
�
X
k

ðD3vÞf ð~r j;~vkÞ ln f ð~r j;~vkÞ
" #

;

(A17)

where nð~r jÞ ¼ Nj=D
3r is the number density at spatial cell j.

Expressions in terms of continuous variables come from taking the
limit of small bin size gives

Sposition ¼ kB N ln
N

D3r

� �
�
ð
d3rnð~rÞ ln nð~rÞ

� �
; (A18)

Svelocity �
ð
d3rsvelocityð~rÞ; (A19)

svelocityð~rÞ ¼ kB nð~rÞ ln nð~rÞ
D3v

� �
�
ð
d3vf ð~r ;~vÞ ln f ð~r ;~vÞ

� �
: (A20)

Note, the second term in svelocityð~rÞ is merely sð~rÞ from Eq.
(A9), so the two differ by the first term. The key point is that the
kinetic entropy density �kB

Ð
d3vf ln f is not the velocity space

entropy because of this extra term. Only in the limit in which nð~rÞ
is uniform are the two effectively the same.

The physical meaning of the position and velocity space entro-
pies are given by analogies with the combinatorial Boltzmann
entropy S. The position space entropy describes the entropy arising
from permutations of particles in position space without regard to
their velocity. For example, there is only one way to have all the
particles in a single bin in position space; X ¼ 1 for that system and

the position space entropy is zero. In contrast, a uniform density
has the largest number of microstates that produce that macrostate,
so it is the configuration with the largest position space entropy.
Therefore, compressing a plasma increases the local density, so is
associated with a local decrease in position space entropy.

The velocity space entropy has a similar interpretation—it is
the entropy associated with the permutation of particles in velocity
space at a fixed cell in phase space, then summed over all spatial
bins. As with the position space entropy, more distributed particles
in velocity space are associated with higher velocity space entropy,
while sharper (colder) distributions have lower velocity space entro-
pies. Increases in density and temperature both lead to an increase
in velocity space entropy, as is seen explicitly for a Maxwellian dis-
tribution in Eq. (A10). Note, for an adiabatic process for a system
in local thermodynamic equilibrium, the total entropy is conserved.
However, the position and velocity space entropies can change,
with kinetic entropy converted between them. During adiabatic
compression, for example, the position space entropy decreases as
described above. This decrease is perfectly balanced by adiabatic
heating which increases the velocity space entropy. We find the
decomposition into position and velocity space entropies provides
useful insights in the analysis of the PIC simulations.

APPENDIX B: IMPLEMENTATION OF KINETIC
ENTROPY DIAGNOSTIC IN PIC SIMULATIONS

In this section, we provide a detailed summary of how we
implement the kinetic entropy diagnostic into our PIC code p3d,82

although the approach should be applicable to any explicit PIC
code. We emphasize that we use periodic boundary conditions so
that the system is closed and one can unambiguously determine if
there are global changes in kinetic entropy (as opposed to open
systems where the kinetic entropy can change via dynamics at the
boundary). In what follows, we break down the procedure into steps
and discuss each in turn.

1. Macroparticles vs actual particles

As discussed in Appendix A 1, calculating the combinatorial S
or continuous S Boltzmann entropies requires a knowledge of the
number of particles in each cell in phase space. In a PIC simulation,
the “particles” are actually macroparticles, each representing a
chunk of phase space containing a large number of actual particles.
Therefore, there is a difference between the number of particles and
number of macroparticles in each cell. As we show here, the relative
structure of the continuous Boltzmann entropy S is not sensitive to
this difference. However, when converting S from a PIC simulation
into real units, the results are sensitive to this difference. Moreover,
the combinatorial Boltzmann entropy S is sensitive to the number
of actual particles represented by each macroparticle.

Here, we discuss how to relate the number of macroparticles
to the number of actual particles. We define a constant a as the
number of actual particles per macroparticle. The approach to esti-
mate a is to find the number of actual particles, say, electrons, that
would be in a given grid cell in the simulation. For a system with a
known number density n, the number of electrons Ncell in a spatial
volume D3r corresponding to a grid cell in PIC is
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Ncell � nD3r: (B1)

A typical grid size for an explicit PIC simulation is close to the elec-
tron Debye length kDe ¼ (e0kBTe/nee

2)1=2. Thus, Ncell is on a similar
scale as the plasma parameter nk3De. For reference, representative
values for the plasma parameter in various settings are provided in
Table I, though of course these are merely representative and may
differ for particular applications.

To get a comparable number for the PIC code in order to find a,
we note that many PIC codes, including the one in use here, allow for
macroparticles to be assigned a different weight W, which improves
the statistics in systems with nonuniform initial densities. This must
be accounted for in the estimation of Ncell. We now estimate Ncell

using the initial conditions of the simulations carried out for the pre-
sent study. At t¼ 0 in our simulations, W is same for all macropar-
ticles in each grid cell and is proportional to the local density. Thus,
PPG � W represents the effective number of macroparticles per grid
cell, so at t¼ 0 the number of actual particles in a cell is

Ncell ¼ PPG�W � a: (B2)

Equating the two expressions for Ncell from Eqs. (B1) and (B2) gives

a ¼ nD3r
PPG�W

: (B3)

In simulations for whichW is not a constant for all particles in each
cell, a generalization of this approach is necessary.

It is important to note when and how including a is necessary
in calculating kinetic entropy. Define N jk as the number of
weighted macroparticles in the jkth bin in phase space; then

Njk ¼ aN jk: (B4)

The value for N jk is what one gets from the code when counting
weighted macroparticles, but does not take into account the number of
actual particles per macroparticle. Physically, because the limited num-
ber of macroparticles in a PIC simulation implies that there is a small
number of macroparticles per phase space bin, the number of permuta-
tions of the macroparticles is much smaller than the number of permu-
tations of actual particles. Therefore, if one uses N jk instead of Njk to
calculate Eq. (A4), the result is much smaller than that of actual system.
More importantly, the Stirling approximation and thus the continuous
Boltzmann entropy S definition would be invalid since N jk is small.
The importance of including a can be seen analytically, as well. Writing
Eq. (A4) in terms of N jk gives S ¼ kB½ln ðaNÞ!�

P
j;k ln ðaN jkÞ!�,

which is not equal to akB½lnN !�
P

j;k lnN jk!�. Thus, the value for a
must be included at calculation time to get the proper value of the com-
binatorial Boltzmann entropy S.

In contrast, the kinetic entropy (i.e., after using the Stirling
approximation) is simply linear in a. Using N ¼ aN and Njk ¼ aN jk

in Eq. (A5) gives

S ¼ kB aN ln ðaNÞ �
X
j;k

aN jk ln ðaN jkÞ
� �

: (B5)

Carrying out simple manipulations gives

S ¼ akB N lnN �
X
j;k

N jk lnN jk

� �
: (B6)

Thus, one can simply calculate the continuous Boltzmann
entropy using macroparticles in the simulation, and then scale the
result by a to get a value for S. The same result holds for the forms
in terms of the distribution function f [i.e., Eq. (A8) and (A9)]. In
other words, if comparing f or S between a PIC simulation and
observations or experiments and an absolute comparison is desired,
one must multiply the raw f and S from the simulation by a to con-
vert it to a physical result.

2. Binning macroparticles in phase space

In order to obtain the distribution function, one has to discre-
tize phase space (with bins from~r j;~vk to~r j þ D~r ;~vk þ D~v) and cal-
culate the contribution of each macroparticle to every phase space
bin. There are numerous approaches to representing the number
density of a macroparticle in a PIC code, referred to as its shape.83

The approach used in p3d, and therefore applied here, is a linear
shaping function that assumes the charge density from each macro-
particle drops linearly from its maximum to zero a distance one
spatial grid cell away in each direction. Therefore, in any PIC simu-
lation without a d-function shaping function, a macroparticle con-
tributes to the density in each of the surrounding cells. To calculate
kinetic entropy, we use the same shape function for each particle in
velocity space (i.e., linear). Therefore, the number of macroparticles
in a phase space bin at any given time is typically not an integer.
We suggest that the implementation of the kinetic entropy calcula-
tion should employ the same particle shape as what is employed in
the code in use, but leave further investigation to future work.

Here is the procedure we use for determining the number of
macroparticles in each phase space bin

• Without using the kinetic entropy diagnostic, optimize the numerical
parameters on a test simulation to ensure proper spatial and tempo-
ral resolution. Using the output from this simulation, find the maxi-
mum speed vmax among all macroparticles for all times, which
should be	c in the nonrelativistic limit. Then, the range of velocity
space to be discretized is restricted to [–vmax, vmax]. We use the same
velocity range for each velocity component and for all time. (One
could choose vmax ¼ c without doing a test simulation first, but for
nonrelativistic systems one would have many phase space cells with
no particles, which leads to wasted memory and longer computa-
tional times for fixed velocity space bin size.)

• Discretize velocity space by defining a velocity bin size Dv, which we
choose to be the same in each direction in velocity space. The veloc-
ity space bin size should be small enough to resolve typical velocity
distribution functions, but large enough to preserve reasonably good
statistics without many bins lacking particles, which leads to longer
computational times. If the velocity distributions in a system have
known theoretical kinetic entropy values, a good way to determine
Dv is to compare the results using different Dv with the predicted val-
ues, as we discuss further in Sec. IV F. We find that using a velocity
space bin size comparable to the thermal speed is a good choice for
the parameters of our simulation.
Since Dv determines the constant terms in Eqs. (A7), (A17) and
(A20), an absolute comparison of kinetic entropies of species with
different Dv would not be meaningful. Instead, only relative changes
to kinetic entropy should be used in such a case. Therefore, for this
initial study, we choose parameters so that the ion and electron ther-
mal speeds are comparable, so we can use the same Dv for both elec-
trons and ions and be able to make direct comparisons. For systems
for which vth,e and vth,i are different, one should use different bin
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sizes for each species. It is important to note that once the velocity
space bin size for each species is set, it should be held fixed for the
duration of the simulation and should be the same size for all grid
cells. These constraints are necessary to be able to compare kinetic
entropies at different times and at different locations.

• Choose a spatial bin size Dx. In principle, this need not be the same
as the grid scale Dx, but this is the most logical choice and what we
employ here.

• Cycle over every macroparticle and find the number density contribu-
tion to each spatial bin using the particle shape in the code, and incre-
ment its contribution to the number of macroparticles in the
appropriate phase space bin based on the three components of the
macroparticle’s velocity. The end result after counting all macropar-
ticle contributions to every phase space bin is the total number of
macroparticles in every binN jk. Recall, this typically is not an integer.

• If one wants to calculate the combinatorial Boltzmann entropy S,
then multiply N jk in each bin by a to get Njk. As discussed in
Appendix B 1, multiplying by a at calculation time is not necessary
for the continuous Boltzmann entropy S, but it would lead to an
incorrect value of the combinatorial Boltzmann entropy S.

Spatial cells at the boundary of a computational domain need
to get information from other processors for macroparticles in
nearby cells that contribute to Njk. This leads to an increase in run
time; for the present study, the base simulation takes 13% more
time than the same simulation without calculating the kinetic
entropy. We believe this performance could be improved, but leave
that for future work.

3. Calculating distribution functions and kinetic
entropies

The distribution function f ð~r j;~vkÞ at bin~r j and~vk is immedi-
ately approximated from Njk using Eq. (A6). Once f is obtained for
all velocity space bins in all spatial cells, the forms of continuous
Boltzmann entropy are readily calculated, such as Eq. (A7) for S,
the discretized version of Eq. (A9) for sð~r jÞ ¼ �kB

P
kðD

3vÞ
f ð~r j;~vkÞ ln ½f ð~r j;~vkÞ�, and Eq. (A17) for svelocity. Note Sposition in Eq.
(A15) does not require the distribution function.

To find the combinatorial Boltzmann entropy S, use Eq. (A4).
Since the Njk are not integers, the factorial in Eq. (A4) needs to be
reinterpreted using the C function for which C(Nþ 1) ¼ N! for
integer N104 as

S ¼ kB ln CðN þ 1Þ½ � �
X
j;k

ln CðNjk þ 1Þ
� �� �

: (B7)

Note that Njk need not be large in every cell, so the noninteger part
should not be ignored. Fortuitously, many programming languages
contain an intrinsic function for ln[C(x)], so the calculation is effi-
cient and there are no issues with performing this calculation for
large argument [while calculating C(Nþ 1) separately would lead to
numerical problems for large arguments]. A similar calculation can
be used to get the combinatorial Boltzmann entropy for position
and velocity space from Eqs. (A12) and (A13), respectively.

4. Merits of combinatorial vs continuous Boltzmann
entropy

We close this section with a discussion of the relative merits
between the combinatorial S and continuous S Boltzmann kinetic
entropies. Three advantages of the combinatorial Boltzmann

entropy are that it is the most accurate form of kinetic entropy (it
does not rely on assuming Njk� 1), it is automatically in appropri-
ate units, and the intrinsic lngamma function in many coding lan-
guages makes the calculations efficient and more importantly can
be calculated for large argument, whereas a direct calculation taking
the factorial of a large number is not possible. A drawback of the
combinatorial Boltzmann entropy is that the value of a, describing
the number of actual particles per macroparticle, must be included
from the beginning in the calculation. Thus, if one wants to see how
the combinatorial Boltzmann entropy changes between two differ-
ent values of a, one must redo the calculation of kinetic entropy
with a different a value.

The continuous Boltzmann entropy S has the advantage that
one does not need to specify a at run-time. Therefore, finding the
kinetic entropy for the same simulation but with a different a is
trivial and does not require redoing the calculation. A disadvantage
of the continuous Boltzmann entropy is that one has to make sure
that a is large enough that the errors in Stirling’s approximation are
small, which is discussed further in Sec. IVD. Another disadvantage
is that the results are not in appropriate units because the argument
of the natural logarithm in S ¼ �kB

Ð
d3rd3vf ln f from Eq. (A8) is

not dimensionless. This comes about because a term is dropped
from Eq. (A7), and the dropped term contains information about
the units inside the natural log. So, to convert the simulated contin-
uous Boltzmann entropy to real units for comparison to observa-
tions or experiments, one must either (a) include the dropped term
or (b) choose a reference value of continuous Boltzmann entropy at
a particular location and time and present all values as a change in
kinetic entropy relative to that reference. This enforces that the
quantities have the appropriate units.
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