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The nonlinear dynamics of magnetic reconnection in turbulence is investigated through direct
numerical simulations of decaying, incompressible, two-dimensional magnetohydrodynamics.
Recently, it was shown by Servidio et al. �Phys. Rev. Lett. 102, 115003 �2009�� that in fully
developed turbulence complex processes of reconnection occur locally. Here, the main statistical
features of these multiscale reconnection events are further described, providing details on the
methodology. It is found that is possible to describe the reconnection process in turbulence as a
generalized local Sweet–Parker process in which the parameters are locally controlled by the
turbulence cascade, thus providing a step toward reconciling classical turbulence analysis with
reconnection theory. This general description of reconnection may be useful for laboratory and
space plasmas, where the presence of turbulence plays a crucial role. © 2010 American Institute of
Physics. �doi:10.1063/1.3368798�

I. INTRODUCTION

Magnetic reconnection is a nonlinear process that occurs
in many space, astrophysical, and laboratory systems,1–3 such
as near the sun’s surface,4 in the magnetosphere,5,6 in the
solar wind,7 in the strongly turbulent magnetosheath,8,9 and
in laboratory devices.10–14 The underlying common feature
for these systems is the presence of an inhomogeneous mag-
netic field that changes rapidly across a very narrow region.
Generally a strong peak in the electric current density is
present. Reconnection implies the presence of a magnetic
X-type neutral point15 in two dimensions, and more gener-
ally a change in magnetic topology6,16 resulting in the con-
version of magnetic into kinetic energy.17,18 The result is the
formation of a new magnetic island associated with a char-
acteristic out-flow pattern.

Theoretical efforts uncovered much of the basic physics
of reconnection, especially in idealized geometries. Sweet17

and Parker18 employed conservation of mass, pressure bal-
ance, and continuity of the electric field to reveal the essen-
tial large scale dynamics of magnetic reconnection in the
framework of two-dimensional �2D� magnetohydrodynamics
�MHD�. In this simple configuration, a neutral sheet separat-
ing plasma regions contains oppositely directed magnetic
fields. In a small region called the “diffusion region” near a
magnetic X-type null point, there is lower magnetic pressure
and a higher plasma pressure. This produces a plasma out-
flow along the neutral sheet, and accordingly flow into the
neutral sheet from the strong field regions. The flow carries
magnetic flux into the diffusion region where the field lines
change topology. The Sweet–Parker model operates at a fi-
nite value of resistivity, but the rate of reconnection, mea-
sured through the in-flow speed �usually normalized to the

Alfvénic speed�, decreases with increasing magnetic Rey-
nolds number. Driving19 and kinetic effects20 can have a
strong influence on reconnection.

Since it might occur in any region separating topologi-
cally distinct magnetic flux structures, reconnection might be
expected to be of importance in more general circumstances,
including magnetohydrodynamic �MHD� turbulence.21 For
example, it is difficult to envision a turbulent cascade that
proceeds without change in magnetic topology. Furthermore,
turbulence may provide a kind of unbiased or natural local
boundary condition that provides a view of reconnection
relatively unaffected by arbitrary �imposed� conditions. Al-
though some suggestions have been made regarding both the
general role of reconnection in MHD turbulence22–25 and the
impact of small scale turbulence on reconnection of large
structures,21,22,26–28 until recently no quantitative account has
been given of reconnection that occurs as an integral part of
the turbulence cascade.29

In the past decades, numerical simulations played a very
important role in the investigation of the dynamics of recon-
nection. Most early numerical experiments addressed the
study of the tearing instability and its saturation.30,31 The
forced, steady state reconnection envisioned by Petschek,32

which incorporates an externally supported velocity field,
and admits more complex and faster reconnection than
Sweet-Parker, has been extensively studied as well.19 Most
of these models are essentially in 2D, and assume simplified
geometries and controlled ambient conditions, with the
plasma on either side of the dissipation region having iden-
tical magnetic field strengths, and with well-defined, speci-
fied boundary conditions. The method of initializing recon-
nection is important and varied widely in simulation studies.
With very low amplitude perturbations, linear tearing insta-
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bilities characterize the evolution, until saturation of some
kind is attained. The reconnection process can also be initi-
ated by pressure32 or electromagnetic stresses at the bound-
ary �e.g., Refs. 33 and 34�. When an initial perturbation is
large enough, a fully nonlinear state can be rapidly achieved
�e.g., Ref. 20�.

Reconnection may be self-sustaining if boundary condi-
tions permit, or it may continue until available magnetic flux
is exhausted. In many cases the reconnecting system has
been idealized as occurring in a limited spatial region defined
by the simulation “box.” The magnetic field is often arbi-
trarily chosen to be straight at the inflow-side boundaries and
simplified “outflow” boundaries are employed. However a
complementary perspective is that such simplified or ideal-
ized conditions are not easily realized in nature: naturally
occurring plasmas may frequently be found a fully nonlinear
turbulent state. In these conditions, the dynamical processes
associated with reconnection are likely to occur in a less
controlled environment, one in which the conditions are not
set in advance or in a controlled way. Instead the externally
controlled conditions to which a reconnection zone responds
are themselves set in a dynamic way as a consequence of the
global nonlinear dynamics of the system.25 It is this scenario
of reconnection as an intrinsic feature of turbulence that we
address here.

There have been a variety of previous studies that exam-
ined the effect on the reconnection process of finite ampli-
tude broadband fluctuations �turbulence�, The first studies of
this type,21,35 in periodic geometry, demonstrated that topol-
ogy change and dynamical activity centered around magnetic
X-points are integral features of turbulent relaxation. Fur-
thermore the presence of fluctuations �whatever their origin�
in the reconnection zone induces multiple X-points, the ap-
pearance of small secondary islands and an acceleration of
the reconnection process.36 Detailed examination of spectra,
the spatial structure of the fluctuation field, and various cor-
relations in turbulent reconnection22 developed more detail
in the emerging picture of the close relationship between
properties of reconnection and properties of MHD turbu-
lence. Later, quantitative study showed that37 reconnection
rates in 2D periodic geometry are increased systematically
by finite amplitude fluctuations at early times, leading to a
saturated rate later in the turbulence development. Later
studies further examined this scenario, by computing effects
of turbulence on the effective resistivity, introducing three-
dimensional effects, and further describing the feedback as-
sociated with the turbulence.27,28,38

Recent studies have adopting varying approaches that
confirm the key role of turbulence and fluctuations on recon-
nection. In one recent paper39 three-dimensional turbulent
fluctuations are directly driven in the reconnection layer,
emulating the effects of a strongly turbulent medium. An-
other related study40 carried out driven two-dimensional
computations, verifying that turbulence enhances reconnec-
tion rates to order-one Alfvénic rates at high mechanical and
magnetic Reynolds numbers.

Other studies revived interest in the direct effects of the
presence of small scale fluctuations within the reconnection
layer, originally envisioned mainly due to pre-existing fluc-

tuations, but possibly augmented by instability near the cur-
rent sheet.36 The recent examination of the direct effect of
complexity in the reconnection layer employed kinetic
simulation41 as well as MHD simulation42,43 to show that
thin laminar current sheets may be subjected to growth of
secondary islands. Once present these then can accelerate
reconnection as described earlier.36

However, even with the substantial progress that has
been made, a full picture of the relationship between recon-
nection and turbulence is yet to emerge. In particular, almost
all previous studies focused on the influence of turbulence on
large scale reconnecting magnetic fields. The problem of re-
connection that may occur between numerous adjoining tur-
bulent structures35 received relatively less attention. How-
ever a better understanding of reconnection within a fully
turbulent scenario may be significant in the areas of space
and astrophysical plasmas. In this regard, the present paper
extends an approach that seems particularly timely in view of
recent observations of the turbulent magnetosheath that sug-
gest reconnection of many adjacent quasi-two-dimensional
magnetic islands.8,9

In the antecedent of the present work,29 it was shown
that in fully developed turbulence, complex processes of re-
connection locally occur. Here we further describe the statis-
tical features of this complex scenario of reconnection
events, where initial and boundary conditions are naturally
imposed by the turbulence itself. In turbulence, reconnection
of different-size magnetic vortices occurs simultaneously and
locally. We develop systematic techniques in order to analyze
reconnection in turbulence, combining classical analysis of
reconnection together with statistical description of turbu-
lence. These methods are employed to study the statistical
properties of thousands of incompressible MHD reconnec-
tion events occurring at X-type neutral points at large mag-
netic and fluid Reynolds numbers, using direct numerical
simulations with resolutions up to 16 3842 grid points. We
find a broad range of reconnection rates, reaching as high as
�0.3 normalized to the root-mean-square magnetic field. A
characteristic power-law distribution of rates is found rela-
tive to the geometrical aspect ratio of the reconnecting sites.
We will examine how these surprising features can be
brought into agreement with a generalized form of classical
Sweet–Parker reconnection.

The outline of the paper is as follows. In Sec. II, the
incompressible 2D MHD equations are introduced, together
with the numerical method employed to solve the equations,
and a global overview on fully developed turbulence at high
Reynolds number. In Sec. III, a general introduction to the
Hessian theory used to identify the reconnection events is
presented. The statistics of the turbulent electric fields is also
shown. A local description of reconnection in turbulence is
presented in Sec. IV. In Sec. V, the link between reconnec-
tion and the statistical properties of turbulence is analyzed. A
theoretical interpretation of the reconnection events is given
in Sec. VI. Finally, in Sec VII, conclusions are given, and
possible implications for turbulent plasmas in nature are dis-
cussed. Supplementary numerical tools are given in the ap-
pendix.
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II. INCOMPRESSIBLE 2D MHD

The 2D incompressible MHD equations can be written
in terms of the magnetic potential a�x ,y� and the stream
function ��x ,y� �uniform mass density �=1� as follows:44

��

�t
= − �v · ��� + �b · ��j + R�

−1�2� , �1�

�a

�t
= − �v · ��a + R�

−1�2a , �2�

where the magnetic field is b=�a� ẑ, the velocity v=��
� ẑ, the current density j=−�2a, and the vorticity �
=−�2�. Equations �1� and �2� are written in familiar Alfvén
units21 with lengths scaled to L0, a typical large scale length
�box size is set to 2�L0�. Velocities and magnetic fields are
scaled to the root-mean-square Alfvén speed CA and time is
scaled to L0 /CA. R� and R� are, respectively, magnetic and
kinetic Reynolds numbers at scale L0, reciprocals of kine-
matic viscosity and resistivity.

Equations �1� and �2� are solved in double periodic �x ,y�
Cartesian geometry with a dealiased �2/3 rule� pseudospec-
tral code.45 We employ a standard Laplacian dissipation with
constant dissipation coefficients. The latter is given small
values to achieve both high Reynolds numbers and to ensure
adequate spatial resolution, but is not intended to model any
specific plasma kinetic process. We report results from runs
with up to 16 3842 grid points and R�=R�=10 000. Time
integration is second order Runge–Kutta and double preci-
sion is employed. A description of all the runs performed is
reported in Table I.

Considering the representation of the fields in Fourier
space, for a particular run �in this case run 4, cf., Table I�, the
energy is initially concentrated in the shell 5�k�30 �wave-
number k in units of 1 /L0�, with mean value E= �1 /2���v�2
+ �b�2��1, �¯ � denoting a spatial average. Random phases
are employed for the initial Fourier coefficients and uncorre-
lated, equipartitioned velocity and magnetic field fluctuations
are considered. This procedure gives rise to a number of
energy containing magnetic islands, of the order of 1000 for
the chosen magnetic spectrum �run 4�.

For the statistical analysis �see Sec. III� we consider the
state of the system at t	0.3, when the mean square current
density �j2� is very near to its peak value �see Fig. 1�. At this
instant of time the peak of small scale turbulent activity is

achieved. The omnidirectional power spectra of the magnetic
field Eb�k� at different times are shown in Fig. 2.

When the turbulence is fully developed, coherent struc-
tures appear. They can be identified as magnetic islands that
have different size and energy. At the regions between is-
lands the perpendicular �out-of-plane� component of the cur-
rent density j becomes very high, as it can be seen in the
color contour Fig. 3. This is related to the intermittent nature
of the magnetic field24 and can be interpreted as a conse-
quence of fast, local relaxation processes.46,47

As reported in Fig. 4, the out of plane component of the
magnetic potential a shows a collection of magnetic islands

TABLE I. Table of runs. In the fourth column the energy shell excited
initially is reported. The last column shows the time t� at which the analysis
has been performed �near the peak of the mean square current density �j2��.

Mesh points R� �=R�� Initial spectrum t�

Run 1 40962 1700 4�k�10 0.4

Run 2 40962 2500 5�k�30 0.2

Run 3 40962 2500 3�k�10 0.7

Run 4 81922 5000 5�k�30 0.3

Run 5 81922 5000 8�k�20 0.3

Run 6 16 3842 10 000 5�k�30 0.3
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FIG. 1. �Color online� The total current density �j2� �solid-red� and vorticity
�blue-dashed� ��2� as a function of time. The peak is reached around t�

=0.3 �vertical black dashed line�.
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FIG. 2. �Color online� Power spectra of magnetic field at two times of the
simulations. At t��0.3 the peak of the nonlinear activity is reached, as
shown in Fig. 1.
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having a wide distribution of sizes. In three dimensions these
would correspond to flux tubes. For the large islands, the
sign of a in a closed field line region gives the sense of
rotation of the magnetic vortex. These coherent structures
interact nonlinearly, merge, stretch, connect, attract, and re-
pulse each other. In fact the dynamics of the magnetic field
in 2D MHD turbulence can be thought of as consisting
largely of the interactions among these islands. Reconnection
is a major element of this interaction.

III. STATISTICS OF THE RECONNECTION RATES

A. Topology of the magnetic field

To understand reconnection in 2D turbulence, we need to
examine the topography of a�x ,y� in detail. In particular we
need to identify the neutral points. To this end we examine
the Hessian matrix with the second-order partial derivatives
of the potential a,48 defined as

Hi,j
a �x� =

�2a

�xi � xj
. �3�

At each neutral point, �a=0, we compute the eigenvalues of
Hi,j

a . The magnetic potential is a smooth and differentiable
function and it contains key information about the magnetic
field topology. If the gradient of a �or equivalently, b� is zero
at some point x, then a has a critical point �or stationary
point� at x. The determinant of the Hessian at x is then called
the discriminant. If this determinant is zero then x is called a
degenerate critical point of a, which is also called a non-
Morse critical point of a. Otherwise if it is nondegenerate,
this is called a Morse critical point of a. Non-Morse critical
points are very rare in nature.49

The following procedure can be applied to classify be-
havior at a nondegenerate critical point x. If the Hessian is
positive definite at x, then a attains a local minimum at x. If
the Hessian is negative definite at x, then a attains a local
maximum at x. If the Hessian has both positive and negative
eigenvalues then x is a saddle point �or X-point�.

Because of the complex topology of turbulence, critical
points can be very close to each other. Moreover, based on a
spectral representation, they are usually not located on the
vertices of a chosen computational grid, so we use a second
order interpolation algorithm. The problem is that a nonzero
amount of energy at smallest scales is present �this can be
seen from Fig. 2�. This affects the precision of the interpola-
tion technique, producing false critical points. To avoid this
inconvenience we make use of a Fourier zero-padding and
interpolation technique. This consists of computing the Fou-
rier transform of a�x�, and, once we obtain the Fourier coef-
ficients â�k�, we copy this to an array four times bigger. The
new expanded array has identical amplitudes at wave vectors
present in the lower resolution representation. However it is
extended by adding zeros for kj 	 �Nj /2�, where N /2 the
maximum k-vector of the original array �Nyquist frequency�.
Following this zero padding we inverse Fourier transform to
obtain a�x ,y� on a higher resolution spatial grid. In this way
we can generate a function that has 4Nx�4Ny points from
the original Nx�Ny. It coincides with the original function
on the original grid points. Between these, on the new finer
grid, it represents a trigonometric interpolation of the func-
tion. This process can require substantial computer memory,
but gives results with the following desirable properties: �1�
a function on a higher resolution grid with an exact Fourier
expansion can be extrapolated, �2� cases in which critical
points are in the same Cartesian cell are avoided, and �3� the
interpolation becomes much more accurate, even if the order
of the interpolation is the same �this is because the field is
much smoother at the new grid size�.

FIG. 3. �Color online� The blue-red scale color contour represents the cur-
rent density j in a region of the simulation box. In between magnetic islands
strong peaks in the current density are present. Only about 	1 /9 of the
simulation box is shown.

FIG. 4. �Color online� Contour plot of the magnetic potential a with the
position of all the critical points: O-points �blue stars for the maxima and red
open diamonds for the minima� and X-points �black ��.
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After we applied the above procedure we found for run
4, for example, 631 maximum �M-points�, 638 minimum �P-
points�, and 1277 saddle points �X-points�. We found that the
number of critical points obeys the following relation:

#
M points� + # 
P points� − # 
X points� = 0, �4�

which is the total number of O-points �sum of maxima and
minima� equal to the number of saddle points. This rule ap-
pears to be specific to periodic geometry. In Fig. 4 we show
the magnetic potential with the critical point locations, ob-
tained with the Fourier amplification technique. In this com-
plex picture the X-points link islands with different size and
energy. In the next sections we will further explore the inter-
esting properties of reconnection in turbulence, making use
of the fields at the X-points that we have identified.

We note also that the local geometry of the diffusion
region near each X-point is related to the Hessian eigenval-
ues,


max =
�2a

�s2 , 
min =
�2a

�l2 , �5�

the larger and smaller �in magnitude�, respectively, and the
associated unit eigenvectors ês and êl. The coordinate s is
associated with the minimum thickness � of the current
sheet, while l with the elongation �. From a scaling analysis
of Eq. �5�, the aspect ratio of the diffusion region is well
approximated by

�

�
� �
R, where 
R = 
max


min
 . �6�

B. Properties of the electric field

Once we obtained the position of all the critical points, a
precise way to measure the reconnection rate of two islands
is to compute the electric field at the X-point. This is related
to the fact that the magnetic flux in a closed 2D island is
computed as the integrated magnetic field normal to any con-
tour connecting the central O-point with any other specified
point. Choosing that point to be an X-point bounding the
island, we find that the flux in the island is just a�O-point�
−a�X-point�.37 Flux is always lost at the O-point in a dissi-
pative system, so the time rate of change in the flux due to
activity at the X-point is −�a�X-point� /�t=Ez�X-point�. The
latter step follows from Ohm’s law expression for the electric
field,

E = − v � b + R�
−1j , �7�

which in 2D involves only the out of plane component Ez

=−�v�b�z+R�
−1j, and which is Ez�X-point�=R�

−1j at an
X-type neutral point.

In Fig. 5, the terms making up Ohm’s law are plotted.
Ohm’s law electric field is dominated globally by �v�b�z

�note the values on the color scales.� This fact is further
reinforced by the distributions of the electric field plotted in
Fig. 6, which shows the probability distribution function
�PDF� of the total Ez, the advective and resistive contribu-
tions, and the values computed at the X-points. We can im-
mediately see that the reconnection rates �electric field at the

X-points� are very narrow compared to the total electric field.
We will further discuss this important feature of turbulent
reconnection in the final section of the paper.

Also clear from Figs. 5 and 6 is that the total electric

FIG. 5. �Color online� Contour plot of the out-of plane electric field contri-
butions: �a� total electric field Ez, �b� advective term −�v�b�z, and �c�
diffusive term R�

−1j term.
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field is essentially due to the term v�b, which is the electric
field produced by fluid plasma motions. The diffusive elec-
tric field R�

−1j �note that we use � or R�
−1 interchangeably�, is

very small and with a much narrower distribution.25 The re-
sistive R�

−1j contribution is non-Gaussian and gives informa-
tion about the intermittent nature of MHD turbulence. It is
very interesting that the tails of the distribution of the recon-
nection rate are narrower than the tails of the advective elec-
tric field, but are wider than the tails of the diffusive electric
field. Moreover the strongest current structures are associated
with the strongest values of the reconnection electric field.
This is a simple manifestation of the fact that the strongest
current concentrations are typically found near the X-points.
This confirms that turbulent reconnection is closer to a non-
linear instability rather than to a simply diffusive problem.
For values randomly chosen from each population �not at a
single point�, we can see that typically the largest magnitudes
are those of the inductive field, those least in magnitude will
be the resistive field, and the reconnection electric field val-
ues are intermediate. For any even moment statistic M�x�
= �x2n� �integer n�, we have

M�v � b�  M�E��  M�R�
−1j� . �8�

The shape of the distribution of the advective component
−�v�b�z, which resembles an exponential distribution, is
typical of both solar wind plasmas and numerically simu-
lated strong MHD turbulence.50,51

Following the discussion above, the reconnection rates
are computed as the rate of change of the magnetic flux

through �a /�t, and their distribution is further examined in
Fig. 7. These rates are computed using Eq. �7� at the saddle
points, where

�a

�t
= �R�

−1j�� = − E� �9�

and E� is an abbreviation for the electric field measured at
the �X-point� saddle point, and similar notation indicates that
the Ohmic electric field is evaluated at the same X-point.

The PDF of the electric field at the X-points is quite
broad and peaked around the zero value. Here the reconnec-
tion rates have been normalized to the mean square fluctua-
tion �brms

2 , appropriate for Alfvènic turbulence. In Fig. 7�b�

FIG. 6. �Color online� PDFs of �gray� total Ez given by Ohms’ law, Eq. �7�;
�red dotted� advective component −�v�b�z; �blue dot-dashed� diffusive
component R�

−1j; �black open circles� reconnection rates Ez�X-point�. Inset:
zoom of the core of these distributions.

FIG. 7. �Color online� �a� PDF of the normalized values of Ez�X-point�
�reconnection rate�, �b� PDF of Ez�X-point�. Vertical dotted line in �b� rep-
resents the mean value of the distribution.
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the PDF of the absolute value of the reconnection rate is
shown. The mean value of the reconnection rate is �0.04,
with strong variations from the average, that is values are
found in the range �E��� �10−6 ,0.3�.

In terms of the global parameters this observed range of
reconnection rates varies from very slow to fast. For R�

=10 000 the global Sweet–Parker rate would be computed as
	0.01. In this sense the typical reconnection rate in turbu-
lence is found to be far higher than what is expected based
on a simple global application of the Sweet–Parker rate E�

	R�
−1/2. We now examine more details of how these rates

arise.
In the case in which the reconnection is in a stationary

state, the rate depends on the aspect ratio defined by Eq. �6�.
In Fig. 8 it is shown that there is a relation between the
stronger reconnection rates and the geometry of the recon-
nection region. In fact the electric field values for the stron-
ger reconnection regions �see figure� satisfy the following
approximate scaling relation:

E� 	
�

�
= �
R, �10�

where 
R= �
max /
min�.
The last relation seems to be counter intuitive, because

in the classical model of steady state reconnection E�

	� /�. We will return to this issue in more detail in Sec. VII.
Another important relation links the eigenvalues of the

Hessian matrix with the current density at the X-points:

j� = − �
max + 
min� , �11�

because at the high-rate reconnecting regions 
max�
min.
For those cases we find

j� � − 
max. �12�

Figure 9�a� shows a scatter plot of the larger of the two
eigenvalues 
max versus 
R. This result is another indication
�less direct� that the sites with highest reconnection rate are
the ones with ���. In Fig. 9�b�, a numerical test that verifies
the approximation in Eq. �12� is shown. The slope of the fit
in this figure is very close to the value of the resistivity R�

−1,
cf. Eq. �9�.

FIG. 8. �Color online� The relation between the reconnection rate �the elec-
tric field at the X-point� and the geometry of the reconnection region �the
ratio of the eigenvalues�. The presence of a power-law fit �blue dotted line�
demonstrates that there is a relation between the reconnection rate and the
geometry of the diffusion region. Note that E�	� /�.

FIG. 9. �Color online� Panel �a�: scatter plot of the bigger eigenvalue 
max

vs the ratio of eigenvalues 
R. In panel �b� a numerical test that verify Eqs.
�9� and �12� is shown. The slope � of the fit �black dotted� is very close to
the value of the resistivity R�

−1.
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C. Rapid reconnection and phase randomization

The power-law fit in Fig. 8 suggests that Eq. �10� holds
only for the fastest reconnection events. For slowly recon-
necting regions there is no clear scaling. We now show that
the collection of slowly reconnecting �or even nonreconnect-
ing� X-point regions is associated with a distribution of mag-
netic fields that is Gaussian, whereas the strongly nonlinear
interacting ingredient of the fluctuations would be expected
to produce intermittent structure and non-Gaussian statistics.
In order to select the most relevant events we need to estab-
lish a threshold for the X-point electric field, and for the
aspect ratio of the eigenvalues. From Fig. 8 it seems reason-
able that for �E���10−2 �or 
max /
min�100� a scaling re-
gion is present. We now employ a phase-randomizing proce-
dure. This kind of technique, used in turbulence studies,46,52

consists of taking the Fourier coefficients of a variable, in
this case a�x�, and forming from these a new function
aGauss�x� that has the same power spectrum, but with random
phases. The new aGauss has no coherency, a property that
comes from the nonlinear nature of MHD and is hidden in
the phases of the Fourier coefficients expansion. The result
of the phase randomization can be seen in a section of the
simulation domain shown in Fig. 10, where the level contour
of a and aGauss, within the respective critical point positions,
are compared. The number of critical points dramatically in-
creases in the Gaussianized variable. This is due to the fact
that gradients are more uniformly distributed, leading to a
more complex topology of the field. Even the randomized
case satisfies the critical point sum rule given by Eq. �4�.

This technique identifies the features of the reconnection
rate distribution that are due to the Gaussian and non-
Gaussian features of the fluctuation fields. According to the
procedure we adopted for the unaltered turbulent simulation,
when �E��0.01 and 
max /
min100, we find a direct rela-
tion between the reconnection rate and the geometry of the
diffusion region is present. These are the strong reconnection
sites. We also computed the reconnection rate distribution for
the Gaussianized field. As it can be seen from Fig. 11, the
reconnection rates of the incoherent randomized magnetic
field are on average much weaker than for the original case.
In fact the part of the distribution where we found the stron-
gest reconnection sites and the scaling relation with aspect
ratio is completely absent in the Gaussianized case. Evi-
dently, the nonlinear, intermittent nature of MHD is respon-
sible for the faster reconnection rates that are observed.

Before continuing the exposition of the results, we re-
mark on our procedures for verification, as we have found
that the stable and accurate determination of the distribution
of reconnection rates requires considerable care, especially
with regard to spatial resolution. Numerous test cases were
examined in this regard. The numerical results shown were
verified in a number of ways: we compared runs with differ-
ent time steps and spatial resolutions, checked that the dissi-
pation scale is resolved, and examined field lines at the grid
scale for adequate microscopic smoothness. We also checked
for proper scalings of higher order statistics �see Ref. 53� and

for well behaved distributions of reconnection rates. For ex-
ample, as suggested by the results above, Gaussianization of
the small scales is an important type of error that can influ-
ence the reconnection rates. Lack of adequate resolution can
cause small scale thermalization of the phases that are crucial
for computing correct reconnection rates. In the future we
will provide further detail on these underlying numerical
analysis issues.

FIG. 10. �Color online� Comparison between a �a� and aGauss �b� in a small
section of the simulation domain. On each plot the critical points are repre-
sented. The notation is the same as Fig. 4. One sees many more critical
points in the Gaussianized, incoherent field, even though the magnetic en-
ergy spectra are identical.
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IV. A LOCAL DESCRIPTION OF RECONNECTION
IN TURBULENCE

A. The distribution of islands

Now we will take a closer look at the reconnection sites.
We want to identify the main features of reconnection in
turbulence, trying to link it with 2D MHD turbulence prop-
erties. Because of the complexity of the geometry we will
focus only on the X-lines with higher reconnection rates,
identified using the comparison between the original and
Gaussianized fields as described above.

In turbulence, magnetic islands of a range of sizes are
present. Sometimes multiple islands simultaneously recon-
nect. Every island �or every cluster of reconnecting islands�
is embedded in a bigger island that, at the same time, is
merging with other magnetic islands. The picture of turbu-
lence is rather complicated, but it is possible to systemati-
cally identify the largest islands, and the islands with the
highest reconnection rates. To assist in this analysis we made
use of a cellular automata technique �see Appendix�, which
helps us to find, for each selected island, the last closed mag-
netic surface �LCMS�. In effect this associates with each
O-point or magnetic axis, a unique nearby X-point, namely,
the one that is “closest” in terms of magnetic flux, although
not necessarily closest in distance.

In laminar theories of steady state reconnection usually
the reconnecting islands are assumed to be symmetric. In
order to roughly test the validity of the symmetric approxi-
mation in turbulence, we computed the shape of the LCMS
for some of the fast reconnecting events. The result is shown
in Fig. 12, where different closed area surfaces are plotted
together with contours of a. Most of the reconnecting islands
are not symmetric, that is the islands that are reconnecting

have different extension, shape, and amount of energy. This
suggests that the symmetric laminar theory of steady state
reconnection may not be appropriate to describe the stron-
gest reconnection sites found in turbulence.

B. Characteristics of diffusion regions

We need at this point to find a methodology to quantita-
tively characterize every reconnection region and extrapolate
important information, including � and �. Since we know the
ratio of the eigenvalues obtained from the Hessian matrix
analysis, the problem reduces to find just one of these
lengths, such as the current sheet thickness �. The elongation
of the current sheet � can then be obtained using Eq. �6�. We
build a system of reference that has its origin at the X-point.
The eigenvectors of the Hessian matrix, defined by Eq. �3�,
identify the directions associated with inflow �s� and outflow
�l� regions. These eigenvectors es and el correspond to the
eigenvalues in Eq. �5�, and refer to the directions of greater
curvature �es�, and lesser curvature �el�, of the magnetic po-
tential a. Once we compute these eigenvectors, it is possible
to construct this system of reference for each reconnection
region, given by the unit vectors 
ês , êl�.

In Fig. 13�a� an example of the current density profile
along the s-direction is shown. A consequence of the asym-
metric nature of turbulent reconnection implies that in most
of the cases the current density has a peak not centered pre-
cisely on the X-point.54 We call bt�s� and bn�s� the normal

FIG. 11. �Color online� Same as Fig. 8, within the relative “randomized”
reconnection rate �red starts�. See the text for more details.

FIG. 12. �Color online� Contour lines of the magnetic potential, together
with color-shaded areas identified by the cellular automata technique. Each
colored closed region identifies a flux tube, defined by its last closed flux
surface. The choice of color is only for convenience. The X-points are
shown by the symbol “X.”
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and the tangential component of the magnetic field, respec-
tively. These components are obtained by projecting the in-
plane magnetic field into the system of reference given by

êl , ês�, that is

bt = êl · b ,

�13�
bn = ês · b .

In Fig. 14 we compare some example bt profiles, for
three selected X-point regions, choosing in particular regions
with widely different reconnection rates. The overall widths
are not greatly different, but there is a significant systematic
difference exemplified by these cases: the strongest recon-
nection events have a magnetic field that reaches a maximum
and then decreases going far from the saddle point. This
gives rise to much steeper gradients of the field near the
neutral point. In the slowly reconnecting cases the magnetic
field increase is gradual and monotonic. This behavior is

FIG. 13. �Color online� Profiles of the current density �a� and its derivative
�j /�s �b� in the vicinity of a X-point. The X-point is located at s=0. In the
panel �c� the tangential �bt, black circles� and the normal �bn, orange bullets�
components of the magnetic field are shown. Horizontal dashed �red� lines
represent zero values.

FIG. 14. �Color online� Comparison of the magnetic configuration for
X-points in different ranges of reconnection rate, identified as slow, me-
dium, and fast cases. These ranges are shown in the upper panel �same
reconnection rate distribution as Fig. 8�. In the lower panel are three ex-
amples: slow �red dashed line�, medium �blue dashed line�, and fast �full
black line� reconnection. The horizontal dashed �green� line represents the
zero value.
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very different from what is usually found in standard laminar
reconnection studies, where, for initial value problems, gen-
erally a uniform magnetic field is imposed away from the
diffusion region. There are also well studied cases in which
the field attains a maximum at some offset from the X-line—
this is known as flux pile-up.55,56 This also occurs in some
island coalescence problems.57,58 Flux pile-up reconnection
has been observed recently in an experiment on colliding
flux ropes.59

At this point we need to find the width �. Because of the
asymmetry of the problem, we compute the total width of
each current peak as the sum of a contribution �1 from the
right side �region 1� and �2 from the left side �region 2�.
Then we sum these to compute the width, employ the known
eigenvalue ratio to obtain the length of each reconnection
region as

� = �1 + �2,

�14�

� = ��
max


min
.

Specifically, the values of �1,2 are found by assuming that the
magnetic field, close to the X-point can be approximated as a
hyperbolic tangent.

We interpolate the current density j, along the inflow
coordinate s, using the following parametric functions:

f left�s� = A1 sech2� s − s0

�1
� + C1
s � x0� ,

�15�

f right�s� = A2 sech2� s − s0

�2
� + C2
s 	 x0� ,

being A1,2 the amplitudes �they are proportional to the mag-
netic field inside the two islands�, s0 the position of the cur-
rent peak, and C1,2 local constants. For each X-point the fit
has been optimized by an iteration procedure in order to
minimize the error of the interpolation.60 Using the above
procedure, the lengths of the diffusion region �� and �� and
the up-stream tangential magnetic fields �b1 and b2� have
been found �note we suppress the index “t” that designates
the tangential component in Eq. �13��.

A simple way to initialize the fit procedure is to roughly
estimate the �1,2 by using �j /�s in the following way. As can
be seen from Fig. 13�b�, the width of the current peak ap-
proximately corresponds to the distance between the two
peaks in �j /�s. Beginning with this estimation of �1,2, we
then optimize the fit of Eq. �15� by iteration. Note that we are
interested in the diffusion region, and not in the details of
what happens at larger values of s. The result of this proce-
dure gives a very good interpolation of the current density at
the X-points, as it can be seen from the example in Fig. 15.

Following an application of the above procedure to all
the strong reconnection sites, we obtain statistics that char-
acterize the shape and size of that population of sites. In Fig.
16 we show an example of a particular box placed on its
reconnection site with width � and length �, superposed on

the a contours and current density near the reconnection re-
gion. The larger length � is the one associated with the ex-
tension of the current sheet �along ê��.

The values of � and �, for every reconnecting event that
exceed the threshold �E��=0.01, are reported in Fig. 17. We
computed the mean values for these two lengths and we
found ����5�10−3 and ����0.1. The values of � show
much more spread than �. The distributions of these lengths
are clustered around certain values. We will now examine
how these lengths are related to turbulence length scales.

V. THE LINK BETWEEN RECONNECTION
AND TURBULENCE

The system is in a regime of fully developed turbulence.
The power spectrum in Fig. 18 may be divided into a large
scale wavenumber range �1�k�10�, an inertial range �20
�k�80�, and a dissipation range �100�k�500�. The spec-
trum and correlation functions give information of relevance
to the length scales associated with the turbulence. The
present goal is to look for possible links between the recon-
nection geometry and the statistical properties of turbulence.
The wave vectors corresponding to the average width � and
the length � are given by

k� =
1

�
, k� =

1

�
. �16�

As can be seen in Fig. 18, the diffusion width is related to the
dissipation scale, or the upper end of the inertial range, while
k� is of the order of the wavenumber at which the spectrum
peaks. The distribution of � and �, together with their mean
values are reported in Fig. 19�a�.

In order to get more information about these associations
we computed the autocorrelation function of the magnetic
field. The correlation length is defined as

FIG. 15. �Color online� Optimized fit �red dashed line� of the current density
j�s� �blue circles� in the vicinity of an X-point. The best fit function is given
by Eq. �15�. The fit-algorithm interpolates the function in the vicinity of the
X-point, since we want to estimate the diffusion region width � �see text�.
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C = �
0

�

C�r�dr , �17�

where

C�r� =
�b�x + r� · b�x��

�b2�
, �18�

where the direction of displacement r is arbitrary for isotro-
pic turbulence in the plane, and the upper limit is unimpor-
tant if the distant eddies are uncorrelated. The correlation
length 
C is a measure of the size of the energy containing
islands. The autocorrelation function is illustrated in Fig.
19�b�. In the same figure ���, ��� are reported as vertical lines
for comparison. The dissipation length, at which the turbu-

lence is critically damped, is defined as 
diss=R�
−1/2�j2�−1/4,

while the Taylor microscale, a measure of mean-square gra-
dients, is


T =���b�2�
�j2�

. �19�

In analogy to Eq. �18�, we computed the second order struc-
ture functions as

S�r� =
��b�x + r� − b�x��2�

�b2�
. �20�

In Fig. 19�c� this function is shown. It appears that the aver-
age elongation � is strongly related to the correlation length,
where the structure function flattens, or, analogously, where
C�r� becomes zero. In all our simulations, as reported in
Table II, we found that the values of diffusion layer thickness
� are distributed in the range between the Taylor scale and
the dissipation scale, while the length �, though broadly scat-

FIG. 16. �Color online� �a� Contour lines of a �white solid lines� together
with the current density j �color scale� in a region of reconnecting islands.
�b� Zoom into the diffusion region with the characteristic lengths � and �
�black cross�. Note that ��� in this case.

FIG. 17. �Color online� The values of � �red circles� and � �blue squares� for
all the X-points. The solid and dashed lines represent the average values of
� and �, respectively.

FIG. 18. �Color online� Magnetic spectrum together with k� and k�.
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tered, scales with 
C �cf. Fig. 19�. The main features of this
ensemble of reconnecting events, including the key length
scales, are evidently controlled by the statistical properties of
turbulence, setting the range of values of length and thick-
ness of the diffusion regions according to the correlation
length and the dissipation scale. Note that a correlation be-
tween diffusion width and dissipation was discussed experi-
mentally in Ref. 9.

VI. STEADY STATE SWEET–PARKER SCENARIO

The turbulent reconnection activity identified above
takes place in an environment in which the symmetric local
conditions envisioned in standard laminar models are un-
likely. It is therefore appropriate to employ the extension of
the standard picture to asymmetric configurations. The
Sweet–Parker-type analysis for asymmetric antiparallel re-
connection has been studied in an earlier work by Cassak
and Shay.54 In particular this analysis allows the reconnect-
ing magnetic field strengths and plasma densities to be dif-
ferent on opposite sides of the dissipation region. Here we
will summarize some of their main results. Asymmetric re-
connection has also received recent attention in
observations61 and kinetic simulations.62

Using only conservation laws �mass continuity and Ber-
noulli theorem�, without imposing any dissipation mecha-
nism, it is possible to estimate the electric field in the diffu-
sion region.54 In quasisteady state conditions the expected
electric field at the X-point, i.e., the expected value of the
reconnection rate, should scale as

Econt 	
�b1b2�3/2

b1 + b2
2�
min


max
	

�b1b2�3/2

b1 + b2

�

�
, �21�

where we specialize to the present notation and to the incom-
pressible case.

Here we want to assess the accuracy of Eq. �21� for the
computed turbulent reconnection sites. To do this we need to
compute the upstream magnetic fields b1,2. We used three
different criteria to estimate b1 and b2. The results are illus-
trated in Fig. 20. The easiest way to estimate the upstream
magnetic field �see Fig. 13� is to choose

b1,2 = bt��1,2� , �22�

which gives a reasonable estimation of the magnetic field
near the diffusion region because the magnetic field here is
very smooth and with a strong gradient. On the other hand,
the values of b1,2 might be underestimated in this way be-

FIG. 19. �Color online� Top �a� histograms of thicknesses ��, red bars� and
elongations ��, azure bars�. In the middle panel �b� the magnetic field auto-
correlation function �solid black line� is represented. Bottom plot �c� the
structure function, defined by Eq. �20�, is reported. The arrows �left to right�
represent, respectively, dissipation scale 
diss, Taylor microscale 
T, and cor-
relation length 
C. Vertical lines are average values ��� �red� and ��� �azure�.

TABLE II. Table of characteristic lengths. See text for more details.


c ��10−1� 
T ��10−2� 
diss ��10−3� ��� ��10−1� ��� ��10−2�

Run 1 2.27 4.80 5.10 2.80 1.44

Run 2 0.97 2.10 2.90 1.26 0.77

Run 3 2.36 4.40 4.10 2.32 1.20

Run 4 0.97 1.71 1.85 1.00 0.53

Run 5 1.18 2.15 2.00 1.13 0.62

Run 6 0.95 1.28 1.11 0.90 0.36
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cause the magnetic field is too close to the neutral point,
where b�=0.

Another possible choice is

b1,2 = bt�2�1,2� . �23�

This approximation can also lead to some problems: it can be
too far from the diffusion region. In some cases the magnetic
field might decrease rapidly beyond the peak value, so that bt

becomes very close to zero, giving a null reconnection rate.
A more sophisticated way to derive a value of bup is to look
at the current j�s�. As it can be seen from the examples in
Fig. 13, the current density crosses the value zero on both the
right and the left sides of the X-point. As mentioned above,
this implies that the tangential magnetic field has maxima at
these two points. Therefore, a third possible way to estimate
the upstream magnetic field is

b1,2 = bt�s1,2�, where

�24�
j�s1,2� = 0.

In Fig. 20 we illustrate this algorithm, using Eqs. �22�–�24�.
Using the above estimates for the two values of up-

stream magnetic field we can test the asymmetric conserva-
tion law to see whether it applies to this turbulent system.
Figure 21 compares the reconnection rate E� from the simu-
lations and the steady state estimates Econt from Eq. �21�, for
all the three techniques mentioned above. The best fit is ob-
tained for the technique described by Eq. �24� �Fig. 21�c��.
�The fit errors are �6.7% for the approximation given by Eq.
�22�, �4.7% for Eq. �23�, and �4.5% for Eq. �24�.� The
good agreement with Eq. �21� indicates that the reconnection
can be thought of as occurring in the quasisteady state. These
results come only from conservation laws. In order to apply
a resistive model that quantifies the reconnection rate, the
dissipation mechanism should be described in detail.

In the incompressible case and in our notation, the
Cassak–Shay54 asymmetric reconnection rate is given by

E�
th. ��b1

3/2b2
3/2

R��
. �25�

Note that the present definition of � and � differ from those
in Ref. 54 by a factor of 2. However the intent of the scaling

FIG. 20. �Color online� Tangential magnetic field upstream of a particular
X-point �black open circles� with different estimates for the upstream mag-
netic field �horizontal lines�: bup evaluated using Eq. �22� �red dashed-lines�,
Eq. �23� �blue dotted-lines�, and Eq. �24� �gray full-lines�. The arrows indi-
cate the points in which j�s�=0.

FIG. 21. Scatter plots of the electric field E� �in the fast reconnecting sites�
vs the steady state function Econt �in absolute value� defined in Eq. �21�. We
computed Econt by using three different estimations of b1,2, namely, by using
Eq. �22� �a�, Eq. �23� �b�, and Eq. �24� �c�.
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relation Eq. �25� is insensitive to such factors. Here we
would like to examine whether the observed ensemble of
turbulent reconnection events scales as asymmetric “Sweet–
Parker” in this sense, with resistivity causing the dissipation.
To acquire a broader picture of the scaling, we evaluated Eq.
�25� using several runs �listed in Fig. 22�. Figure 22 shows
that in all the simulations the reconnection rates are consis-
tent with the prediction given by Eq. �25�. In this scenario
turbulence plays a crucial role, determining locally the pa-
rameters that control the Sweet–Parker reconnection rate,
namely, the lengths and local magnetic field strengths. Ap-
parently, reconnection is an integral part of MHD turbulence
cascade process.

VII. CONCLUSIONS

The nonlinear dynamics of magnetic reconnection in tur-
bulence has been investigated through direct numerical simu-
lations of decaying 2D MHD. In the high resolution simula-
tions considered here, many reconnection events are seen,
involving simultaneously many magnetic islands of various
size. The reconnection is spontaneous but locally driven by
the fields and boundary conditions provided by the turbu-
lence. Matching classical turbulence analysis with the
Sweet–Parker theory, the statistical features of these multi-
scale reconnection events have been identified. Because of
the complex magnetic topology, turbulence leads to different
kinds of reconnecting patches.

The turbulent cascade produces a distribution of recon-
necting islands. Computing the electric field at the X-points,
we see that turbulence produces a broad range of reconnec-
tion rates, with values in excess of 0.1–0.3 in dimensionless
global Alfvén units. In addition, the strongest reconnection
rates vary in proportion to � /�, the aspect ratio of the recon-

nection sites. This scaling appears to differ greatly from clas-
sical laminar theories,17 but taking into account the nearby
magnetic field produced by the turbulence, a form of gener-
alized Sweet–Parker scaling54 is restored. These results ex-
plain how rapid reconnection occurs in MHD turbulence in
association with the most intermittent non-Gaussian current
structures, and also how turbulence generates a very large
number of reconnection sites that have very small rates. Re-
connection, like other transport processes, is greatly affected
by turbulence63 and reconnection rates, like other turbulence
parameters, have a broad distribution of values.

In contrast with laminar reconnection models that pro-
vide a single predicted reconnection rate for the system, tur-
bulent resistive MHD gives rise to a broad range of recon-
nection rates that depend on local turbulence parameters.
Many potential reconnection sites are present, but only a few
are selected by the turbulence, at a given time, to display
robust reconnection electric fields. In this way, the present
problem differs greatly from studies of reconnection that as-
sume that it occurs in isolation or as a spontaneous process.
In those cases, the total electric field is due to reconnection,
and in steady state, the electric field far from the diffusion
region takes on the value of the reconnection electric field.
Here the electric field at points removed from the X-points
are typically larger than the reconnection rates. It seems to be
appropriate therefore to view reconnection in turbulence as
driven by the convective electric fields in the turbulent me-
dium. It is this driving by the turbulent electric field that is
responsible for the local flux pile-up that drives the recon-
nection discussed here. Flux pile-up would normally be
viewed as occurring when the rate of approach of the islands
is greater than the rate that can be supported by the recon-
nection process. This can cause buildup of repulsive forces
and eventual bouncing. This will be an interesting feature to
study in the turbulence context but such a time dependent
analysis is beyond the scope of the present work.

We have seen that reconnection becomes an integral part
of turbulence, as suggested previously.21 In fact, results of
the present type may shed light on possible scalings as Rey-
nolds numbers are increased, even though direct computa-
tional scalings remain greatly challenging. In particular, we
expect that the distribution of reconnection rates can be re-
lated to the issue of maintaining finite energy dissipation in
the infinite Reynolds numbers. A detailed examination of this
connection remains for future study.

This new perspective on reconnection may be highly rel-
evant to space and astrophysical applications such as the tur-
bulent magnetosheath,8,9 the solar wind,7 and the solar
corona.4 On the basis of the current results, we would expect
to find in the turbulent corona and solar wind a broad distri-
bution of size of interacting islands, with a concomitantly
broad distribution of reconnection rates. The rates can, in
principle, be determined statistically in terms of measurable
correlation, Taylor and dissipation scales. In future studies it
may be useful to study additional signatures such as charac-
teristic reconnection flows.7 Furthermore a useful extension
will be to employ models that are suited to low collisionality
plasmas, where for example anomalous resistivity, Hall
MHD, or other kinetic effects may be important.

FIG. 22. �Color online� Computed reconnection rates vs expectation from
Eq. �25� �Ref. 54�. The good agreement indicates that the system is recon-
necting in an asymmetric Sweet–Parker scenario.
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APPENDIX: THE CELLULAR AUTOMATA ALGORITHM

To investigate the coherent structures of the magnetic
field, we use a cellular automata algorithm �CA� to analyze
the magnetic potential function a�x ,y�. The basic idea of the
CA is to place some “seeds” in each O-point �maximum and
minimum� of a, and then diffuse the seeds to all nearby
points until reaching the threshold �set by some value or
rule�. The whole process comprises three steps.

First, identify all the critical points, including maximum,
minimum, and saddle points. The square Hessian matrix of a
is Hi,j

a �x�=�2a /�xi�xj. At each neutral point, where �a=0,
we compute the eigenvalues of Hi,j

a . If both eigenvalues are
positive �negative�, the point is a local minimum �maximum�
of a �an O-point�. If the eigenvalues are of mixed sign, it is
a saddle point �an X-point�. For periodic boundary, there will
be equal amount of O-points and X-points.

Second, link every O-points to the closest X-point. Ev-
ery maximum �minimum� point is connected to nearby maxi-
mum �minimum� points though X-points. To find the closest
X-point for each O-point, a simple CA algorithm is used,
which will be explained below, taking a maximum as ex-
ample.

Each position at the grid point is associated with a cer-
tain state, which is specified by a number Mi,j where i , j
stand for the row and column of the grid point. Mi,j can be
�1, 0 or 1 in this case. Initially, Mi,j is set to be 1 for the four
grid points which have that maximum inside the formed cell
�red circles in Fig. 23�, �1 for all the grid points which have
an X-point inside the formed cell �black circles in Fig. 23�,
and 0 for all other grid points. A threshold value A is set to be
a very small negative integer, say A=−1010. The evolution of
Mi,j from one step to the next follows the following rules.

If Mi,j =1, we check the value of Mi�,j� for all nearby
grid points �i� , j��, where i� can be i−1, i or i+1 and j� can
be j−1, j or j+1:

�a� If Mi�,j�=0 and ai�,j�A, then Mi�,j� is set to be 1.
�b� If Mi�,j�=−1 and ai�,j�A, Mi,j is reset to be the initial

value for all grid points and the threshold value A is set
to be ai�,j�+�, where � is a very small positive constant.

Following these rules, a steady state can be achieved
when Mi,j does not change again and the final threshold
value is marked to be An �for the nth O-point�. Thus the
closest X-point is defined in a value, but not in distance, so
that when the a value at the X-point, a�X� is used as thresh-
old value, the region identified by the CA will not extend to
any other X-point.

Finally, after the linked X-point and threshold values are
found for every O-point, a similar CA is used in the whole

area. Different seeds are placed on every O-points and dif-
fused until reaching the corresponding threshold value An.

In this way, spatial patches �magnetic islands� can be
identified. For the nth island, it will have an O-point On at
the center and is bounded by field line with a=An. In Fig. 12,
we show contour lines of a together with the all magnetic
islands detected by the cellular automata algorithm.
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