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We investigate kinetic entropy-based measures of the non-Maxwellianity of distribution
functions in plasmas, i.e. entropy-based measures of the departure of a local distribution
function from an associated Maxwellian distribution function with the same density,
bulk flow and temperature as the local distribution. First, we consider a form previously
employed by Kaufmann & Paterson (J. Geophys. Res., vol. 114, 2009, A00D04), assessing
its properties and deriving equivalent forms. To provide a quantitative understanding of it,
we derive analytical expressions for three common non-Maxwellian plasma distribution
functions. We show that there are undesirable features of this non-Maxwellianity measure
including that it can diverge in various physical limits and elucidate the reason for the
divergence. We then introduce a new kinetic entropy-based non-Maxwellianity measure
based on the velocity-space kinetic entropy density, which has a meaningful physical
interpretation and does not diverge. We use collisionless particle-in-cell simulations of
two-dimensional anti-parallel magnetic reconnection to assess the kinetic entropy-based
non-Maxwellianity measures. We show that regions of non-zero non-Maxwellianity are
linked to kinetic processes occurring during magnetic reconnection. We also show the
simulated non-Maxwellianity agrees reasonably well with predictions for distributions
resembling those calculated analytically. These results can be important for applications,
as non-Maxwellianity can be used to identify regions of kinetic-scale physics or increased
dissipation in plasmas.
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2 H. Liang and others

1. Introduction
The conversion and dissipation of energy at small scales in magnetized plasmas is a

crucial aspect of many phenomena of importance to heliospheric and planetary science.
For example, heating of the solar corona to temperatures far greater than its surface is
related to wave heating and turbulence (e.g. Heyvaerts & Priest 1983; Matthaeus et al.
1999a; Nakariakov et al. 1999) and magnetic reconnection underlying nanoflares (e.g.
Klimchuk 2006; Zank et al. 2018). Local heating needs to occur in the turbulent solar
wind to explain observed temperature profiles (e.g. Matthaeus et al. 1999b; Gosling
2007; Adhikari et al. 2017, 2020). Dynamics near and within Earth’s bow shock plays
an important role in setting the conditions of the plasma abutting Earth’s magnetosphere
(e.g. Feldman et al. 1982; Burgess, Möbius & Scholer 2012). Magnetic reconnection at
both the dayside and the magnetotail is a crucial aspect of solar wind-magnetospheric
coupling at Earth (e.g. Levy, Petschek & Siscoe 1964) and Mercury (e.g. Slavin et al.
2009) and dynamics in the magnetospheres of the outer planets (e.g. Vasyliunas 1983;
McAndrews et al. 2008; Fuselier et al. 2020).

In collisional magnetized plasmas, the dissipation of energy at boundary layers in
shocks, reconnecting current sheets and intermittent current sheets in a turbulent medium
are relatively well understood. However, in many settings of interest for heliospheric and
planetary sciences, the plasma is weakly collisional, so collisions are too weak to influence
the boundary layers. In such settings, the boundary layers are typically set by gyroscales
of the constituent plasma species. At these scales, the dynamics is dominated by kinetic
physics, necessitating a kinetic description of the plasma.

Kinetic-scale dynamics historically was difficult to directly measure because it occurs
on relatively short spatial and temporal scales. However, the measurement of kinetic
features, including velocity distribution functions (VDFs) of the constituent plasma, is
now achievable in kinetic simulations and in situ satellite observations. In particular, the
Magnetospheric Multiscale (MMS) mission (Burch et al. 2016a) can resolve both electron
and ion kinetic scales spatially and temporally, providing an unprecedented and exquisite
opportunity to learn about the kinetic physics underlying reconnection (e.g. Burch et al.
2016b; Torbert et al. 2018), turbulence (e.g. Bandyopadhyay et al. 2018) and collisionless
shocks (e.g. Gingell et al. 2017; Goodrich et al. 2018).

There are many theoretical and analytical approaches to studying kinetic-scale energy
conversion and dissipation. In this study, we focus on one underutilized quantity: kinetic
entropy, i.e. entropy defined fully within kinetic theory (e.g. Liang et al. (2019) and
references therein). The kinetic entropy is often written as being proportional to the phase
space integral of f ln f , where f is the velocity distribution function of the plasma species.
This is in contrast to the fluid entropy, related to p/ργ where p is the pressure, ρ is the
mass density and γ is the ratio of specific heats, which is only valid for a plasma in local
thermodynamic equilibrium (for which f is a Maxwellian everywhere in space). Entropy
has both desirable and undesirable properties. Its main desirable property is that it is
uniquely related to irreversible dissipation in collisional systems (Boltzmann 1877), which
potentially makes it a key quantity to identify regions where dissipation may be happening
in systems of interest. Its main drawback is that the relation of entropy to dissipation is true
for closed systems, but it is not clear that physical systems of interest can be construed as
closed.

Consequently, while there have been numerous studies of the fluid form of entropy
in heliospheric systems (see Liang et al. (2019) for references), there are only a few
studies investigating kinetic entropy. Observationally, there have been attempts to measure
the kinetic entropy or use entropic measures with satellite observations of, for example,
Earth’s magnetotail plasma sheet (Kaufmann & Paterson 2009, 2011), Earth’s bow shock
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(Parks et al. 2012), the near-Earth solar wind (Weck et al. 2015; Olivier, Engelbrecht &
Strauss 2019) and auroral currents (Osmane, Dimmock & Pulkkinen 2019). It has also been
used in a number of theoretical and numerical studies (Montgomery & Nielson 1970; Hsu,
Joyce & Montgomery 1974; Krommes & Hu 1994; Leubner 2004; Watanabe & Sugama
2004; Howes et al. 2006; Sarazin et al. 2009; Schekochihin et al. 2009; Tatsuno et al.
2009; Nariyuki 2011; Nakata, Watanabe & Sugama 2012; Loureiro, Schekochihin & Zocco
2013; TenBarge & Howes 2013; Numata & Loureiro 2015; Pezzi, Valentini & Veltri 2016;
Grošelj et al. 2017; Hesse et al. 2017; Pezzi 2017; Cerri, Kunz & Califano 2018; Eyink
2018; Gary et al. 2018; Kawazura, Barnes & Schekochihin 2019; Liang et al. 2019; Pezzi
et al. 2019; Du et al. 2020).

We focus on the work by Kaufmann & Paterson (2009) in the present study. In their
observational study of Earth’s plasma sheet, they used the kinetic entropy per particle as
a diagnostic in their observations. One aspect of their study was to compare the kinetic
entropy per particle with its fluid counterpart. The difference between the two at a given
location and time gives a measure of how ‘non-Maxwellian’ a plasma is, and therefore
gives a measure of the importance of non-equilibrium kinetic effects. This measure of
non-Maxwellianity is not unique. Other non-Maxwellianity measures include the so-called
ε parameter (Greco et al. 2012) and the so-called enstrophy (Servidio et al. 2017).

Knowing and quantifying the non-Maxwellianity of a distribution function is
potentially of great utility since dissipation is typically associated with the emergence
of non-Maxwellian distribution functions and the collisional relaxation back towards
Maxwellianity (e.g. Vaivads et al. 2016; Valentini et al. 2016; Matthaeus et al. 2020).
However, we are not aware of theoretical and/or computational studies which have put the
entropy-based non-Maxwellianity measure on a firm footing. In other words, what does it
mean for a plasma to have a particular departure from the (equilibrium) fluid entropy?

In this study, we provide a theoretical investigation of what we call the Kaufmann
and Paterson non-Maxwellianity. We show that it has equivalent forms and provide a
physical interpretation of these forms. Then, we perform an analytical calculation of it
for three common closed-form non-Maxwellian distribution functions, namely two beams
separated in velocity space, a bi-Maxwellian, and the distribution studied by Egedal, Le &
Daughton (2013) and colleagues that appears near magnetic reconnection sites. We then
show that the Kaufmann and Paterson non-Maxwellianity has the undesirable property
that it can diverge, and provide the underlying reason for this. We then present a new
non-Maxwellianity measure that does not diverge in the same limits. The theoretical work
is then tested with data from particle-in-cell (PIC) simulations of magnetic reconnection.
Links between the appearance of a non-zero non-Maxwellianity and the kinetic effects
taking place during the reconnection process are made. Comparisons of the analytical
non-Maxwellianity expressions are made with representative distributions that naturally
arise in the simulations of reconnection, revealing good agreement.

This paper is organized as follows. In § 2, we review the definition of the Kaufmann
and Paterson non-Maxwellianity. In Section 3, we analyse the quantity in general, and
provides analytical expressions for three common distributions. Section 4 points out issues
with the existing measure, explains the cause, presents a new non-Maxwellianity measure
and shows it eliminates the issues. Section 5 describes the set-up of the PIC simulations.
The simulation results and comparisons to the theory are shown in § 6. Discussion
and conclusions are provided in § 7. A comparison of the non-Maxwellianity measures
discussed here with other quantities that have been used to identify kinetic-scale physics
in weakly collisional plasmas is outside the scope of the present study, but is carried out
in a companion study (Pezzi et al. in preparation).
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4 H. Liang and others

2. Kaufmann and Paterson kinetic entropy-based non-Maxwellianity
Here, we review the kinetic entropy-based measure developed by Kaufmann & Paterson

(2009) to measure the non-Maxwellianity of an arbitrary given distribution function
f (r, v, t) as a function of position r and velocity v at a fixed time t. (We henceforth suppress
the r and t dependence for simplicity.) First, one calculates the density n =

∫
d3vf (v),

bulk velocity u = (1/n)
∫

d3vvf (v) and effective temperature T = (m/3nkB)
∫

d3v(v −
u)2f (v), where kB is Boltzmann’s constant and m is the mass of a particle. The
Maxwellianized distribution fM(v) associated with f (v) is defined as

fM(v) = n
(

m
2πkBT

)3/2

exp(−m(v − u)2/2kBT). (2.1)

The local (continuous) kinetic entropy density s (e.g. (3) in Liang et al. 2019) of the full
distribution function f (v) is

s = −kB

∫
d3vf (v) ln f (v). (2.2)

The kinetic entropy density sM associated with the Maxwellianized distribution fM(v) is

sM = −kB

∫
d3vfM(v) ln fM(v). (2.3)

Equation (2.3) is analytically solvable using direct substitution of (2.1), giving

sM = 3
2

kBn
[

1 + ln
(

2πkBT
mn2/3

)]
. (2.4)

This form motivated Kaufmann & Paterson (2009) to define a non-Maxwellianity measure,
which we denote M̄KP, as

M̄KP = sM − s
(3/2)kBn

. (2.5)

They chose to normalize to (3/2)kBn = cvn, where cv = (3/2)kB is the specific heat per
particle at constant volume for an ideal gas, so that M̄KP is dimensionless. They note,
however, that the dimensions of s and sM individually are not well defined because they
include a natural logarithm of the dimensional quantity f (v). This is not an issue for
differences in entropy density, which can be written as having a natural logarithm of a
dimensionless quantity (see also appendix B4 of Liang et al. (2019)).

3. Theory of the Kaufmann and Paterson non-Maxwellianity
3.1. Basic properties of Kaufmann and Paterson non-Maxwellianity

Here, we gather some basic properties about the Kaufmann and Paterson
non-Maxwellianity measure M̄KP. First, obviously, if f (v) is Maxwellian, then fM(v) =
f (v) and M̄KP = 0. Second, it has long been known that fM(v) is the distribution with
the maximum kinetic entropy for a fixed number of particles and total energy (in the
absence of electromagnetic fields, net charge and net current) (e.g. Boltzmann 1877; Bellan
2008). Thus, sM is the maximum entropy density for a fixed number of particles and
energy. Therefore, if M̄KP = 0, then f (v) is Maxwellian, and one expects M̄KP to be strictly
non-negative. For these reasons, M̄KP is a good measure of non-Maxwellianity.
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Kinetic entropy-based measures of distribution function 5

It is potentially a useful measure because it is a local measure which can identify regions
with non-Maxwellian distributions. This is worthwhile to know because the rate of change
of the local entropy density s is (e.g. Eyink 2018)

∂s
∂t

+ ∇ · J = −kB

∫
d3vC[ f (v)][1 + ln f (v)], (3.1)

where J = −kB
∫

d3vvf (v) ln f (v) is the entropy density flux and C[ f (v)] is the
collision operator. The collision operator for a single species typically vanishes if f (v)
is Maxwellian, so the degree of non-Maxwellianity can be related to dissipation through
collisions (e.g. Liang et al. accepted). Caution is necessary, however, because there are
systems where dissipation occurs even if distributions are Maxwellian everywhere. One
example is if the constituent species have come to equilibrium with themselves, but are
at different temperatures than each other; there can be dissipation through interspecies
collisions even though each distribution is Maxwellian (e.g. Grošelj et al. 2017; Guo,
Sironi & Narayan 2017; Parashar, Matthaeus & Shay 2018; Arzamasskiy et al. 2019; Cerri,
Grošelj & Franci 2019; Kawazura et al. 2019; Parashar & Gary 2019; Rowan, Sironi &
Narayan 2019; Zhdankin et al. 2019). A second example is at an infinitely thin shock;
the non-Maxwellianity is zero everywhere in such a system, but there is dissipation and
entropy production at the discontinuity.

The quantity M̄KP is fluid-like, obtained from velocity space integrals of a function of
the local distribution function. Thus, it should be able to be calculated using satellite,
simulation, or laboratory experiment data not very different to calculating moments of the
distribution function such as density or temperature.

Another important property of M̄KP is that it is independent of density, as we now derive.
Dividing (2.2) by n, then adding and subtracting [ f (v)/n] ln n inside the integrand and
simplifying gives

s
n

= −kB

∫
d3v

f (v)

n
ln
(

f (v)

n

)
− kB ln n. (3.2)

Using this result to directly calculate M̄KP = (sM − s)/(3/2)kBn reveals that the kB ln n
term cancels because the densities associated with f (v) and fM(v) are the same, so

M̄KP = 2
3

[
−
∫

d3v

(
fM(v)

n

)
ln
(

fM(v)

n

)
+
∫

d3v

(
f (v)

n

)
ln
(

f (v)

n

)]
. (3.3)

This shows that if one uses the convention where the distribution function is a probability
density instead of a phase space density, i.e. f (v) → f (v)/n, then the result for M̄KP is
unchanged. It also shows that M̄KP has no explicit dependence on the plasma density n.

We note that M̄KP contains similar information to the non-Maxwellianity parameter ε
introduced by Greco et al. (2012) and the enstrophy non-Maxwellianity Ω (Servidio et al.
2017). In our notation, ε is

ε = 1
n

√∫
d3v[ f (v) − fM(v)]2, (3.4)

and Ω = n2ε2. The latter was simplified by expanding f (v) in a Hermite expansion,
which relates Ω to the Hermite spectrum of f (v). In the limit that the departure from
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6 H. Liang and others

a Maxwellian is small, we can write f (v) = fM(v) + δf (v). Doing an expansion of M̄KP to
second order in δf (v) gives

M̄KP # 1
3n

∫
d3v

[ f (v) − fM(v)]2

fM(v)
, (3.5)

as is well known in gyrokinetic theory (e.g. Howes et al. 2006; Grošelj et al. 2017;
Cerri et al. 2018; Kawazura et al. 2019). This is quadratic in δf (v), similar to ε and Ω .
Thus, one would expect ε, Ω and M̄KP to have similar structure in strongly collisional
systems where the deviation from Maxwellian distributions is small. When deviations
from Maxwellianity are large, the two measures likely are different. These measures are
compared with each other and other dissipation measures for weakly collisional systems
in a companion study (Pezzi et al. in preparation).

This section provides some insight into the properties of M̄KP, but it does not address
how to interpret what it means for the non-Maxwellianity to be a particular number. The
following sections introduce three examples where analytical values of M̄KP are calculated
for common non-Maxwellian distribution functions.

3.2. Kaufmann and Paterson non-Maxwellianity for two beams
We calculate M̄KP analytically for a two-population plasma that are each Maxwellian but
drift parallel or anti-parallel to each other, and we require that the relative velocity of the
beams is large enough that the overlap between the two populations in velocity space is
negligible. A condition for this is derived below. The distribution function fbeam(v) for such
a system is given by

fbeam(v) = n1

(
m

2πkBT1

)3/2

exp(−m(v − uz1ẑ)2/2kBT1)

+ n2

(
m

2πkBT2

)3/2

exp(−m(v − uz2ẑ)2/2kBT2), (3.6)

where n1 and n2 are the densities of the two beams, uz1 and uz2 are the bulk velocities of
the two beams, assumed parallel or anti-parallel, and T1 and T2 are the temperatures of the
two individual beams. By taking moments, it is straightforward to show that the density,
bulk flow and effective temperature are

n = n1 + n2, (3.7)

uz = n1uz1 + n2uz2

n1 + n2
, (3.8)

Tbeam = mn1n2

3kB(n1 + n2)2
(uz1 − uz2)

2 + n1T1 + n2T2

n1 + n2
. (3.9)

These bulk properties are valid independent of whether the two populations overlap in
velocity space. The kinetic entropy density, however, is not exactly solvable unless the
overlap between the two distributions is negligible, which occurs when the first term in
(3.9) dominates the second term. In that limit, the kinetic entropy density sbeam from (2.2)
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is just the sum of the kinetic entropies of the individual beams,

sbeam # 3
2

kB(n1 + n2) + 3
2

kB

[

n1 ln

(
2πkBT1

mn2/3
1

)

+ n2 ln

(
2πkBT2

mn2/3
2

)]

. (3.10)

Equations (2.4) and (2.5) give an associated non-Maxwellianity of

M̄KP,beam # ln

(
Tbeam/n2/3

(T1/n2/3
1 )n1/n(T2/n2/3

2 )n2/n

)

. (3.11)

As a special case, if the beams are identical plasmas (n1 = n2 and T1 = T2) and they are
counter-propagating (uz1 = −uz2), then

M̄KP,beam # ln
(

Tbeam

22/3T1

)
# ln

(
mu2

z1/3 + kBT1

22/3kBT1

)
. (3.12)

Letting u2
z1 = M2kBT1/m with M $ 1, where M is an effective Mach number of the

flow (leaving out a factor of the ratio of specific heats γ ), then the Kaufmann and Paterson
non-Maxwellianity for this distribution is M̄KP,beam # ln[(M2/3 + 1)/22/3].

3.3. Kaufmann and Paterson non-Maxwellianity for bi-Maxwellian distributions
A bi-Maxwellian distribution function fbiM(v) is defined as

fbiM(v) = n
(

m
2πkBT⊥

)(
m

2πkBT‖

)1/2

exp(−m(v − u)2
⊥/2kBT⊥) exp(−m(v − u)2

‖/2kBT‖),

(3.13)
where the ⊥ and ‖ subscripts allow for anisotropic velocities and temperatures, typically
relative to the direction of a magnetic field. Straightforward calculation of the associated
kinetic entropy density from (2.2) gives

sbiM = 3
2

kBn

[

1 + ln

(
2πkBT2/3

⊥ T1/3
‖

mn2/3

)]

, (3.14)

and (2.5) gives an associated non-Maxwellianity of

M̄KP,biM = ln

(
T

T2/3
⊥ T1/3

‖

)

= ln

[
2
3

(
T⊥

T‖

)1/3

+ 1
3

(
T‖

T⊥

)2/3
]

, (3.15)

where the second form eliminates the effective temperature using T = (2/3)T⊥ + (1/3)T‖.
A plot of M̄KP,biM as a function of T⊥/T‖ is given in black on a linear scale in figure 1.
This helps give perspective on values of the Kaufmann and Paterson non-Maxwellianity
measure for a bi-Maxwellian distribution function. In particular, M̄KP,bim = 0 for a
Maxwellian plasma (T⊥/T‖ = 1), as expected. For example values, M̄KP,biM # 0.17 for
T⊥/T‖ = 4 and M̄KP,biM # 0.23 for T⊥/T‖ = 1/4.

Interestingly, (3.15) reveals that M̄KP,biM diverges to infinity as T⊥/T‖ goes to either zero
or infinity. The red line in figure 1 uses a logarithmic horizontal scale over a broader range
of T⊥/T‖ to motivate this. The reason for the divergence is discussed in § 4.
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T⊥/T‖

M̄KP,biM

0 2 4 6 8 10
0.0

0.5

1.0

1.5

2.0
-2 -1 0 1 2 3

log10(T⊥/T‖)

FIGURE 1. Plot of the Kaufmann and Paterson non-Maxwellianity M̄KP,biM for a bi-Maxwellian
distribution function fbiM(v) as a function of the ratio of perpendicular to parallel temperature
T⊥/T‖. The black line uses a linear horizontal scale on the bottom axis, and the red line uses a
logarithmic horizontal scale on the top axis over a wider range of T⊥/T‖ to show that it diverges
for small and large T⊥/T‖.

3.4. Kaufmann and Paterson non-Maxwellianity for Egedal distributions
During magnetic reconnection, magnetic fields in the upstream region bend as they
approach the reconnection site. A magnetic field-aligned electric field accelerates
electrons into this region, leading to a population of electrons that gets trapped in the
mirror field (Egedal et al. 2013). The electron VDFs in these regions are elongated in
the direction parallel to the magnetic field, leading to a gyrotropic distribution. The
distribution is a double adiabatic and reversible solution to the electron drift kinetic
equation obtained in the limit of short electron transit/bounce time (Egedal et al. 2013).
Here, we call it an Egedal distribution fEg(v), and it is given by

fEg(v) =






n∞

(
2πkBT∞

m

)−3/2

exp(−mv2
⊥B∞/2kBT∞B) trapped

n∞

(
2πkBT∞

m

)−3/2

exp(−m(v2
⊥ + v2

‖)/2kBT∞) exp(eφ‖/kBT∞) passing
,

(3.16)
where n∞, T∞ and B∞ are the density, temperature and magnetic field strength far
upstream, B is the local magnetic field strength, φ‖ is the parallel acceleration potential,
and v⊥ and v‖ are the speeds perpendicular and parallel to the magnetic field. The
trapped/passing boundary is given by

1
2

m(v2
‖ + v2

⊥) − eφ‖ − 1
2

mv2
⊥

B
B∞ = 0. (3.17)

Calculating the local number density n =
∫

d3vfEg(v) for this distribution gives (Le et al.
2009)

n
n∞

= 2b

√
Φ

π
+ erfcx(

√
Φ) − (1 − b)3/2erfcx

(√
Φ

1 − b

)

, (3.18)

where erfcx(x) = ex2 erfc(x) = ex2 [1 − erf(x)] is the scaled complementary error function,
erfc(x) = (2/

√
π)
∫∞

x e−z2 dz, b = B/B∞, and Φ = eφ‖/kBT∞. Note, in the limit of Φ →
0 and b → 1, the trapped/passing boundary from (3.17) reduces to a point at v‖ = 0, and
the distribution function fEg(v) reduces to a Maxwellian, so the Maxwellian results should
be recovered. Since erfcx(0) = 1, we recover n = n∞ in this limit, as expected.
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Kinetic entropy-based measures of distribution function 9

The kinetic entropy density sEg for an Egedal distribution follows from a direct
application of (2.2). A lengthy calculation gives

sEg = 3
2

kBn
[

n∞G
n

+ ln
(

2πkBT∞

mn2/3
∞

)]
, (3.19)

where

G = 2b

√
Φ

π
+
(

1 − 2Φ

3

)
erfcx(

√
Φ) −

√
1 − b

(
1 − b − 2Φ

3

)
erfcx

(√
Φ

1 − b

)

.

(3.20)
As a check, in the Φ → 0, b → 1 limit, G → 1, so (3.19) reduces to (2.4), as expected. We
also note that, since erfcx(x) → 1/(x

√
π) asymptotically in the x → ∞ limit, sEg diverges

as Φ → ∞.
To calculate M̄KP,Eg for Egedal distributions from (2.5), one needs the effective

temperature TEg for Egedal distributions to get the entropy density of the
Maxwellianized distribution. The parallel temperature T‖,Eg = [m/(nkB)]

∫
d3v(v‖ − u‖)

2

f (v) and perpendicular temperature T⊥,Eg = [m/(2nkB)]
∫

d3v(v⊥ − u⊥)2f (v), following
lengthy calculations, are

T‖,Eg = n∞T∞

n

[

erfcx(
√

Φ) + 2b
(

2 − b + 2Φ

3

)√
Φ

π

− (1 − b)5/2 erfcx

(√
Φ

1 − b

)]

, (3.21)

T⊥,Eg = n∞T∞

n

{

erfcx(
√

Φ) + b(3b − 1)

√
Φ

π

+(1 − b)3/2
[

Φb
1 − b

−
(

3b
2

+ 1
)]

erfcx

(√
Φ

1 − b

)}

, (3.22)

TEg = 2
3

T⊥,Eg + 1
3

T‖,Eg. (3.23)

As a check, T‖,Eg, T⊥,Eg and TEg all go to T∞ in the Φ → 0, b → 1 limit, as expected.
Then, sM is calculated from (2.4) and using the result with (3.19) and (2.5), the closed-form
non-Maxwellianity M̄KP,Eg for Egedal distribution functions is

M̄KP,Eg = 1 − n∞G
n

+ ln
(

TEg/n2/3

T∞/n2/3
∞

)
. (3.24)

For reference, plots of kinetic entropy density sEg and Kaufmann and Paterson
non-Maxwellianity M̄KP,Eg for an Egedal distribution are in figure 2, using a density of
n/n∞ = 0.805 and T∞ = 0.08 B2

∞/4πkBn∞. Panels (a) and (d) are contour plots of sEg

and M̄KP,Eg, respectively, as a function of b and Φ. The former is normalized to kBn∞.
Panels (b) and (e) give cuts as a function of b at Φ = 2, 4, 6, 8 and 10. Panels (c)
and ( f ) give cuts as a function of Φ at b = 0.15, 0.30, 0.45, 0.60 and 0.75. The plots
show that the non-Maxwellianity increases as Φ increases, which makes sense physically
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10 H. Liang and others

(a) (b) (c)

(d) (e) ( f )

FIGURE 2. Kinetic entropy density sEg and Kaufmann and Paterson non-Maxwellianity M̄KP,Eg
for an Egedal distribution function from (3.19) and (3.23) assuming n/n∞ = 0.805 and T∞ =
0.08 B2

∞/4πkBn∞. Panel (a) and panel (d) are contour plots of sEg and M̄KP,Eg, respectively,
as a function of b = B/B∞ and Φ = eφ‖/kBT∞. Panel (b) and panel (e) are cuts of these as a
function of b for five representative values of Φ. Panel (c) and panel ( f ) are cuts of these as a
function of Φ for five representative values of b.

(a) (b) (c)

(d) (e) ( f )

FIGURE 3. Analogous to figure 2, except plotted as a function of n/n∞ and b = B/B∞ upon
inversion of (3.18). The shaded regions in panel (a) and panel (d) correspond to parameters for
which the inversion gives values of Φ below 0 or above 80, and are removed from the plot.

because this increases the temperature anisotropy leading to an increase in M̄KP, similar to
bi-Maxwellian distributions in the previous section.

Following Le et al. (2009), it is typically more useful to eliminate Φ in favour of
n/n∞ and b by numerically inverting (3.18). The result is then in terms of quantities more
easily found in observations and simulations. Plots analogous to figure 2 but as a function
of n/n∞ and b are in figure 3. Panels (a) and (d) are contour plots of sEg and M̄KP,Eg,
respectively. Panels (b) and (e) give cuts as a function of b for n/n∞ = 0.6, 0.8, 1.0,
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Kinetic entropy-based measures of distribution function 11

1.2 and 1.4. Panels (c) and ( f ) give cuts as a function of n/n∞ for fixed b; only b = 0.3
is shown in panel (c) since the dependence on b is weak, while panel ( f ) shows cuts for
b = 0.15, 0.30, 0.45, 0.60 and 0.75. Note that numerically inverting (3.18) gives negative
Φ or extremely high Φ (≥ 80) for some values of n/n∞ and b. Such values are eliminated
from the plots and are denoted by shaded grey regions in figure 3(a,d).

The past three subsections provide exact solutions for the non-Maxwellianity measure
of analytic forms of three common non-Maxwellian VDFs. These are potentially useful
to quantify the non-Maxwellianity of self-consistently generated distribution functions
in physical systems, such as those undergoing reconnection, turbulence, or shocks
in magnetized plasmas. In self-consistent plasmas, the distributions undoubtedly are
not exactly given by the expressions analysed here, but should provide a reasonable
approximation in some settings. A test of this will be carried out for the reconnection
simulations discussed in §§ 5 and 6.4.

4. A new non-Maxwellianity measure
4.1. Why the Kaufmann and Paterson non-Maxwellianity diverges

Desirable properties of the Kaufmann and Paterson non-Maxwellianity measure are that it
is dimensionless, non-negative and vanishes when the distribution function is Maxwellian.
An undesirable property of M̄KP is that there is no upper bound, as shown in the previous
section. This makes it difficult to interpret what it means for the non-Maxwellianity to
have a particular value. It would be preferable to have a normalized non-Maxwellianity
measure that remains finite to facilitate its interpretation.

To develop such a measure, we must elucidate the cause of the divergence of M̄KP. We
see that it is not an issue with the definition of the non-Maxwellianity itself, but rather a
fundamental issue with the kinetic theory description. Indeed, the entropy density sM of a
Maxwellian, from (2.4), diverges for either T → 0 or T → ∞.

The problem arises as soon as one approximates the entropy density by the velocity
space integral in (2.2) instead of the combinatorial Boltzmann entropy related to the
logarithm of the number of different microstates to produce a given macrostate. The cause
of the problem is the coarse graining that is necessary to formulate the kinetic theory
description. As reviewed, for example, in Liang et al. (2019), in order to define kinetic
entropy, or even a distribution function itself, one needs to break phase space into cells
of hypervolume ∆3r∆3v, where ∆3r is the spatial volume and ∆3v is the velocity space
volume. The size of these cells is restricted – they cannot be too large where they do not
resolve relevant structures in phase space, and they cannot be too small or the number
of particles becomes too small for a statistical description. This provides insight to why
the kinetic entropy diverges. As T → 0, velocity space structures become strongly peaked
(mathematically, they approach a δ-function), and a finite sized grid no longer resolves the
structure. As T → ∞ for a fixed velocity-space grid, the number of particles in each phase
space cell decreases, and the statistical description of the particles breaks down.

These issues lead to unphysical results for the kinetic entropy using the standard
definition from (2.2) because the kinetic entropy should not diverge in these limits. To
see this, note that evaluating (2.2) for a δ-function distribution function gives an s that
diverges. However, this divergence is specious. To justify this statement, we go back to the
original combinatorial form of kinetic entropy given by Boltzmann in which S = kB ln Ω ,
where Ω is the number of microstates corresponding to a given macrostate (see, e.g.
appendix A1 of Liang et al. (2019)). The statistical interpretation of kinetic entropy is
related to the number of ways to exchange the positions and velocities of particles in the
system. For a δ-function distribution, all particles are in a single cell in velocity space,
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12 H. Liang and others

so there is only one microstate for this macrostate. The combinatorial kinetic entropy is
therefore S = 0. Thus, (2.2) giving s = ∞ is completely wrong in this limit.

Consequently, the divergence of the kinetic entropy is caused by a fundamental
breakdown of kinetic theory as distributions get too broad or too peaked. The core reason
for the problem is that in applications, the kinetic entropy, and indeed the distribution
function itself, are only defined in a course-grained phase space, and is fundamentally
an explicit function of the phase space grid scale. The formulation of kinetic entropy
producing (2.2) does not capture this dependence, and this must be addressed to produce
a non-Maxwellianity measure that is capable of being interpreted physically.

4.2. The non-locality of the Kaufmann and Paterson non-Maxwellianity
A second fundamental issue with the Kaufmann and Paterson non-Maxwellianity measure
is that one desires it to be a local measure. However, the kinetic entropy density s contains
information, in the combinatorial sense, about exchanging particles at different positions.
Thus, using s makes the non-Maxwellianity non-local in position space. It is preferable to
have the non-Maxwellianity, in the combinatorial sense, to locally describe only particles
at a particular location being exchanged in velocity space. It has been shown (Mouhot &
Villani 2011; Liang et al. 2019) that the full kinetic entropy can be decomposed into a sum
of a velocity space kinetic entropy and a position space kinetic entropy. The velocity space
kinetic entropy density svelocity is

svelocity = kB

[
n ln

( n
∆3v

)
−
∫

d3vf (v) ln f (v)

]
= kBn ln

( n
∆3v

)
+ s. (4.1)

We argue that this kinetic entropy is more appropriate for defining a local measure of
non-Maxwellianity.

Interestingly, a non-Maxwellianity analogous to the Kaufmann and Paterson definition
but using velocity space kinetic entropy density is exactly equivalent to M̄KP, i.e.

M̄KP = svelocity,M − svelocity

(3/2)kBn
. (4.2)

To see this, note that the density n of the raw distribution f (v) and the density of
the Maxwellian distribution fM(v) are the same by definition, so the additional term
kBn ln(n/∆3v) is the same for the raw and Maxwellianized distributions. Thus, that
term drops out of svelocity,M − svelocity, and the resultant non-Maxwellianity is identical to
M̄KP. Thus, as far as the non-Maxwellianity measure is concerned, the Kaufmann and
Paterson definition does give the desired result; the conclusion of this section is that a
reinterpretation in terms of velocity space kinetic entropy density is desirable.

4.3. A new non-Maxwellianity measure
To address the issues discussed in the previous two sections, we propose a definition of the
following normalized, non-divergent, non-Maxwellianity measure, which we denote M̄:

M̄ = svelocity,M − svelocity

svelocity,M
. (4.3)

This can be written equivalently as

M̄ =
−
∫

d3vfM(v) ln fM(v) +
∫

d3vf (v) ln f (v)

n ln
( n
∆3v

)
−
∫

d3vfM(v) ln fM(v)

= sM − s

sM + kBn ln
( n
∆3v

) . (4.4)
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Kinetic entropy-based measures of distribution function 13

It can also be written in terms of M̄KP by using (2.4) for sM in the denominator,
resulting in

M̄ = M̄KP

1 + ln
(

2πkBT
m(∆3v)2/3

) . (4.5)

The M̄ measure retains the desirable properties of M̄KP. First, it remains dimensionless;
this is because a simple calculation confirms that svelocity has appropriate dimensions of
entropy per unit volume, unlike s for which the dimensions are not well defined (Kaufmann
& Paterson 2009; Liang et al. 2019). Second, as with M̄KP, we have M̄ = 0 if and only
if the distribution function f (v) is Maxwellian. Third, M̄ is non-negative, provided that
∆3v is appropriately chosen. Fourth, from (4.5), M̄ is the same whether using distribution
functions as phase space densities or probability densities, as was the case for M̄KP.

The M̄ measure also addresses the issues in the previous two subsections. It is a measure
of the non-Maxwellianity that is local in position space since it is based on the velocity
space kinetic entropy density. Also, M̄ retains an explicit dependence on the velocity space
grid scale, which may seem undesirable but as argued in § 4.1 is actually a fundamental
requirement of the formulation of entropy and distribution functions within kinetic theory.
It is the presence of ∆3v that allows one to regularize the divergence that arises in s and
sM, which ensures M̄ is finite for any temperature provided an appropriate velocity space
grid scale is chosen to properly resolve both f (v) and fM(v).

To see this, we evaluate M̄biM for a bi-Maxwellian distribution. From (4.5) and (3.15),
we get

M̄biM =
ln

[
2
3

(
T⊥

T‖

)1/3

+ 1
3

(
T‖

T⊥

)2/3
]

1 + ln
(

2πkB[(2/3)T⊥ + (1/3)T‖]
m(∆3v)2/3

) , (4.6)

where we use T = (2/3)T⊥ + (1/3)T‖ in the denominator. This expression is general, for
any temperatures and velocity space grid scale. To be specific, we consider a velocity space
grid scale that is proportional to the thermal speed. It has been confirmed numerically
that a velocity space grid scale slightly smaller than the thermal speed is a good choice
for the simulations to be presented in the following two sections (Liang et al. 2019,
accepted). However, this optimum velocity space grid scale is undoubtedly a function of
numerical parameters, so it should be emphasized that the appropriate velocity space grid
scale should be optimized for each application. In particular, for satellite or laboratory
data, the velocity space grid scale is likely far smaller than the thermal speed in an
absolute sense, though it likely still scales with the thermal speed. Letting the velocity
space grid scale in the parallel and perpendicular directions be ∆v‖ = α‖(2kBT‖/m)1/2

and ∆v⊥ = α⊥(2kBT⊥/m)1/2, where α‖ and α⊥ are temperature-independent constants.
With ∆3v = α2

⊥α‖(2kBT⊥/m)(2kBT‖/m)1/2, (4.6) becomes

M̄biM =
ln

[
2
3

(
T⊥

T‖

)1/3

+ 1
3

(
T‖

T⊥

)2/3
]

1 + ln

(
π

α
4/3
⊥ α

2/3
‖

)

+ ln

[
2
3

(
T⊥

T‖

)1/3

+ 1
3

(
T‖

T⊥

)2/3
] . (4.7)
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14 H. Liang and others

T⊥/T‖

M̄biM log10(T⊥/T‖)
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FIGURE 4. Plot of the non-Maxwellianity M̄biM for a bi-Maxwellian distribution function as a
function of T⊥/T‖ for α‖ = α⊥ = 1. The black line uses a linear horizontal scale on the bottom
axis. The red line uses a logarithmic horizontal scale over a wider range of T⊥/T‖, and motivates
that M̄biM is finite even for small or large T⊥/T‖.

We immediately see from this form that

lim
T⊥→0

M̄biM = lim
T‖→0

M̄biM = lim
T⊥→∞

M̄biM = lim
T‖→∞

M̄biM = 1, (4.8)

so the non-Maxwellianity is regularized to a maximum of 1, independent of α⊥ and α‖.
This suggests the new non-Maxwellianity measure does have an interpretation as a fraction
of the largest possible non-Maxwellianity, at least for a bi-Maxwellian distribution.A plot
of M̄biM as a function of T⊥/T‖ is given in figure 4 for α⊥ = α‖ = 1. The black line is
for a linear horizontal scale. Example values for this choice of the αs are M̄biM # 0.075
for T⊥/T‖ = 4 and M̄biM # 0.097 for T⊥/T‖ = 1/4. The red line employs a logarithmic
horizontal scale using the top axis over a much broader range of T⊥/T‖. The plot shows
that M̄biM remains finite even for small or large T⊥/T‖.

It is important to emphasize that the result for the non-Maxwellianity is dependent
on the velocity space grid, so (4.7) and (4.8) are only valid when the velocity space
grid is proportional to the thermal speed. However, it is typically not practical to have a
velocity space grid that varies with temperature. Satellite instrumentation, simulation grids
and laboratory diagnostics typically have a velocity space resolution that is set by other
constraints and does not vary in position or time. For such cases, the general expression
in (4.6) must be used for a bi-Maxwellian distribution function, or (4.5) for an arbitrary
distribution function, and care must be taken to ensure ∆3v is chosen to properly resolve
velocity space structures and preserve a good statistical description. It is also important to
point out that statistics of real particles in satellite and laboratory measurements are much
better than statistics of macroparticles in PIC simulations, so the allowable velocity space
grid scale is undoubtedly smaller in such settings than in simulations. However, for the
reasons given in earlier in this section, it is still important to reinterpret the Kaufmann and
Paterson non-Maxwellianity in terms of velocity space kinetic entropy and normalize it
according to (4.5).

5. Numerical simulations
5.1. The code and simulation set-up

In the following section, we use collisionless PIC simulations of magnetic reconnection
to calculate the non-Maxwellianity measures discussed in the previous sections. Here,
the numerical simulation set-up is discussed. The simulation employed here is the
same simulation used in Liang et al. (2019), referred to there as the ‘base’ simulation.

0 7  20 1 83 4 2 4 4  7 3 8  .
, 0343 7  20 1 83 4 2 4 / 0 0 / 8D4 8 4 181 8 4: 2 0 C1942 74 0 1 83 4 4 4 C 4 0D08 01 4

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377820001270
https://www.cambridge.org/core


Kinetic entropy-based measures of distribution function 15

Only the most relevant details are provided here and the reader is referred to that study for
further details.

The code in use is P3D (Zeiler et al. 2002). The simulations are two-dimensional in
position space and three-dimensional in velocity space. Spatial boundary conditions are
periodic in both directions. Distances are normalized to the ion inertial scale di0 based
on a reference density n0 that is the peak density of the initial current sheet population,
magnetic fields are normalized to the upstream field strength B0, velocities are normalized
to the Alfvèn speed vA0 based on B0 and n0, times are normalized to the inverse ion
cyclotron frequency Ω−1

ci0 based on B0, temperatures are normalized to miv
2
A0/kB, entropy

densities are normalized to kBn0 and VDFs are normalized to n0v
3
A0.

The simulation domain is 51.2 × 25.6, and there is a double current sheet configuration
with initial half-thickness of 0.5. A uniform background population has density 0.2, so the
ion inertial scale di based on the background population is 2.24 di0. The initial electron and
ion populations are drifting Maxwellians, with temperatures of 1/12 and 5/12, respectively,
the speed of light is 15 and the ion-to-electron mass ratio is 25. The grid scale is 0.0125,
the time step is 0.001 and the initial number of weighted particles per grid cell is 100;
each was chosen to reduce numerical error. The velocity space grid for kinetic entropy and
distribution function calculations is 1 vA0 ≈ 0.69vth0,e, where vth0,e is the initial electron
thermal speed; this choice was justified in Liang et al. (2019) and Liang et al. (accepted),
where results for the total entropy and local entropy density were measured as a function of
the velocity space grid and the results were best when the velocity space grid was slightly
smaller than the species thermal speed.

5.2. A subtlety in numerically calculating non-Maxwellianities
There is an important numerical subtlety concerning the comparison of kinetic entropy
density s based on the local distribution function f (v) with the kinetic entropy density
sM based on a Maxwellianized distribution function fM(v). This is because the local
distribution function consists of a finite number of macroparticles that is typically
relatively small, so there is noise associated with the Monte Carlo approach of the
PIC technique. We find that if one numerically calculates for n, u and T for the local
distribution f (v) and constructs an analytical Maxwellian fM(v) using these values, the
deviation from the local kinetic entropy density is enhanced because f (v) has PIC noise
because it is represented by few particles and fM(v) is effectively represented by an infinite
number of particles.

To avoid this undesirable disconnect, one could simply perform the simulation
with a larger number of macroparticles per grid. Alternately, one can generate the
Maxwellianized kinetic entropy density sM using a separate Monte Carlo Maxwellian
distribution function fM(v) using the same number of macroparticles as the local
distribution function f (v); we find this makes the comparison more accurate.

To do so, we create a Maxwellian entropy density look-up table. The minimum and
maximum number of macroparticles, N, in the position space grid cells of interest is found.
Here, N is proportional to the density, n, when the macroparticles are unweighted or the
variation of the particle weights is very small in the given area. For a number of values in
the range of N, Maxwellian distributions with a range of n and T are generated, and sM is
calculated for each. Then, when n and T are found at a particular position space grid cell of
interest, the entropy of the Maxwellianized distribution is found by interpolating to that n
and T in the look-up table for the corresponding N. The limited number of macroparticles
leads to fluctuations of sM for even the same or similar n and T . To reduce the fluctuations,
we repeat the Monte Carlo generation of the Maxwellian distribution for each n and T four
times, and then smooth the look-up table by averaging over the four.
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16 H. Liang and others

There is a caution for using a look-up table when particles carry differing numerical
weights. The reason is that the look-up table assumes each macroparticle carries the same
weight. To address this, one can search all the spatial grids in an area of interest in the
simulation box to find the variation of the particle weight in this area. If the variation is
very small, then the assumption that the number of macroparticles is proportional to the
density is reasonable so that the look-up table as a function of n and T is sufficient. On the
other hand, in regions with large variation of particle weight, errors are introduced due to
the look-up table. A three-dimensional look-up table as a function of n, T and the number
of macroparticles N would be needed; this is not carried out for the present study.

6. Results
6.1. Validation of the numerical implementation

Here, we validate the numerical implementation of the Kaufmann and Paterson
non-Maxwellianity measure M̄KP discussed in § 2. The most basic metric for validation
is whether the kinetic entropy density s and non-Maxwellianity M̄KP give the expected
values when the distribution function is Maxwellian. In the simulation described in § 5,
the distributions far upstream from the reconnecting region are essentially Maxwellian
throughout the simulation, so we first check to see the numerically generated values are as
expected.

To do so, the local kinetic entropy density s is calculated at every spatial cell using
the techniques discussed in Liang et al. (2019). The associated entropy density sM of the
Maxwellianized distribution function is calculated using a look-up table as described in
§ 5.2. From these, the non-Maxwellianity M̄KP is calculated using (2.5). The Kaufmann
and Paterson non-Maxwellianity M̄KP at time t = 41 is given in figure 5, zoomed in to a
portion of the computational domain near the X-point and in the outflow region for (a)
electrons and (b) ions, respectively. The coordinate system is relative to the location of the
X-point (x0, y0), so that the X-point is at the origin in these plots. A vertical cut through
the X-point is shown in panel (c) for electrons (red) and ions (blue). For both electrons and
ions, the non-Maxwellianity is near zero in the upstream regions (beyond 1 di # 2.24 di0
upstream of the reconnection site), as desired. When we use an entropy density of the
Maxwellianized distribution function based on the analytical value for the fluid density,
bulk flow and effective temperature from the simulation instead of the look-up table, the
kinetic entropy density sM within the current sheet is slightly lower than the kinetic entropy
density from the look-up table by ∼0.01 to 0.04 (∼5 %) for the simulation performed here.

Looking holistically at the rest of the domain, the value of M̄KP is mostly non-negative
for both species, as expected from § 3.1. Numerical effects due to the finite number of
macroparticles in the simulation lead to fluctuations and potentially small negative values
for M̄KP. This suggests the implementation of the kinetic entropy in the simulations and
the look-up table is valid, and underscores the importance of using the look-up table for
the entropy of the Maxwellianized distribution function for the number of macroparticles
per grid in use in the present simulations.

6.2. Interpreting the non-Maxwellianity
We now revisit figure 5 to investigate the non-Maxwellianity of the plasma in the regions
affected by reconnection, with a goal of relating the non-Maxwellianity to known physical
processes in reconnection. Panels (a) and (b) show that both electrons and ions depart
significantly from zero non-Maxwellianity in the diffusion region −5 < x − x0 < 5 and
−2 < y − y0 < 2. Both also depart significantly from zero in the reconnection exhaust
5 < x − x0 < 8. There is a magnetic island roughly at x − x0 > 8.
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FIGURE 5. Two-dimensional plots of the Kaufmann and Paterson non-Maxwellianity at t = 41,
where the location of the X-point at this time is (x0, y0), for (a) electron M̄KP,e and (b) ions
M̄KP,i. Black solid lines are magnetic field lines. Vertical dashed lines in panel (a) at x − x0 =
0, 8 and 13 indicate cuts that are investigated further in figures 7–9. (c) Vertical cuts of M̄KP,e
(red) and M̄KP,i (blue) through the X-point in the y direction. The vertical dashed and dotted lines
mark the edges of the non-frozen-in region for electrons and ions, respectively.

Panel (a) reveals that M̄KP,e for the electrons has its largest departures from zero in the
diffusion region, along the separatrices, and at the boundary of the island. In contrast,
panel (b) shows that M̄KP,i departs from zero in the diffusion region and in the core of
the island. These regions are consistent with where we expect electrons and ions to be
non-Maxwellian. Electrons accelerate due to the reconnection electric field and undergo
non-adiabatic motion in the electron diffusion region, form counter-streaming beams and
electron holes near separatrices, and are Fermi-accelerated and heated in the magnetic
island (Drake et al. 2006). For ions, they undergo acceleration and non-adiabatic motion
in the ion diffusion region, form counter-streaming beams and pickup ion acceleration in
the exhaust (Drake et al. 2009), and are reflected by the moving jet front in the magnetic
islands. The physical picture will be confirmed for electrons by investigating distribution
functions in § 6.4.

The vertical cuts of non-Maxwellianity through the X-point shown in figure 5(c) more
clearly shows that the departure from zero occurs for both species near 1 di # 2.24 di0

0 7  20 1 83 4 2 4 4  7 3 8  .
, 0343 7  20 1 83 4 2 4 / 0 0 / 8D4 8 4 181 8 4: 2 0 C1942 74 0 1 83 4 4 4 C 4 0D08 01 4

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377820001270
https://www.cambridge.org/core


18 H. Liang and others

upstream from the X-point. By inspecting traces of the ion inflow velocity viy and (E ×
B)y/B2 (not shown), we find the ion bulk inflow deviates from the E × B drift speed at
approximately |y − y0| # 2.25 # 1 di. This deviation defines the upstream edge of the ion
diffusion region and is denoted by the two vertical dotted lines in panel (c). Therefore, the
ion non-Maxwellianity M̄KP,i begins to depart from zero at the edge of the ion diffusion
region, which is where ions are expected to become demagnetized and therefore their
distributions become non-Maxwellian. Interestingly, M̄KP,e also departs from 0 starting at
the edge of the ion diffusion region, i.e. outside the electron diffusion region defined by
where vey differs from (E × B)y/B2. As we will show in § 6.4, this corresponds to the
region of electron trapping upstream of the electron diffusion region discussed extensively
by Egedal and colleagues (Egedal et al. 2013). Both ion and electron non-Maxwellianity
measures increase in magnitude as one approaches the X-point.

The upstream edges of the electron diffusion region are denoted by the vertical dashed
lines at y − y0 # 0.35 and −0.55 in panel (c); the electron diffusion region therefore has
a half-width of 0.45 di0 = 2.25 de0 # 1 de, where de0 and de are the electron inertial
lengths based on the density n0 and the background plasma density 0.2, respectively.
Both electrons and ions see larger increases to their non-Maxwellianity in the electron
diffusion region. This suggests that the non-Maxwellianity could be potentially useful as
one approach among many to identify reconnection diffusion regions.

6.3. The new non-Maxwellianity measure
Here, we plot the new non-Maxwellianity measure discussed in § 4.3. Data analogous to
figure 5 for M̄KP are plotted in figure 6 for M̄. The spatial structure of the two measures
are quite similar. This is to be expected from (4.5), since M̄ is proportional to M̄KP and
the argument in the denominator is inside a natural logarithm so there is only a weak
dependence on temperature. The range of values for M̄ is from 0 to ∼0.10 for electrons
and 0 to 0.15 for ions.

6.4. Analysis of electron distributions and non-Maxwellianity
Here, we investigate the non-Maxwellianity parameters in relation to distribution functions
measured in the simulations. This allows us to ensure the non-Maxwellianity measures are
correctly identifying distributions that are non-Maxwellian, to associate physical features
with the non-Maxwellianity, and to quantify non-Maxwellianity measures in the context
of the exact solutions in §§ 3.2–3.4 and 4.3. We treat distributions at the three cuts denoted
by the vertical dashed lines in figures 5(a) and 6(a), which are at x − x0 = 0, 8 and 13. For
brevity, we only treat electrons. Results are shown in figures 7–9, respectively. In each
figure, panel (a) shows the Kaufmann and Paterson electron non-Maxwellianity M̄KP,e in
black and the electron non-Maxwellianity M̄e in red as a function of y − y0. Each has
six y − y0 positions marked by blue vertical dashed lines. In panel (b) of each figure,
the reduced VDFs, i.e. the VDF with the third dimension integrated out, at the six marked
positions are plotted. For x − x0 = 0 (figure 7), the VDFs are plotted in the (vex, vey) plane.
For x − x0 = 8 and 13 (figures 8 and 9), the VDFs are plotted in the (v‖, v⊥1) plane, where
v‖ is in the local direction of the magnetic field and v⊥1 is in the local E × B direction.

We begin with the plots at x − x0 = 0 in figure 7. At this x location, except at y − y0 = 0,
the x direction is approximately parallel to the local magnetic field and y is perpendicular
to it in the simulation plane. At y − y0 = −4.7,−3.7,−2.7, the non-Maxwellianities
M̄KP,e and M̄e are close to zero and the VDFs resemble isotropic Maxwellian distribution
functions, as is expected to be the case outside the ion diffusion region.
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FIGURE 6. Same as figure 5 but for the non-Maxwellianity measure M̄.

At y − y0 = −1.7 and −0.7, inside the ion diffusion region, M̄KP,e and M̄e are non-zero.
At these locations, the distributions are elongated in the direction parallel to the magnetic
field. This is due to trapped electrons just upstream of the electron diffusion region (Egedal
et al. 2013), as discussed in § 3.4. A quantitative comparison with predictions from that
section would be desirable, but it requires having asymptotic values in a region with
Maxwellian distributions. This is not achieved in the small simulation carried out here.
However, we estimate the value as best we can for this simulation. For the y − y0 = −0.7
case, we start by integrating the parallel electric field along the magnetic field from x0
to the point where E‖ becomes negative. We have to stop the integration at this point
because the simulation domain is not large enough to reach a plasma that is Maxwellian
as one goes out along the magnetic field line. Proceeding anyway, we estimate the relevant
necessary input parameters from the simulation at (x − x0, y − y0) = (0, −0.7), which
are collected in the first row in table 1. Using (3.18)–(3.20), we get sEg ≈ 1.04, and
using (3.21)–(3.22), we get TEg = 0.078. Then, the predicted non-Maxwellianities M̄pred

KP,e

and M̄pred
e are calculated from (3.23) and (4.5), and are provided in table 1. Despite

the simulation size being too small, the prediction agrees within 20 % of the simulated
values M̄sim

KP,e and M̄sim
e at y − y0 = −0.7 in the simulation as seen in figure 7(a) and given

numerically in the table. As one goes further away in y from the X-point, the agreement
gets worse, which is a result of our system size not being large enough. At y − y0 = 0,
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FIGURE 7. (a) Non-Maxwellianity measures M̄KP,e (black) and M̄e (red) in a vertical slice
through x − x0 = 0 at t = 41. (b) Reduced electron VDFs in the (vx, vy) plane at x − x0 = 0
and y − y0 = −4.7, −3.7, −2.7, −1.7, −0.7 and 0.0, denoted by the vertical dashed lines in
panel (a).

the electrons form a beam in the out-of-plane z direction (not shown) due to being
accelerated by the reconnection electric field as they undergo meandering motion (e.g.
Ng et al. 2011). The VDF is significantly different than an isotropic Maxwellian. Indeed,
this point is the local maximum of the non-Maxwellianity M̄KP,e and M̄e in panel (a).

We turn to x − x0 = 8, shown in figure 8. At this x location, the separatrices are at
y − y0 # ±3, so |y − y0| < 3 is the exhaust and |y − y0| > 3 is in the upstream region.
The VDFs at y − y0 = ±3.25 show inflowing cold electron beams anti-parallel (y − y0 =
−3.25) and parallel (y − y0 = 3.25) to the magnetic field as they convect in towards the
X-point. The VDFs at y − y0 = ±1.25 show the hotter electron beams in the exhaust
flowing in the opposite direction inside the separatrix. These flows are the well known Hall
currents that result in the Hall magnetic field (Sonnerup 1979). The non-Maxwellianity in
these locations is non-zero, but is relatively low because the VDF does not differ much
from a Maxwellian.

At y − y0 = ±2.25, between these two locations, there are counter-streaming signatures
due to populations from both beams. While the two beams are not totally separated in
velocity space, we check to see if the non-Maxwellianity is reasonably well reproduced
by the analytical prediction for two beams from § 3.2. For the distribution at (x − x0, y −
y0) = (8, 2.25), we take a cut along v⊥1 = 0 and fit the two populations with Maxwellians.
The resulting plasma parameters are given in the second row of table 1. From (3.9),
Tbeam = 0.0974, and (3.11) gives M̄pred

KP,e given in the table, along with the associated M̄pred
e

from (4.5). The measured values M̄sim
KP,e and M̄sim

e are given in the table; they are within 22 %
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FIGURE 8. Similar to figure 7 except at x − x0 = 8. The vertical dashed lines in panel (a), where
the VDFs are plotted in panel (b), are at y − y0 = ±3.25, ±2.25 and ±1.25. Here, the reduced
distribution functions are plotted in the (v‖, v⊥1) plane.

of the predicted values for non-overlapping counter-streaming beams, which is reasonably
close.

Finally, we look further downstream cutting mostly through the interior of a magnetic
island at x − x0 = 13 in figure 9. At y − y0 = −4.7 and −4.2, the VDFs display signatures
of counter-propagating beams along the magnetic field, similar to y − y0 = −2.25 in
figure 8. The non-Maxwellianity is elevated there. At y − y0 = −3.7, the VDF is in a
region near the separatrix of a secondary X-point in the outflow that had formed before
t = 41. Multiple electron beams are visible, due to the bouncing of electrons in the island.
They lead to a relatively large value of M̄KP,e and M̄e. Closer to the neutral line, as y − y0
goes from −2.7 to −1.7 to −0.7, the multiple beams have thermalized and form hot
electron distributions that are elongated along the parallel direction. This is a signature
of Fermi acceleration in a contracting island (Drake et al. 2006). Assuming the VDF is
similar in both perpendicular directions, we check to see if the analytical prediction of M̄KP
for a bi-Maxwellian distribution is in reasonable agreement with the simulation result. For
the distribution at (x − x0, y − y0) = (13, −0.7), we fit Maxwellians to the v‖ = 0 and
v⊥1 = 0 cuts of this VDF; the resulting T⊥ and T‖ are in the third row of table 1. Using
(3.15) and (4.6), the predicted non-Maxwellianities M̄pred

KP,e and M̄pred
e are shown in the table.

The simulated values M̄sim
KP,e and M̄sim

e are shown in the table, as well, showing agreement
with the predicted values within 10–20 %.

In summary, the non-Maxwellianity measures M̄KP,e and M̄e can be reliably
implemented as diagnostics in kinetic PIC simulations. These local measures can be
plotted as function of space and time, and are capable of easily identifying where
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FIGURE 9. Similar to figure 8 except at x − x0 = 13. The locations of the distributions are at
y − y0 = −4.7, −4.2, −3.7, −3.2, −2.7, −1.7 and −0.7.

distribution functions are non-Maxwellian, both for electrons and ions. For magnetic
reconnection, the locations of elevated non-Maxwellianity coincide with kinetic-scale
physical processes related to particle acceleration and non-adiabatic particle motion. The
VDFs in regions of non-zero simulated non-Maxwellianity are, indeed, non-Maxwellian,
and the analytic calculations in § 3 are capable of motivating the relative size of
the non-Maxwellianity in some regions within ∼20 % despite a variation of the
non-Maxwellianities by over a factor of four.

7. Discussion and conclusions
We investigate a number of aspects of kinetic entropy-based measures of the

non-Maxwellianity of a given distribution function f (v). The first, which we call M̄KP
and is given in (2.5), was developed by Kaufmann & Paterson (2009) and used to analyse
observational data of Earth’s plasma sheet. Their measure is the difference between the
local kinetic entropy density s = −kB

∫
d3vf (v) ln f (v) and the kinetic entropy density sM

of the Maxwellianized distribution function fM(v) based on the low-order fluid moments
of the full distribution function f (v), and normalized to the number density and the
specific heat per unit volume for an ideal gas. As stated by Kaufmann and Paterson, this
non-Maxwellianity is a good measure because it is non-negative and only vanishes when
f (v) is Maxwellian. Moreover, when collisions are present, regions of non-Maxwellianity
are regions in which collisions are expected to be important, so the locations of elevated
non-Maxwellianity are also those in which irreversible dissipation is more prone to occur
(e.g. Pezzi et al. 2016; Pezzi et al. 2019).

We are unaware of previous work to develop a quantitative understanding of M̄KP, so
in this study we derive closed-form analytical expressions for the non-Maxwellianity
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Name (x − x0, y − y0) Input from simulations M̄pred
KP,e M̄pred

e M̄sim
KP,e M̄sim

e

Egedal (0,-0.7) n = 0.15, n∞ = 0.186, φ‖ = 0.070, 0.151 0.0430 0.13 0.037
T∞ = 0.08, B∞ = 0.51, B = 0.29,

⇒ n/n∞ = 0.805, b = 0.57, Φ = 0.88
Beam (8, 2.25) n1 = 0.0457, uz1 = 2.455, T1 = 0.0350, 0.323 0.0868 0.26 0.068

n2 = 0.114, uz2 = −1.80, T2 = 0.0534
Bi-M (13, −0.7) T⊥ = 0.197, T‖ = 0.425 0.0700 0.0147 0.079 0.017

TABLE 1. Comparison of analytic non-Maxwellianities to simulation results. The first column
gives the name of the distribution, and the second gives the location of the simulated distribution
(figures 7–9) for x − x0 = 0, 8 and 13, respectively. The third column gives the necessary plasma
parameters for the given analytic distribution extracted from the simulations, given in normalized
code units. The fourth and fifth columns give the predicted M̄pred

KP,e and M̄pred
e for each model, and

the sixth and seventh columns give the measured values M̄sim
KP,e and M̄sim

e from the simulations.

for common non-Maxwellian distributions, including two parallel or anti-parallel
beams well-separated in velocity space (§ 3.2), bi-Maxwellian distribution functions for
anisotropic plasmas (§ 3.3) and Egedal distributions that arise near magnetic reconnection
sites (§ 3.4).

In addition, we show that there are undesirable features of M̄KP. The measure can diverge
in various physical limits (especially related to temperature going to zero or infinity). This
makes it difficult to interpret what a particular numerical value for M̄KP means. We argue
that the reason for this is that the measure is based on the kinetic entropy density, which
beyond being the kinetic entropy per unit volume does not have a physical interpretation
of entropy, and it does not even have the units of entropy density. Rather, the velocity
space entropy density (Mouhot & Villani 2011; Liang et al. 2019) has appropriate units
and a physical interpretation of the number of ways to exchange the velocities of particles
in the distribution in velocity space at a given position and time, thus being a more
physically meaningful measure of the local kinetic entropy density associated with a given
distribution function f (v).

We introduce a new non-Maxwellianity measure M̄ based on the velocity space kinetic
entropy density. We show it is proportional to M̄KP (see (4.5)), with a denominator that
regularizes the measure because it has explicit dependence on the velocity space grid scale.
This dependence is not a hindrance, but rather is a feature, as it captures the physical effect
that the kinetic entropy does depend on the velocity space grid scale.

We then use collisionless PIC simulations of two-dimensional anti-parallel magnetic
reconnection, the same simulation studied in detail in Liang et al. (2019), to study the
non-Maxwellianity measures numerically. We validate the numerical implementation
of the non-Maxwellianity measure. When the number of particles per grid cell is not
exceedingly high, we find that it is important to use a look-up table for the entropy
density of the Maxwellianized distribution function so that it has the same level of
numerical error as the raw distributions. We show that, for the simulation considered
here, the non-Maxwellianity measure is non-zero where kinetic-scale processes drive
VDFs away from Maxwellianity. We also show the analytic calculations in § 3 give
reasonable agreement with appropriate naturally occurring distributions, within ∼20 %
of the numerically calculated non-Maxwellianity.
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We argue that the non-Maxwellianity, in concert with other measures, can be useful
to help interpret satellite observations, laboratory experiments and kinetic numerical
simulations. We suggest that M̄KP,e and M̄e could be useful to identify and evaluate
the dynamics of plasma dissipation, such as regions of interest like electron and ion
diffusion regions in reconnection, intermittent current sheets in turbulence and boundary
layer physics in collisionless shocks (provided the resolution of the measurements is
high enough to resolve kinetic-scale structures). These local measures can be plotted
as functions of space and time, and are capable of identifying spatial regions where
distribution functions are non-Maxwellian, both for electrons and ions. Now that satellites
routinely measure plasma distribution functions at very high resolution, measuring
non-Maxwellianity in real data is achievable, as was shown in previous studies of the
enstrophy non-Maxwellianity using MMS mission data (Servidio et al. 2017). This
will be undertaken for entropy-based non-Maxwellianity measures in future work. To
get a feel for the required sensitivity, the simulation here suggests that M̄KP,e is up
to ∼0.6, corresponding to a difference of kinetic entropy per particle (sM − s)/n of
1.2 × 10−23 J K−1 = 7.8 × 10−5 eV K−1.

It is worth discussing the results of the present study in light of the observational
results in Kaufmann & Paterson (2009). In their observational study, Geotail data from
10 years of ion measurements in one minute bins was used and averaged, and binned over
spatial regions of Earth’s plasma sheet. Their results reveal non-Maxwellianities (their
figure 5) of the order of 1.4–2 throughout the entire plasma sheet. These values greatly
exceed the values for M̄KP,i observed in our reconnection simulations (our figure 5). There
are numerous reasons for the significant difference. One is that the parameters of our
simulation and the parameters in the 10 year study may not be commensurate. Another
potential issue is that their fluid entropy was calculated from the fluid variables using
the analytic expression, and this could cause an offset in the manner discussed in § 5.2,
which would inflate the measured non-Maxwellianity. In addition, the Geotail data came
from one minute averages, which undoubtedly captured variations in plasma parameters
such as density and temperature, which would introduce non-Maxwellianities that may not
be present from a higher time resolution measurement. Satellite data also often does not
capture the cold plasma population, which requires assumptions for calculating entropy
and may introduce uncertainties. Using, for example, MMS data, will be a more direct
comparison with the simulation results presented here, and will be pursued in future work.

While the non-Maxwellianity is a potentially useful measure to aid the interpretation
of data and simulations, a number of aspects should be kept in mind. First, a non-zero
non-Maxwellianity can indicate reversible and irreversible processes, i.e. it is not
necessarily purely irreversible. Moreover, it is true that non-Maxwellianity identifies
regions where irreversible dissipation is prone to occur through collisions, but if
collisions are entirely absent then the non-Maxwellianity is not associated with irreversible
dissipation. To address this more fully requires comparisons with collisional simulations,
which will be addressed in the companion study (Pezzi et al. in preparation). Also, since
the non-Maxwellianity is local in position space, it is not capable of identifying if a plasma
element has undergone an entropy change as it evolves, i.e. in a Lagrangian reference
frame.

An ambiguity of the non-Maxwellianity is that there is not a one-to-one correspondence
between a particular value of it and an associated distribution function or physical process.
Rather, to understand it quantitatively, one still needs information about the structure of
the distribution function, such as whether it consists of beams or bi-Maxwellian plasmas.
However, once that link is established, the value of M̄ can give perspective about the
plasma, including allowing the inference of quantities such as the temperature anisotropy.
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In addition, it provides information about what fraction of the kinetic entropy density a
given distribution function has given up relative to its associated Maxwellian value, which
has the maximum kinetic entropy for a fixed number of particles and total energy. Further
work on interpreting such results would be worthwhile. On the other hand, there are
independent efforts underway to identify structures in complicated distribution functions
by breaking them into separate populations (e.g. Goldman et al. 2020), which could be
used to aid in the interpretation of the entropy-based results.

The kinetic entropy density and non-Maxwellianity should be used in concert with other
diagnostics and measures of plasma processes to contribute to its interpretation. A number
of other measures have been developed; the non-Maxwellianity and these other measures
will be compared and contrasted in simulations of magnetic reconnection and plasma
turbulence in collisionless and collisional kinetic simulations in a companion study (Pezzi
et al. in preparation).
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