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Recently, “phase diagrams” of magnetic reconnection were developed to graphically organize the
present knowledge of what type, or phase, of reconnection is dominant in systems with given
characteristic plasma parameters. Here, a number of considerations that require caution in using the
diagrams are pointed out. First, two known properties of reconnection are omitted from the
diagrams: the history dependence of reconnection and the absence of reconnection for small
Lundquist number. Second, the phase diagrams mask a number of features. For one, the predicted
transition to Hall reconnection should be thought of as an upper bound on the Lundquist number,
and it may happen for considerably smaller values. Second, reconnection is never “slow,” it is
always “fast” in the sense that the normalized reconnection rate is always at least 0.01. This has
important implications for reconnection onset models. Finally, the definition of the relevant
Lundquist number is nuanced and may differ greatly from the value based on characteristic scales.
These considerations are important for applications of the phase diagrams. This is demonstrated by
example for solar flares, where it is argued that it is unlikely that collisional reconnection can
occur in the corona.VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4811120]

I. INTRODUCTION

During magnetic reconnection, a change in magnetic
topology facilitates a conversion of magnetic energy into
kinetic and thermal energy. It occurs in solar flares, magneto-
spheric events, magnetically confined fusion devices, and
many astrophysical settings. Despite being known for nearly
60 years,1 it remains an unsolved grand challenge problem in
plasma physics because it entails dynamics on multiple
length and time scales. There have been many recent
reviews2–11 and books12–14 on various aspects of
reconnection.

One aspect enjoying renewed interest is the way recon-
nection is manifested in different parameter regimes and pre-
dicting the parameters for which each manifestation, or
phase, occurs. The phases in question are the Sweet-Parker
phase, the secondary island phase in which collisional recon-
nection operates with self-consistently generated plasmoids,
and the collisionless Hall phase.

The Sweet-Parker phase15,16 occurs when collisions
break the frozen-in condition. This model has been con-
firmed in many simulations17,18 and laboratory
experiments.19–21 However, it was realized early on that this
phase is much slow to explain observed energy release rates
in solar flares when extrapolated to coronal parameters.22

One thrust of reconnection research has been to learn what
makes reconnection faster than the Sweet-Parker phase for
high Lundquist number plasmas.

The Petschek model allowed faster reconnection due to
energy being converted at an open outflow region outside a
tiny dissipation region,23 but simulations showed it does not
occur with a uniform resistivity.17,18 It can occur due to a
localized resistivity,24–26 but since the fundamental physics
of what localizes the resistivity is not well understood, it will
not be further considered here. However, spawning from

numerical work on tokamaks, it was shown that collisionless
reconnection is faster than Sweet-Parker reconnection.27 The
Hall term is sufficient to develop the Petschek open outflow
region and causes reconnection to be fast.28 The reconnec-
tion rate in the Hall phase is independent of system size with
a normalized value of E ’ 0:1,29 which is comparable to
observed energy release rates in flares and substorms.30

There is now copious evidence from magnetospheric
observations31–38 and laboratory experiments39–42 that Hall
reconnection occurs.

The landscape recently changed with a better apprecia-
tion for the secondary island phase. It was long known that
when the Lundquist number S exceeds 104, Sweet-Parker
reconnection fundamentally changes through the self-
consistent appearance of plasmoids.17 Recent work showed
the growth of plasmoids is rapid.43,44 Plasmoids make recon-
nection rates faster,45,46 and numerical work thus far gives
normalized reconnection rates very close to 0.01.44,47–49 This
reconnection rate greatly exceeds the Sweet-Parker predic-
tion for large Lundquist numbers. It is critical to understand
how secondary islands affect reconnection.

To address this issue, the present knowledge of the
phases of reconnection as a function of system parameters
has been gathered in “phase diagrams.”5,50,51 These diagrams
have proven useful to predict which phase dominates for par-
ticular systems. However, there are a number of cautions for
applying them to real systems; we present two examples of
physics omitted from the diagrams and a number of potential
pitfalls that should be remembered when using the diagrams.

The construction and caveats of existing phase diagrams
are reviewed in Sec. II. A modified phase diagram is pre-
sented in Sec. III; two omissions from existing diagrams are
highlighted. Section IV contains a number of cautions when
interpreting the phase diagrams. Section V applies the dia-
grams to solar flares, showing that collisional reconnection is
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unlikely to occur in the solar corona and that the onset of so-
lar flares is unlikely to be explained solely by the microphy-
sics of two-dimensional reconnection. Open questions are
summarized in Sec. VI. To keep the treatment manageable,
aspects of reconnection outside of phase diagrams are not
treated here.

II. THE PHASE DIAGRAMS

An example of a phase diagram of magnetic reconnec-
tion is shown in Fig. 1. This is from Ref. 51, but the same
qualitative and quantitative picture was shown contempora-
neously in Refs. 5 and 50. The diagrams are parametrized as
a function of two system parameters: the Lundquist number
S ¼ 4pcAL=gc2 on the vertical axis and the ratio of the sys-
tem size L to the kinetic length scale dk, which is called k ¼
L=dk on the horizontal axis in Fig. 1. Here, cA is the Alfv!en
speed and g is the classical Spitzer resistivity (in cgs units).
The kinetic scale dk is the ion inertial scale di ¼ c=xpi when
the reconnection is anti-parallel (there is no out-of-plane
“guide” magnetic field)52–54 and the ion Larmor radius qs ¼
cs=Xci when the reconnection is component (there is a strong
guide field).53,55–58 Characteristic parameters for many set-
tings have been plotted on the diagram in Fig. 1.51

In Fig. 1, the phases discussed in Sec. I are represented.
The Sweet-Parker phase dominates for small S (below the
green line, referred to as “Single X-line collisional”). For
most parameter regimes, an increase in S at fixed k leads to
the self-consistent generation of secondary islands or plas-
moids (between the green and blue lines, which is referred to
as “Multiple X-line collisional”). Continuing to higher S, the
secondary islands lead to current sheets at the kinetic scale,
which induces a transition to the Hall phase (between the
blue and black lines, which is referred to as “Multiple X-line
hybrid”; this terminology will be discussed later). Finally at

high S, reconnection is “collisionless” and the Hall phase
proceeds (above the black line). The orange line gives an ap-
proximate distinction of the number of X-lines expected in
the Hall phase; we do not treat this transition further.

The transitions from phase to phase are drawn as abrupt,
which is based on previous simulation results.50,54,58,59 The
lines are calculated as follows. The empirically determined
condition for the transition from the Sweet-Parker to second-
ary island phase is17

S > Scrit ’ 104: (1)

This is drawn as the green line.
For the transition from the secondary island to the Hall

phase, it occurs when the thickness of the current layer is
smaller than dk. It was argued that the splintering of a Sweet-
Parker current sheet by secondary islands leads to Sweet-
Parker-like reconnection in the fragmented current
sheets,47,60 so the thickness of the current sheet on average is
the standard Sweet-Parker thickness dSP divided by the
square root of the number of plasmoids N.48 Simulations
thus far suggest that the number of islands scales as
N " S=Scrit,

44,48,49 so the transition to the Hall phase occurs
when this thickness equals the kinetic scale dk

dSPffiffiffiffi
N

p ’ dk: (2)

Using dSP " L=
ffiffiffi
S

p
,16 this can be written as S ’ 100k, which

is plotted as the blue line. Note, there is an ambiguity in the
literature about the definition of L; some call this the charac-
teristic system size, while others call it the half-length of the
Sweet-Parker layer which is likely to be half or a quarter of
the characteristic system size. We ignore this ambiguity.

FIG. 1. Phase diagram for reconnec-
tion. Reprinted with permission from
Phys. Plasmas 18, 111207 (2011).
Copyright 2011 American Institute of
Physics. See also similar diagrams in
Refs. 5 and 50.
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Finally, collisional reconnection does not occur if the
Sweet-Parker thickness is smaller than the kinetic scale dk;
the cutoff occurs when

dSP ’ dk: (3)

In such a regime, the Hall phase proceeds without collisional
plasmoids ever occurring. This can be written as S ’ k2,
which is plotted as the black line.

It should be noted that a number of assumptions are
used in the creation of the phase diagrams, which have been
noted previously. First, the theory is based on two-
dimensional (2D) steady-state reconnection theory and simu-
lations; three-dimensional (3D) effects are not included.5,51

Asymmetries and shear flow effects are not included.50,51

Reconnection sites are isolated; no line tying or other exter-
nal effects that interfere with reconnection setting up natu-
rally are included.51 Reconnection is assumed to be laminar5

in the sense that incoming magnetic field lines have not been
disturbed (though the self-consistent production of secondary
islands may feed back and disturb the upstream field lines46).
Thus, results on so-called turbulent reconnection61–68 are not
captured by the diagram. Also, the figure extrapolates what
has heretofore been determined from simulations;5,50 compu-
tational limitations have prevented studies above S ’ 106

and k ’ 103 # 104.

III. OMISSIONS FROM PHASE DIAGRAMS

Even within the context of 2D laminar reconnection,
existing phase diagrams do not include two physical aspects
of reconnection. Before considering applications, it is worth-
while to ensure the diagrams capture all known results on
reconnection. A modified phase diagram taking these addi-
tional considerations into account is shown in Fig. 2; the
new features are discussed in the following subsections.

A. No reconnection for small S

Existing phase diagrams suggest the Sweet-Parker phase
occurs for arbitrarily small Lundquist number. This is
unlikely the case––as the collisionality increases, at some
point magnetic diffusion dissipates energy fast enough that
reconnection does not occur. It was suggested on theoretical
grounds that this cutoff is near S " 100.69 The precise cutoff
has not been confirmed numerically, but it is unlikely to be
of import for space or fusion applications. Nonetheless, this
facet of reconnection should be included in the diagram; this
is represented by the white band labeled “no reconnection”
at low S in Fig. 2. In this plot, the cutoff has been drawn as
the black line independent of k at S ¼ 100.

B. History dependence of reconnection

By construction, the phase diagram is intended to pre-
scribe the phase of reconnection for a given set of system pa-
rameters. This assumes that a given set of parameters leads
to a unique phase of reconnection. However, this is not the
case;54 there are parameter regimes for which reconnection
is bistable, i.e., the reconnection phase is history depend-
ent.50,54,58,59,70 This occurs because the physical condition
necessary to cause a transition from a collisional phase to the
Hall phase is different from the condition to transition
back.54 The implication for the phase diagram is that it is not
possible to say that the reconnection phase is determined
fully by the two parameters S and k.

Existing diagrams give transitions from the Sweet-
Parker and secondary island phases to the Hall phase, but not
the back-transition from the Hall-phase to the collisional
phases. This transition was predicted previously,54 but the
analysis did not include the effect of secondary islands.
Since secondary islands arise when S > Scrit, the previous
analysis should remain valid for k < 100 since plasmoids do
not arise in such systems.

For larger systems with k > 100, one expects the back-
transition from the Hall phase to the secondary island phase
is the same condition as for the back-transition to the Sweet-
Parker phase50 since the effect causing the transition is for
resistivity to dominate at the electron scale.54,58 This occurs
when

gc2

4pd2
" vin;e

d
; (4)

where d is the thickness of the electron dissipation region
and vin;e is the inflow speed at the electron layer. Using d "
de for collisionless reconnection71 and vin;eBup;e " vin;iBup;i

from the constancy of the reconnection electric field in the
steady-state (where Bup;i and Bup;e are the magnetic field
strengths upstream of the ion and electron layers, respec-
tively) allows us to write Eq. (4) as

S " cABup;edi
vin;iBup;ide

k: (5)

Since vin;i " cA=10 (Refs. 28, 29, 52, and 72–74) during the
Hall phase

FIG. 2. Modified phase diagram of 2D reconnection including the history
dependence of reconnection and no reconnection for small S.
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S " 10
Bup;edi
Bup;ide

k: (6)

The fraction multiplying k is a function of electron physics
which is not expected to change much across parameters but
should be evaluated for any given system. To be definite for
the purposes of plotting on the phase diagram, experience
from simulations54,75 suggests that a reasonable estimate for
the fraction is approximately 2, which gives

S " 20k (7)

for the back-transition from the Hall to collisional reconnec-
tion phases. A number of numerical studies do not employ
electron inertia; a similar analysis for the back transition
condition would have to be carried out for such systems.

The dynamical behavior of reconnection is conveniently
plotted in a bifurcation diagram displaying the normalized
reconnection rate E as a function of gc2=4pcAL ¼ 1=S.
Figure 3(a) shows a bifurcation diagram for k < 100. For the
Sweet-Parker branch, consider a system starting with S very
small and increasing. Until S exceeds 100 or so, no reconnec-
tion occurs. After this, Sweet-Parker reconnection occurs
with its characteristic 1=S1=2 reconnection rate, drawn as the
solid line. The system continues in this phase until the thick-
ness of the layer dSP crosses kinetic scales, given by Eq. (3)
as S ¼ k2 and marked by the left-most tick in panel (a).
Below this value, the Sweet-Parker phase cannot occur, and
the system must be in the Hall phase. Conversely, a system
with S decreasing from high values stays in the Hall phase
until Eq. (7) is satisfied, where it transitions back to the
Sweet-Parker phase. Between an S of 20k and k2,

reconnection is bistable. This has been verified numeri-
cally50,54,58,59 and was described as a saddle-node
bifurcation.70

For k > 100 where secondary islands occur, the bifurca-
tion diagram is plotted in Fig. 3(b). For the Sweet-Parker
branch, there is no change until S reaches Scrit ’ 104. At this
point, the secondary island phase begins with a reconnection
rate of 0.01. This continues until the current sheets reach ki-
netic scales, which is given in Eq. (2) as S " 100k. Above
this S value, the system can only be in the Hall phase. The
horizontal dashed line denotes that plasmoids transiently
appear, but a transition to the Hall phase quickly occurs. For
the Hall branch, the dynamics is the same as for k < 100; the
Hall phase cannot occur below S ¼ 20k. A simple calcula-
tion reveals that the thickness of the layer after this transition
exceeds the kinetic scale, so the system is in the plasmoid
phase. As S is decreased below 104, the system transitions
back to the Sweet-Parker phase. From the bifurcation dia-
gram, we see that there is bistability for S between 20k and
100k. Note that a much smaller range of parameter space is
bistable when k < 100. As will be discussed in Sec. IVB,
the transition to the Hall phase at S " 100k is actually an
upper bound on the transition, so the region with bistability
could be smaller than predicted or even not exist entirely for
large k.

The transition from Hall to collisional reconnection from
Eq. (7) is plotted on the phase diagram as the purple line in
Fig. 2. The region below the blue line and above the purple
line is where reconnection is history dependent, as is labeled
on the diagram. The placement of the blue line will be dis-
cussed further in Sec. IVB. We note in passing that Refs. 5
and 51 also marked the parameters for which the reconnection
electric field exceeds the Dreicer field, precluding any type of
collisional reconnection from occurring (with a classical resis-
tivity). This is plotted as the red line in Fig. 2.

In conclusion, the phase diagram is not a plane that
uniquely identifies a particular phase with system parame-
ters. Rather, the diagram has a double valued cusp
catastrophe-type structure, as sketched in Fig. 4, which
allows there to be either of two stable solutions for given

FIG. 3. Expected bifurcation diagram of 2D reconnection for (a) k < 100
(sketched for k ’ 50) adapted from Refs. 54 and 70 and (b) k > 100
(sketched for k ’ 1; 000).

FIG. 4. Phase diagram of reconnection including history dependence of
reconnection. The vertical axis denotes reconnection rate E.

061207-4 P. A. Cassak and J. F. Drake Phys. Plasmas 20, 061207 (2013)



parameters. The sketches in Fig. 3 can be interpreted as sli-
ces of the cusp catastrophe diagram at fixed k (a) smaller or
(b) larger than 100. It is expected that there is an unstable
branch between the two stable ones; this has been found for
k < 100 (Ref. 76) but not for k > 100.

IV. INTERPRETATION CAUTIONS

The phase diagram is invaluable as a way to organize
the known results on 2D reconnection, but there are a few
places where it could engender inappropriate interpretations.
In this section, we discuss a number of issues.

A. The “plasmoid induced transition to Hall
reconnection” is not a separate phase

In the phase diagrams to date, the plasmoid induced
transition to Hall reconnection is given its own region in the
phase diagram; this is the part labelled “Multiple X-line
hybrid” between the blue and black lines in Fig. 1. We argue
that this regime is not genuinely a separate phase of recon-
nection. Rather, in such a system, if it is begun with a current
sheet wider than kinetic scales, the initial burst of reconnec-
tion will arise from collisional reconnection with secondary
islands. However, these secondary islands immediately take
the current sheet thickness below kinetic scales. Hall recon-
nection begins, and the system remains in the Hall phase for
the remainder of the evolution. Therefore, except for a very
short lived transient phase at onset, the phase of reconnection
in this wedge is essentially indistinguishable from “pure”
Hall reconnection (above the black line in Fig. 1). To empha-
size this point, the wedge in question has been colored the
same as the Hall phase in Fig. 2. The title “Multiple X-line
hybrid” is not appropriate for this wedge, and it should be
considered a part of the Hall phase.

B. The secondary island to Hall transition is an upper
bound on S

The blue line in Figs. 1 and 2 denotes the transition
from the secondary island phase to the Hall phase when sec-
ondary islands introduce length scales below kinetic scales,
as predicted in Eq. (2). However, this prediction should be
thought of as an upper bound on the transition; it may be
much lower on the diagram as discussed in Ref. 50.

The reason is that the theory used to develop Eq. (2) is
based on N secondary islands breaking the current sheet into
pieces of length L/N. This is true on average,48,49 but signifi-
cant deviations from the mean occur.50 The result of these
deviations is that some current sheet segments are shorter
and some are longer, and the shorter ones will be thinner and
arrive at kinetic scales before longer segments do. Once even
one reconnection site transitions to the Hall phase, the Hall
phase quickly dominates the dynamics.47,77 After the transi-
tion to the Hall phase, it is likely to stay in that phase (though
it has been suggested that it can flip back and forth with the
secondary island phase50).

As a result, the blue line in the diagram should be
treated as an upper bound, and it could actually be signifi-
cantly lower.50 Depending on how low the transition goes,

the region of bistability could completely disappear.
However, this will only be the case for large k, and bistabil-
ity continues to persist for smaller k. This process has not
been studied sufficiently well to make a reliable prediction
of where the line should be, but a preliminary numerical
study has confirmed that the back-transition occurs earlier
than expected from Eq. (7).78 This will be an important as-
pect for future study.

C. 2D reconnection is always fast!

The failure of the Sweet-Parker model to explain
observed energy release rates in solar flares and fusion devi-
ces led to the search for faster forms of reconnection. Sweet-
Parker reconnection has become synonymous with “slow”
reconnection. “Fast” reconnection has come to mean any-
thing with a reconnection rate of 0.01 or 0.1 when extrapo-
lated to realistic parameters, and “slow” reconnection is
anything that remains much slower.

The planar phase diagrams (Figs. 1 and 2) encourage
this interpretation by not showing the reconnection rate for
these phases. Note, however, that the Sweet-Parker phase is
only “slow” when the Sweet-Parker model is extrapolated to
high S conditions.

The situation is seen more clearly in the bifurcation dia-
grams in Fig. 3. Sweet-Parker reconnection only ever occurs
for S < 104. Therefore, the reconnection rate of Sweet-
Parker reconnection E ’ 1=S1=2 always exceeds 0.01. This is
a “fast” reconnection rate! This implies that within the
known results of 2D reconnection, there is no such thing as
“slow reconnection” if defined by the normalized reconnec-
tion rate. Implications for understanding reconnection in the
corona are discussed in Sec. V.

D. The definition of S is nuanced

The phase diagram has been used to assess what phase
of reconnection occurs for given systems by finding charac-
teristic values of the magnetic field and density (to estimate
the Alfv!en speed and kinetic length scales), temperature (to
estimate the resistivity), and system sizes to see where these
conditions lie in the phase diagram. It is well known that
characteristic values can be useful to get a big picture idea
but can be misleading for specific applications. Here we ex-
plicitly give examples of this as well as some more subtle
complications that can arise.

The Lundquist number S ¼ 4pcAL=gc2 of import to
reconnection requires information from different locations.
The resistivity is a strong function of temperature79 and
depends on density; these values should be the characteristic
values at the current sheet locally where the reconnection
occurs. These values may or may not be the same as large-
scale characteristic values. On the other hand, the length
scale L is a characteristic global scale which is a function of
external effects, such as footpoint motion in coronal
contexts,80–82 which may be difficult to predict for given sys-
tems and even evolve in time.

For the magnetic field strength, it has been shown in a
number of numerical studies that it should be measured im-
mediately upstream of the current sheet83–86 because this is
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the field strength that determines the rate of reconnection.
This value may be different than a global characteristic
scale; when this is the case, the reconnection is said to be
embedded.83 Since the upstream field can be very different
and the reconnection rate depends on a positive power of the
magnetic field strength (B2 for the Hall and secondary island
phases, B3=2 for the Sweet-Parker phase), this is potentially
very important in determining the expected rate of reconnec-
tion for a given system.

This raises an important question about the evolution of
reconnection. One might expect the Lundquist number for
the reconnection site to start small and increase due to exter-
nal motions increasing the magnetic field and/or system size.
Thus, it is unclear whether the high S, high k portion of the
phase diagram is ever relevant.87 It is very unlikely that, for
example, a current sheet with S " 108 exists when k " 1010;
it is more likely that a current sheet forms and undergoes
reconnection at a lower S (perhaps when S " Scrit), and sub-
sequent smaller layers become unstable in a hierarchical pro-
duction of islands.5,47,51,60 While islands of various sizes
have been reported,49 hierarchical island formation in the
picture of Ref. 60 has not been observed. A reasonable
theory of reconnection in such systems has been presented,51

but numerical validation is not yet complete.

V. IMPLICATIONS FOR SOLAR FLARES

As an example of how to use the phase diagrams, con-
sider solar flares. In Fig. 1, the solar corona lies significantly
(4–5 orders of magnitude) above the blue line, which puts it
firmly into the Hall phase (see also Fig. 2). Therefore, the
diagram suggests that reconnection only occurs in the Hall
phase in the corona, and it is unlikely that collisional recon-
nection can occur other than transiently.

Interestingly, plasmoids have been observed in coronal
current sheets.88,89 Similarly, supra-arcade downflows90,91

are downflowing plasma voids from the reconnection site
above flare loops and have been suggested to be related to
secondary islands. It was shown that they have a distribution
of sizes similar to predictions for collisional secondary
islands.92 However, the scales at which the plasmoids are
created are far below the scales that can be resolved in obser-
vations, so it is not known whether these plasmoids are a
result of collisional or collisionless reconnection. Plasmoids
also occur in the Hall phase;51,93–95 it is unknown whether
collisional and collisionless plasmoids are distributed simi-
larly.96,97 It is likely they do, so it is not clear that observed
plasmoids are evidence of collisional reconnection.

Another important aspect is the onset problem, which
addresses why reconnection in flares begins abruptly. An im-
portant part of this is understanding why reconnection does
not occur while enormous amounts of magnetic energy are
being stored. Based on what was known about the transition
from the Sweet-Parker to Hall phase, it was suggested that
this transition could give the abrupt onset and explain why
not much reconnection occurs before a flare.2,54,84 However,
as discussed in Sec. IVC, reconnection is always fast includ-
ing during collisional reconnection, so it is not clear how a
slow-to-fast transition would work.

One might consider whether embedded effects, as dis-
cussed in Sec. IVD could solve this problem. If the upstream
magnetic field is small, the normalized reconnection rate
could be fast, but the absolute reconnection rate (scaled by
cAB=c) could be slow. There are two problems with this sce-
nario. One is that this evolution is continuous rather than ab-
rupt, so it would have to be carefully shown that the
evolution leads to a rapidly changing absolute reconnection
rate. The second is that the time scale for a substantial mag-
netic field to convect into the reconnection site is far smaller
than the energy accumulation times,85 so fast reconnection
(via plasmoids or the Hall effect) would occur too rapidly to
allow a significant amount of energy to accumulate.

The conclusion at this point is that the phase diagrams
have helped suggest that it is not possible to explain recon-
nection onset in flares purely from the point of view of 2D
reconnection physics. It seems likely that effects not incorpo-
rated into the diagram are necessary. Examples include line-
tying98,99 and effects of the global change in the global mag-
netic field structure.82,100

VI. DISCUSSION

The introduction of phase diagrams5,50,51 into 2D mag-
netic reconnection research has provided a simple, visual
way to determine which phase of reconnection (Sweet-
Parker, collisional reconnection with secondary islands, or
Hall) dominates for a given set of system parameters. The
only parameters that need to be prescribed are the Lundquist
number S and the ratio of the global length scale to the ki-
netic scale, which has been called k.

In this paper, we have discussed a number of aspects of
the diagrams that require caution. First, two omissions from
the phase diagrams have been noted: reconnection does not
occur for small S and reconnection is history dependent.
Second, a number of aspects of the diagrams that are prone
to misinterpretation have been discussed: plasmoid induced
transitions to Hall reconnection should not be considered a
distinct phase because the plasmoids occur at early times and
are transient, the condition given for the transition from the
secondary island phase to the Hall phase is an upper bound
rather than precisely where it is drawn in the diagrams so
that the transition to the Hall phase may occur for vastly dif-
ferent parameters than the diagrams suggest, the normalized
reconnection rate for all phases of reconnection always
exceeds 0.01 and is therefore quite fast, and the relevant pa-
rameters controlling reconnection are nuanced and may dif-
fer from global characteristic scales.

These potential issues are relevant for applications, par-
ticularly for solar flares. The results suggest that collisional
reconnection is unlikely to occur in the corona for any appre-
ciable time, and it is impossible to explain flare onset within
the confines of 2D reconnection theory. Global and 3D
effects not incorporated in the phase diagrams likely need to
be taken into account to develop a full understanding.

Even within the confines of a phase diagram for 2D
reconnection, many aspects remain to be fully understood.
Since the boundary marking the onset of the Hall phase due
to secondary islands [the blue line in Figs. 1 and 2] is an
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upper bound, it is extremely important to develop a better
understanding of when this transition occurs and how it
depends on system parameters. Another very important as-
pect is verifying the diagram for larger values of S and k
than have been able to be accomplished thus far and, more
importantly, to determine whether the high S, high k regime
is ever relevant or whether the evolution through local pa-
rameters effectively keeps the system at smaller values.
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