A Review of Recent Progress on Energy Conversion in Plasmas Beyond near-LTE Fluid Models

Paul Cassak (he/him), West Virginia University, Hasan Barbhuiya, Haoming Liang, Matt Argall, Subash Adhikari, Tulasi Parashar, Will Ryan, Hasith Perera Acknowledgments: Sarah Conley, Greg Howes, Jimmy Juno, Emily Lichko, Bill Matthaeus, Earl Scime, Mike Shay, Peiyun Shi, Jason Tenbarge, Art Weldon, Yan Yang

65th Annual Meeting of the APS Division of Plasma Physics

November 1, 2023

In Honor of: Bill Dorland

Support Acknowledgements:

Hasan Barbhuiya

Magnetic Confinement Fusion

https://www.iter.org/proj/inafewlines

Low Temperature/ **Medical/Industrial**

Inertial Confinement Fusion, **High Energy Density Plasmas**

National Ignition Facility

Compact Objects

EHT Collaboration/ESO **Astrophysical**

Magnetosphere, Interplanetary/stellar

Advanced Visualization Lab, UIUC

nasa.gov

Nicol et al., Sci. Reports, 2020

3

Miao et al., Green Energy and Resources, 2023

Waves/Instabilities

Energy Conversion Mechanisms in Plasmas

Shocks 📁

NASA and the Hubble Heritage Team (STScI/AURA)

Turbulence

NASA Goddard's Conceptual Image Lab/Lisa Poje

AAS

Transport

https://www.alcf.anl.gov/news/plasma-turbulence-simulationsreveal-promising-insight-fusion-energy

Wave-Particle Interactions

Magnetic Reconnection

Leftward magnetic field

Hesse and Cassak, JGR, 2020

Steve Allen (LLNL), adapted by Mike Van Zeeland (General Atomics)

The LTE "Fluid" Approach

- Fluid in local thermodynamic equilibrium (LTE) ⇔ there is a well-defined local temperature
 - In LTE, energy conversion is adiabatic ($p/\rho^{\gamma} = \text{constant}$)
- Near LTE, departure from LTE is small
 - Viscosity and resistivity cause irreversible conversion into internal energy, conduction transports energy
- Uses of LTE/near-LTE fluid models:
 - Plasma/MHD waves, MHD instabilities, Shocks (Rankine-Hugoniot), Reconnection (Sweet-Parker), turbulence (Kolmogorov), ...

www.youtube.com/watch?v=a-_iuXR0FCU

Energy Conversion in near-LTE Fluid Model

• near-LTE fluid energy equations for species σ (n_{σ} is number density, \mathbf{u}_{σ} is bulk flow velocity, p_{σ} is pressure, m_{σ} is constituent mass, q_{σ} is charge, γ_{σ} is ratio of specific heats):

Electromagnetic energy density
$$\mathcal{E}_{EM} = E^2/8\pi + B^2/8\pi$$
 $\frac{\partial \mathcal{E}_{EM}}{\partial t} + \nabla \cdot \mathbf{S} = -\mathbf{J} \cdot \mathbf{E}$ Bulk flow energy density
 $\mathcal{E}_{\sigma k} = (1/2)m_{\sigma}n_{\sigma}u_{\sigma}^2$ $\frac{\partial \mathcal{E}_{\sigma k}}{\partial t} + \nabla \cdot (\mathcal{E}_{\sigma k}\mathbf{u}_{\sigma}) = -\mathbf{u}_{\sigma} \cdot \nabla p_{\sigma} + q_{\sigma}n_{\sigma}\mathbf{u}_{\sigma} \cdot \mathbf{E} + \mathbf{R}_{\sigma,\text{coll}}$ Internal energy density
 $\mathcal{E}_{\sigma,\text{int}} = p_{\sigma}/(\gamma_{\sigma} - 1)$ $\frac{\partial \mathcal{E}_{\sigma,\text{int}}}{\partial t} + \nabla \cdot (\mathcal{E}_{\sigma,\text{int}}\mathbf{u}_{\sigma}) = -p_{\sigma}\nabla \cdot \mathbf{u}_{\sigma} + \dot{Q}_{\sigma,\text{coll}}$ The first law of
thermodynamics! $\frac{dE_{\sigma,\text{int}}}{dt} + \frac{dW_{\sigma}}{dt} = \frac{dQ_{\sigma}}{dt}$

What Does LTE Mean?

• Phase space density $f_{\sigma}(\mathbf{r}, \mathbf{v}, t)$ = number density in phase space, *i.e.*, position \mathbf{r} , velocity \mathbf{v} space

$$f_{\sigma}(\mathbf{r}_j, \mathbf{v}_k) \simeq \frac{N_{\sigma, jk}}{\Delta^3 r \Delta^3 v}$$

In LTE, $f_{\sigma} = f_{\sigma,MB}$, a Maxwell-Boltzmann distribution $f_{\sigma,MB} = n_{\sigma} \left(\frac{m_{\sigma}}{2\pi k_B T_{\sigma}}\right)^{3/2} e^{-m_{\sigma}(\mathbf{v}-\mathbf{u}_{\sigma})^2/2k_B T_{\sigma}}$

• Temperature T_{σ} is related to internal energy per particle $E_{\sigma,\text{int}} = (3/2)k_B T_{\sigma}$ $E_{\sigma,\text{int}} = \frac{1}{n_{\sigma}} \int d^3 v \left(\frac{1}{2}m_{\sigma}(\mathbf{v} - \mathbf{u}_{\sigma})^2\right) f_{\sigma,MB}$

Why are Plasmas not in LTE?

NASA's Scientific Visualization Studio and Yi-Hsin Liu

- Collisions
 - weak or absent (high temperature, low density)
 - act differently on different species (low temperature)
- Anisotropies, particle trapping, finite-Larmor radius effects, non-thermal heating, ...
 - (Howes, PoP, 2017; Matthaeus, ApJ, 2020; Alvarez Laguna et al., PoP, 2022)

Collisionless Shock

Overview

- Non-LTE plasmas description using kinetic theory
- Review of three approaches to understanding evolution of non-LTE systems
- Pressure-strain interaction: bulk flow energy ↔ internal energy (e.g., Yang et al., *Phys. Plasmas*, **24**, 072306, 2017)
- Field-particle interaction: electromagnetic field energy ↔ particle energy (Klein and Howes, *Astrophys. J. Lett.*, 826, L30, 2016)
- Entropic approach: *all* non-LTE evolution (Cassak et al., *Phys. Rev. Lett.*, **130**, 085201, 2023)
- Open questions

https://www.bu.edu/tech/support/research/whatshappening/highlights/spaceweather/

. and kinetic simulation

Goodrich et al., Front. Astron. Space Sci, 2023 10

Kinetic Theory - How does f_{σ} Evolve?

- A statistical theory of plasmas
 - Use velocities **v** and forces \mathbf{F}_{σ} with Newton's 2nd law to find where the particles $N_{\sigma,jk}$ move in a small time dt, and therefore how f_{σ} changes in time

The Boltzmann equation (1872)

$$\frac{\partial f_{\sigma}}{\partial t} + \mathbf{v} \cdot \nabla f_{\sigma} + \frac{\mathbf{F}_{\sigma}}{m_{\sigma}} \cdot \nabla_{v} f_{\sigma} = C[f]$$

- C[f] is an operator describing collisions
 - Here, we leave C[f] unspecified

V

k

2

÷

 N_{2k}

÷

 N_{22}

 N_{21}

2

• • •

...

...

Liang et al., PoP, 2019

 N_{1k}

 N_{12}

 N_{11}

ŝ

 $N_{_{jk}}$

 N_{j2}

 N_{j1}

...

...

···· X

Fluid Description From Kinetic Theory

• Velocity moments of f_{σ} give the bulk properties

0th moment: Number density

1st moment: Bulk flow velocity

2nd moment: Pressure tensor, $P_{\sigma,jk} = n_{\sigma}k_{B}T_{\sigma,jk}$

3rd moment: Tensor heat flux

$$\begin{split} n_{\sigma}(\mathbf{r},t) &= \int d^{3}v f_{\sigma}(\mathbf{r},\mathbf{v},t) \\ \mathbf{u}_{\sigma}(\mathbf{r},t) &= \frac{1}{n_{\sigma}(\mathbf{r},t)} \int d^{3}v \mathbf{v} f_{\sigma}(\mathbf{r},\mathbf{v},t) \\ P_{\sigma,jk} &= \int d^{3}v m_{\sigma}(v_{j}-u_{\sigma j})(v_{k}-u_{\sigma k}) f_{\sigma} \\ Q_{\sigma,jkl} &= \int d^{3}v m_{\sigma}(v_{j}-u_{\sigma j})(v_{k}-u_{\sigma k}) (v_{l}-u_{\sigma l}) f_{\sigma} \\ \ddots \end{split}$$

 \mathcal{V}

Note, it can take an infinite number of fluid moments to describe the shape of $f_{\sigma}!$

12

Temperature in Kinetic Theory?!?

• Temperature T_{σ} is not well-defined for a system not in LTE, but internal energy per particle $E_{\sigma, \text{int}}$ is!

$$E_{\sigma,\text{int}} = \frac{1}{n_{\sigma}} \int d^3 v \left(\frac{1}{2}m_{\sigma}(\mathbf{v} - \mathbf{u}_{\sigma})^2\right) f_{\sigma}$$

Can then define the "effective temperature" \mathcal{T}_{σ} according to

$$E_{\sigma,\mathrm{int}} = \frac{3}{2} k_B \mathcal{T}_{\sigma}$$

- It is temperature if f_{σ} were changed to be in LTE with the same $E_{\sigma, \text{int}}$
- "Maxwellianized" distribution $f_{\sigma M}$ (Grad, J. Soc. Indust. Appl. Math., 1965):

$$f_{\sigma M} = n_{\sigma} \left(\frac{m_{\sigma}}{2\pi k_B \mathcal{T}_{\sigma}}\right)^{3/2} e^{-m_{\sigma} (\mathbf{v} - \mathbf{u}_{\sigma})^2 / 2k_B \mathcal{T}_{\sigma}}$$

13

Energy Conversion via Fluid Moments

- 2nd moments of Boltzmann equation for species σ gives kinetic theory generalizations • of the fluid energy equations (e.g., Braginskii, Rev. Plasma Phys., 1965)
 - $\frac{\partial \mathcal{E}_{k\sigma}}{\partial t} + \nabla \cdot \left(\mathcal{E}_{k\sigma} \mathbf{u}_{\sigma} + \mathbf{P}_{\sigma} \cdot \mathbf{u}_{\sigma} \right) = \left(\mathbf{P}_{\sigma} \cdot \nabla \right) \cdot \mathbf{u}_{\sigma} + \mathbf{J}_{\sigma} \cdot \mathbf{E} + \mathbf{R}_{\text{coll}}$

and

$$\frac{\partial \mathcal{E}_{\sigma,\text{int}}}{\partial t} + \nabla \cdot (\mathbf{u}_{\sigma} \mathcal{E}_{\sigma,\text{int}}) = -(\mathbf{P}_{\sigma} \cdot \nabla) \cdot \mathbf{u}_{\sigma} - \nabla \cdot \mathbf{q}_{\sigma} + n_{\sigma} \dot{Q}_{\sigma,\text{coll,inter}}$$

where $\mathbf{J}_{\sigma} = q_{\sigma} n_{\sigma} \mathbf{u}_{\sigma}$

Also have Poynting's theorem:

$$\frac{\partial \mathcal{E}_{EM}}{\partial t} + \nabla \cdot \mathbf{S} = -\mathbf{J} \cdot \mathbf{E}$$

- $\nabla \cdot \text{terms} \Leftrightarrow \text{energy transport}$
- coll terms ⇔ energy conversion/transport via collisions
- $\mathbf{J}_{\sigma}\cdot\mathbf{E}\Leftrightarrow$ rate of energy density conversion between species σ and the electromagnetic field

Energy Conversion via Fluid Moments

- 2nd moments of Boltzmann equation for species σ gives kinetic theory generalizations of the fluid energy equations (e.g., Braginskii, Rev. Plasma Phys., 1965)
 - $\frac{\partial \mathcal{E}_{k\sigma}}{\partial t} + \nabla \cdot \left(\mathcal{E}_{k\sigma} \mathbf{u}_{\sigma} + \mathbf{P}_{\sigma} \cdot \mathbf{u}_{\sigma} \right) = \left(\mathbf{P}_{\sigma} \cdot \nabla \right) \cdot \mathbf{u}_{\sigma} + \mathbf{J}_{\sigma} \cdot \mathbf{E} + \mathbf{R}_{\text{coll}}$

$$\frac{\partial \mathcal{E}_{\sigma,\text{int}}}{\partial t} + \nabla \cdot (\mathbf{u}_{\sigma} \mathcal{E}_{\sigma,\text{int}}) = -(\mathbf{P}_{\sigma} \cdot \nabla) \cdot \mathbf{u}_{\sigma} - \nabla \cdot \mathbf{q}_{\sigma} + n_{\sigma} \dot{Q}_{\sigma,\text{coll,inter}}$$

Bulk kinetic energy density equation

Internal energy density equation

 $-(\mathbf{P}_{\sigma} \cdot \nabla) \cdot \mathbf{u}_{\sigma}$ = "pressure-strain interaction" = energy density conversion rate between bulk kinetic energy and internal energy (Del Sarto et al., PRE, 2016; Yang et al., PRE/PoP, 2017)

• It is collisionless; collisions bring in viscosity, resistivity, conductivity, etc.

- Commonly decomposed into compressible and incompressible parts (pressure dilatation, "Pi-D") $-(\mathbf{P}_{\sigma} \cdot \nabla) \cdot \mathbf{u}_{\sigma} = -\mathcal{P}_{\sigma}(\nabla \cdot \mathbf{u}_{\sigma}) - \prod_{\sigma, jk} \mathcal{D}_{\sigma, jk}$
 - In magnetized plasma (fusion), Pi-D is "gyro-viscosity" (e.g., Hazeltine et al., PoP, 2013)
 - In a closed collisionless system, the pressure-strain interaction describes the net internal energy change (Yang et al., PoP, 2017)

Physics of Pressure-Strain Interaction

• Fluid interpretation (Del Sarto and Pegoraro, MNRAS, 2018; Cassak and Barbhuiya, PoP, 2022)

Kinetic interpretation (Cassak and Barbhuiya, PoP, 2022): example of $-\mathcal{P}_{\sigma}(\nabla \cdot \mathbf{u}_{\sigma})$, $\mathrm{Pi} - \mathrm{D}_{\sigma,\mathrm{normal}}$

16

Pressure-Strain in Observations/Simulations

non-LTE Energy Conversion and the First Law of Thermodynamics

This is the non-LTE generalization of the first law of thermodynamics!

Advantages/Disadvantages

- Advantages
 - Fluid moments are easier to interpret
 - Readily calculable with kinetic simulations: particle-in-cell, Vlasov/Boltzmann, and hybrid
 - Now measurable with state-of-the-art spacecraft: NASA's Magnetospheric MultiScale (MMS) mission (Burch et al., SSR, 2016)

Disadvantages

- "Closure problem": fluid moment equations do not close without assumptions
- Interpretation of the physical cause for the energy conversion is ambiguous
 - Multiple mechanisms can produce $J_\sigma\cdot E$ or $-(P_\sigma\cdot \nabla)\cdot u_\sigma$
 - It is often important to distinguish between energy conversion mechanisms we have to understand energy conversion as a function of f_{σ} !

Energy Conversion in Kinetic Theory

- Field-particle interaction approach (Klein and Howes, ApJL, 2016)
 - Particle energy per unit phase space volume w_{σ} is

$$w_{\sigma} = \frac{1}{2}m_{\sigma}v^2 f_{\sigma}$$

• w_{σ} evolves according to

$$\frac{\partial w_{\sigma}}{\partial t} + \nabla \cdot \left(\frac{1}{2}m_{\sigma}v^{2}\mathbf{v}f_{\sigma}\right) + \frac{q_{\sigma}v^{2}}{2}\left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c}\right) \cdot \nabla_{v}f_{\sigma} = \frac{1}{2}m_{\sigma}v^{2}C[f]$$
Energy flux Field-particle interaction Collisions

- Velocity space integral of field-particle interaction term is ${f J}_\sigma\cdot {f E}$
 - The field-particle interaction term describes energy conversion rate between fields and particles of species σ per *phase space* volume

Field-Particle Interaction

- Can identify not just the location of energy conversion but where in velocity space it occurs!
 - Crucial to identify the kinetic mechanism of the energy conversion
- Example Landau damping
 - Energy conversion causing the damping is by particles near the phase speed of the wave resonantly gaining energy from the effectively DC electric field

Field-Particle Interaction

Field-Particle in Observations/Simulations

Going Beyond Energy?

- Energy evolution is described by the second moment of f_{σ}
- The fundamental quantity in kinetic theory is f_{σ}
 - When not in LTE, there can be infinitely many moments of f_{σ} !
 - Any moment can change as f_{σ} evolves!
 - Is there a reason we care about the 2nd moment ... but not the 47th?!?

We argue a complete description of the dynamics requires <u>all</u> moments of f_{σ}

Burch et al., Science, 2016

An Entropic Approach

- Potential approaches
 - Direct study of f_{σ} using Vlasov/Boltzmann equation hard!
 - Study of fluid equations of all moments closure problem!
 - Perturbative approach, such as Chapman-Enskog, Onsager relations, Grad 13-moment model/Extended Irreversible Thermodynamics (EIT), gyrokinetics - only formally valid for weakly non-LTE systems
 - Entropic approach
 - Entropy S_{σ} in kinetic theory is related to the number W_{σ} of microstates equivalent to a given macrostate, $S_{\sigma} = k_B \ln W_{\sigma}$
 - Boltzmann derived kinetic entropy density s_{σ} for a system with fixed number of particles N_{σ} (e.g., Bellan's plasma textbook):

$$S_{\sigma} = \int s_{\sigma} d^3 r, \qquad s_{\sigma} = -k_B \int f_{\sigma} \ln\left(\frac{f_{\sigma} \Delta^3 r_{\sigma} \Delta^3 v_{\sigma}}{N_{\sigma}}\right) d^3 v$$

"Relative Entropy" and Higher Order Moments

• Entropy contains information about all the "internal" moments of f_{σ} (moments of powers of $v_j - u_j$)

$$s_{\sigma} = -k_B \int f_{\sigma} \ln \left(\frac{f_{\sigma} \Delta^3 r_{\sigma} \Delta^3 v_{\sigma}}{N_{\sigma}} \right) d^3 v$$

• Consider the "relative entropy" $s_{\sigma, rel}$ (Grad, J. Soc. Indust. Appl. Math., 1965)

$$s_{\sigma,\mathrm{rel}} = -k_B \int f_{\sigma} \ln\left(\frac{f_{\sigma}}{f_{\sigma M}}\right) d^3 v$$

- Related to "Kullback-Leibler divergence" (Kullback and Leibler, Ann. Math. Statist., 1951) in information theory
 - Measures statistical separation between distribution f_{σ} and a reference distribution $f_{\sigma M}$
 - $s_{\sigma,\text{rel}} = 0$ if f_{σ} is Maxwellian and $s_{\sigma,\text{rel}} < 0$ if not (Grad, J. Soc. Indust. Appl. Math., 1965)
 - It is a measure of non-Maxwellianity of f_{σ}
 - There are other non-Maxwellianity measures (Kaufmann and Paterson, JGR, 2009; Greco et al., PRE, 2012; Servidio et al., PRL, 2017; Liang et al., JPP, 2020)

Example - Landau Damping

•

Conservation of energy Conservation of entropy Entropy conversion in a 1D traveling ×10⁻³ $\times 10^{-5}$ 4 plasma wave with charge neutralizing ions ΔS 2 ΔS_p Conservation of energy gives final $\Delta E (mc^2)$ 2 ΔS_{v} -S(t=0)1 $\Delta S_{v,rel}$ temperature (known since 1960s) $\Delta S_{v,rel}(t_{\infty})$ 0 $\Delta S_{v,\varepsilon}$ 1- S(t) Conservation of entropy gives the final $\Delta S_{v,\varepsilon}(t_{\infty})$ -2 position space, velocity space, and -2 7.5 10.0 12.5 15.0 0.0 2.5 5.0 relative entropies (Perera et al., in prep) $t(1/\omega_{pe})$ 0.0 5.0 7.5 10.0 12.5 15.0 2.5 $t (1/\omega_{pe})$ Validated as a function of density $\Delta E_{internal}$ ΔE_{total} $\Delta E_{internal} + \Delta E_{bulk}$ ΔE_{field} ×10⁻³ perturbation in 1D-1V PIC simulations ΔE_{bulk} Theory **Final position** Simulatio ΔS_p See also Celebre et al., PoP, 2023 ٠ <u>×10⁻²</u> space entropy Simulation 2.150 • 0.8 1.0 ×10⁻¹
f_M(v) Theory 0.5 2,125 ••• v₀ – theory $6^{\times 10^{-2}}$ Final 2,100 0.4 **Final velocity** Phase temperature [°] 2.075 Space 0.3 space entropy Density 2.050 ΔS 0.2 -2,025 **Final relative** 0.1 • $\Delta S_{v,\varepsilon}$ ΔS_v rel 2.000 Theor Theory entropy -6 0.2 0.4 0.6 0.8 1.0 0.0 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 $\times 10^{-1}$ 0.2 0.6 0.8 1.0 ×10⁻¹ 1.00 ñ 26 ñ v/v" Perera et al., in prep

Time Evolution of Relative Entropy

• Time derivative of $s_{\sigma,\text{rel}}$ quantifies the rate at which the shape of f_{σ} changes (Cassak et al., PRL, 2023)

$\frac{d(s_{\sigma,\mathrm{rel}}/n_{\sigma})}{dt} > 0$	Evolving towards LTE (thermalizing)
$\frac{d(s_{\sigma,\mathrm{rel}}/n_{\sigma})}{dt} < 0$	Evolving away from LTE (more non-thermal)

We defined "Higher ORder Non-Equilibrium Terms" (HORNET) $P_{\sigma,\text{HORNET}}$ with dimensions of power density (Barbhuiya et al., PRE, submitted)

$$P_{\sigma,\text{HORNET}} = -n_{\sigma} \mathcal{T}_{\sigma} \frac{d}{dt} \left(\frac{s_{\sigma,\text{rel}}}{n_{\sigma}} \right)$$

- If initial f_{σ} is in LTE and final f_{σ} is not in LTE, $P_{\sigma,\mathrm{HORNET}}$ quantifies how non-adiabatic the process is
- Can make direct comparison with power densities, such as $J_{\sigma} \cdot E$ and pressure-strain interaction

AP photo by Quinlyn Baine / Washington State Department 27

Examples - Reconnection & Turbulence

- 2D collisionless particle-in-cell simulations of magnetic reconnection and decaying plasma turbulence (Barbhuiya et al., submitted)
- Results:
 - In reconnection, HORNET has the sign expected from knowledge of evolution of f_σ
 - HORNET can be locally important, but the net is small when integrated over the electron diffusion region
 - In turbulence simulation, system average can be up to 67% of power densities!
 - Non-LTE effects can be dynamically significant!

Kinetic Entropy Evolution

• Evolution equations for s_{σ} (e.g., Eyink, PRX, 2018) and s_{σ}/n_{σ} (Eu, JCP, 1995; Cassak et al., PRL, 2023)

$$\frac{\partial s_{\sigma}}{\partial t} + \nabla \cdot \mathcal{J}_{\sigma} = \dot{s}_{\sigma,\text{coll}} \qquad \qquad \left(\frac{d}{dt} \left(\frac{s_{\sigma}}{n_{\sigma}}\right) + \frac{\nabla \cdot \mathcal{J}_{\sigma,\text{th}}}{n_{\sigma}} = \frac{\dot{s}_{\sigma,\text{coll}}}{n_{\sigma}}\right)$$

• A trick: decompose s_{σ} into 2 terms, $s_{\sigma P}$ and $s_{\sigma V}$ (Mouhot & Villani, Acta Math, 2011; Liang et al., PoP, 2019):

$$s_{\sigma P} = -k_B n_\sigma \ln\left(\frac{n_\sigma \Delta^3 r_\sigma}{N_\sigma}\right) \qquad \qquad s_{\sigma V} = -k_B \int f_\sigma \ln\left(\frac{f_\sigma \Delta^3 v_\sigma}{n_\sigma}\right) d^3 v$$

and decompose $s_{\sigma V}/n_{\sigma}$ into two terms:

$$\frac{s_{\sigma V,\mathcal{E}}}{n_{\sigma}} = -k_B \int \frac{f_{\sigma}}{n_{\sigma}} \ln\left(\frac{f_{\sigma M} \Delta^3 v_{\sigma}}{n_{\sigma}}\right) d^3 v \qquad \qquad \frac{s_{\sigma, \text{rel}}}{n_{\sigma}} = -\frac{k_B}{n_{\sigma}} \int f_{\sigma} \ln\left(\frac{f_{\sigma}}{f_{\sigma M}}\right) d^3 v$$

- After suitable decomposition of ${\cal J}_\sigma$ and $\dot{s}_{\sigma,{
m coll}}$, top right equation becomes

$$\frac{dE_{\sigma,\text{int}}}{dt} + \frac{dE_{\sigma,\text{rel}}}{dt} + \frac{dW_{\sigma}}{dt} = \frac{dQ_{\sigma}}{dt} + \frac{dQ_{\sigma,\text{rel}}}{dt} + \dot{Q}_{\sigma,\text{coll,inter}} + \dot{Q}_{\sigma,\text{coll,rel}}$$

• The entropy equation contains the non-LTE generalization of the first law of thermodynamics (and more!)

29

 n_{σ}

Interpretations In Context of First Law

- Interpretation 1: In the gyrokinetic limit (Schekochihin et al., ApJS, 2009), $s_{\sigma,rel}$ is proportional to the "free energy" (Cassak et al., PRL, 2023, Celebre et al., PoP, 2023)
- Interpretation 2: Subtract out the non-LTE generalization of the first law of thermodynamics:

$$\frac{dE_{\sigma,\text{rel}}}{dt} = \frac{d\mathcal{Q}_{\sigma,\text{rel}}}{dt} + \dot{Q}_{\sigma,\text{coll,rel}} \qquad \qquad \frac{dE_{\sigma,\text{rel}}}{dt} = \mathcal{T}_{\sigma}\frac{d(s_{\sigma V,\text{rel}}/n_{\sigma})}{dt}$$

• First law of thermodynamics describes energy conversion; this equation supplements the first law for non-LTE systems, describing the time evolution the shape of f_{σ}

Interpretation 3: Combine the "relative" terms with their non-LTE thermodynamic counterparts, $dE_{\sigma,\text{gen}} = dE_{\sigma,\text{int}} + dE_{\sigma,\text{rel}}$ and $dQ_{\sigma,\text{gen}} = dQ_{\sigma} + dQ_{\sigma,\text{rel}}$:

$$\frac{dW_{\sigma}}{dt} + \frac{dE_{\sigma,\text{gen}}}{dt} = \frac{dQ_{\sigma,\text{gen}}}{dt} + \dot{Q}_{\sigma,\text{coll}}$$

• Interpret the first law of thermodynamics in LTE as linking the evolution of all the internal moments necessary to describe the system ($n_{\sigma} \leftrightarrow dW_{\sigma}, T_{\sigma} \leftrightarrow dE_{\sigma,int}$); then this expression generalizes the first law of thermodynamics for non-LTE systems that can in principle have an infinite number of internal moments

Changing the effective temperature (second moment)

Changing the dens

Cassak et al., PRL, 2023

- We call it "the first law of kinetic theory" (Cassak et al., PRL, 2023)
- First principles, only assumption is that N_{σ} is conserved, valid arbitrarily far from LTE, avoids the "closure problem"

phase space density evolution at the phase space density-level

31

Open Questions

- Can the absolute and relative energy conversion metrics and HORNET be predicted/understood for different ambient plasma parameters and for different physical phenomena? (e.g., Conley et al., JPP, 2023)
- How do the microphysical non-LTE effects described here fit in to meso-scale and macro-scale dynamics? Can non-LTE effects be captured as fluid closures, such as through machine learning?
- What are the role of body forces in changing internal energy?

How does one relax the assumption about the number of particles being conserved? Seems necessary for applications to low temperature plasmas!

Are the metrics accessible to observational or experimental scrutiny?

- MMS has been used to measure field-particle correlation (Chen et al., Nat. Comm., 2019) and pressure-strain interaction (numerous studies)
 - Pressure-strain at ion/MHD scales will be measured by NASA's HelioSwarm
- MMS has sufficient spatio-temporal resolution to directly measure kinetic entropy reasonably well (Argall et al., PoP, 2022; Lindberg et al., Entropy, 2022; Agapitov et al., arXiv, 2023)
 - · These observations did not include relative entropy

Open Questions

- How can non-LTE approaches describe power-law distributions from particle acceleration? It was recently addressed using entropic approach by Zhdankin (PRX, 2022; J Phys A 2023)
- How do collisions modify non-LTE energy conversion and produce irreversible dissipation (e.g., Pezzi et al., PoP, 2019; Matthaeus et al., ApJ, 2020; Pezzi et al., MNRAS, 2021; Celebre et al., PoP, 2023)?

How does entropic approach work for systems for which LTE distributions are not the best reference distributions (e.g., Lynden-Bell, MNRAS, 1967; Eu, JCP, 1995; Livadiotis, Europhys. Lett., 2018)?

Can the entropic approach be applied outside of plasma physics that employ kinetic theory?

- Jeans equation for stellar dynamics in galaxies, many body simulations of astrophysical systems, molecular dynamics simulations of microand nano-fluids for chemical and biological systems
- There is an analogous result for quantum statistical mechanics with applications to entanglement (Floerchinger and Haas, PRE, 2020)

Many body simulation

https://philippos.info/nbody/

Quantum Entanglement

Mark Garlick/Science Photo Library/Getty Images

Thank you!