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A Sweet-Parker-type scaling analysis for asymmetric antiparallel reconnection �in which the
reconnecting magnetic field strengths and plasma densities are different on opposite sides of the
dissipation region� is performed. Scaling laws for the reconnection rate, outflow speed, the density
of the outflow, and the structure of the dissipation region are derived from first principles. These
results are independent of the dissipation mechanism. It is shown that a generic feature of
asymmetric reconnection is that the X-line and stagnation point are not colocated, leading to a bulk
flow of plasma across the X-line. The scaling laws are verified using two-dimensional resistive
magnetohydrodynamics numerical simulations for the special case of asymmetric magnetic fields
with symmetric density. Observational signatures and applications to reconnection in the
magnetosphere are discussed. © 2007 American Institute of Physics. �DOI: 10.1063/1.2795630�

I. INTRODUCTION

Magnetic reconnection converts magnetic energy into
particle and flow energy in many space, astrophysical, and
laboratory applications. Examples include solar flares, mag-
netic substorms, and sawtooth crashes in fusion devices.
Models of reconnection have evolved from the Sweet-Parker
model1,2 of collisional reconnection, which is far too slow to
explain observed phenomena, to the Petschek model,3 where
slow shocks mediate fast reconnection, to collisionless �Hall�
reconnection �see, for example, Refs. 4–6�, which has en-
joyed wide success in explaining laboratory and magneto-
spheric observations.

Reconnection described by these models is usually stud-
ied in simplified geometries and ambient conditions, namely
in two dimensions with the plasmas on either side of the
dissipation region having identical densities and magnetic
field strengths. However, this canonical description is rarely
realized in nature.

The most glaring example of an asymmetry across the
dissipation region is at the dayside of the magnetopause,
where the magnetosheath plasma �with a magnetic field of
20–30 nT and a density of 20–30 cm−3� reconnects with the
magnetospheric plasma �with a magnetic field of 50–60 nT
and a density of 0.3–0.5 cm−3�.7,8 Satellite observations of
flux transfer events �FTEs�,9,10 short-lived reconnection
events at the dayside magnetopause, reveal asymmetric sig-
natures in a significant fraction of events.11 Also, at the onset
of geomagnetic storms, a cold and dense ��50 cm−3� plasma
from the plasmasphere convects toward the dayside, forming
a “plasmaspheric drainage plume,”12 which can affect recon-
nection at the dayside.13 Asymmetric magnetic reconnection
has also been observed in the distant magnetotail14 where the
densities can be different by a factor of 10 due to asymmetric
mass loading from the dayside during periods of dawnward
interplanetary magnetic field �IMF�,15 and in the solar wind16

downstream of the Earth, where the Alfvén speed on oppo-
site sides of the reconnection outflow can be different by up
to a factor of 2. Other examples are in tokamak plasmas,

where the density and magnetic field strength profiles change
with major radius, making reconnection manifestly asym-
metric, and in the solar corona when an emergent flux tube
reconnects with overlying arcades.

The effect of asymmetric conditions �in particular at the
magnetopause� on the Petschek model of reconnection was
addressed soon after its introduction.17 It was suggested that
as one crosses the dissipation region, the slow shocks medi-
ating symmetric reconnection become an intermediate wave
at which the field changes directions followed by a slow
expansion fan at which the gas pressure drops. Numerous
studies since then have addressed the shock and wave struc-
ture of Petschek reconnection at the magnetopause using
fluid,8,18–25 hybrid,21,26–31 and particle32 numerical simula-
tions and analytic theory.33–37 Another relevant study is a
hybrid simulation of flux rope and core field generation at
the magnetopause.38

Surprisingly, despite the interest in the shock structure,
few basic studies of the properties of the dissipation region
have been performed. Swisdak et al.39 studied the effect on
the reconnection rate of a density gradient across the dissi-
pation region during reconnection with an out-of-plane
�guide� magnetic field using particle simulations. More re-
cently, Borovsky and Hesse40 numerically studied the scaling
of reconnection with asymmetric densities using magnetohy-
drodynamic simulations with anomalous resistivity. Swisdak
and Drake41 presented a model for determining in which
plane reconnection occurs between magnetic fields of arbi-
trary strength and orientation. However, a general theory of
the structure of the dissipation region and the rate of recon-
nection during asymmetric reconnection does not currently
exist.

This paper intends to fill that void by developing a the-
oretical framework for studies of asymmetric reconnection.
We derive analytical expressions from first principles using a
Sweet-Parker-type scaling analysis. For simplicity, we treat
two-dimensional antiparallel magnetic reconnection. When
applied to a collisional plasma, the results generalize the
classical Sweet-Parker model to allow for asymmetric mag-
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netic fields and densities. However, most of the scaling re-
sults are independent of the dissipation mechanism and,
therefore, apply to collisionless and anomalous resistivity
models of asymmetric reconnection as well.

Furthermore, we show that a generic feature of asym-
metric reconnection is that the X-line and stagnation point
are not colocated. This implies that there is a bulk flow of
plasma through the X-line, as has been noted in previous
numerical studies and is often observed at the dayside mag-
netopause. We provide the physical foundation for this effect.

General scaling laws for asymmetric reconnection are
derived in Sec. II and verified with resistive magnetohydro-
dynamic numerical simulations in Sec. III. Observational
signatures of asymmetric reconnection are discussed in Sec.
IV. Conclusions and applications to magnetospheric observa-
tions are discussed in Sec. V. This paper does not address the
shock structure of asymmetric reconnection.

II. DERIVATION OF SCALING LAWS

The standard Sweet-Parker scaling laws for collisional
reconnection can be obtained using the laws of conservation
of mass, conservation of energy, and conservation of mag-
netic flux. For asymmetric reconnection, care must be taken.
To remain in a steady state, the magnetic flux entering the
dissipation region from the two upstream edges of the dissi-
pation region must be equal. If the upstream magnetic field
strengths are different on either side of the dissipation region,
the flux from the stronger field plasma must enter more
slowly than the flux from the weaker field plasma. As such, it
is the flux of mass and energy through the dissipation region
that must be balanced to achieve a steady state.

Scaling laws for the outflow speed and the reconnection
rate can be derived by balancing the flux of mass, energy,
and magnetic flux into and out of the dissipation region. A
formal derivation uses the equations of magnetohydrody-
namics �MHD� in conservative form,

��
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where � is the plasma mass density, v is the flow velocity, P
is the pressure, B is the magnetic field, E is the electric field,
E= �1/2��v2+ P / ��−1�+B2 /8� is the total energy density,
and I is the unit tensor. The ratio of specific heats is �, and R
contains all the other terms in the generalized Ohm’s law.

Integrate the evolution equations over an arbitrary vol-
ume V. We consider reconnection in a steady state, for which
all temporal derivatives vanish. Using Gauss’ theorem, the
evolution equations for mass, momentum, and energy give
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where S is the surface of V and dS is the area element point-
ing in the outward normal direction. Using Stokes’ theorem,
Faraday’s law gives



S

dS � E = 0. �9�

These four equations are valid for any volume V, pro-
vided a steady state has been reached. Consider two-
dimensional reconnection where there is no variation in the
out-of-plane direction. Model the dissipation region as a box
of half-width � and half-length L, as depicted as the outer
dotted line in Fig. 1. Let V extend an arbitrary height h out of
the plane, with edges in the plane defined by the rectangle
ABCD in Fig. 1. The requirement of mass continuity �Eq.
�6�� for this volume gives

L��1v1 + �2v2� � 2���outvout� , �10�

where the “1”, “2,” and “out” subscripts refer to properties
upstream and above, upstream and below, and in the outflow
region, respectively. By symmetry, the mass flux through the
midplane �BD� is zero. We use � to mean “scales-like.” A
similar analysis of the momentum equation �Eq. �7�� only
enforces pressure balance across and along the current sheet.

FIG. 1. �Color online� Schematic diagram of the dissipation region during
asymmetric reconnection. Quantities above and below the dissipation region
have a subscript of “1” and “2,” respectively. Quantities describing the out-
flow have “out” subscripts. The magnetic field lines are the �blue� solid
lines, the velocity flow is the �red� dashed lines. The points X and S mark the
X-line and the stagnation point, which are not colocated. The edges of the
dissipation region and lines through the X-line and stagnation point are
marked by dotted lines.
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The energy equation �Eq. �8�� evaluated for the same vol-
ume, assuming the pressure does not play a major role in
energy conversion for scaling purposes, gives

L� B1
2

8�
v1 +

B2
2

8�
v2� � 2��1

2
�outvout

2 �vout, �11�

where B1 and B2 are the magnetic field strengths upstream
above and upstream below the dissipation region. The domi-
nant contribution to the energy density E is magnetic on the
upstream edges �AB and CD�, is kinetic on the downstream
edge �AC�, and vanishes at the midplane �BD�. The term
proportional to v ·B in the energy flux equation is negligible
because B ·dS�0. Evaluating the component of Faraday’s
law �Eq. �9�� in the outflow direction for the same volume
gives

v1B1 � v2B2, �12�

where we use Eq. �5� and note that R vanishes at the edge of
the dissipation region by definition.

Treating the upstream values of density and magnetic
field strength as known or measurable, we immediately ob-
tain an expression for the outflow speed vout. Dividing Eq.
�11� by Eq. �10� and eliminating v2 using Eq. �12� yields

vout
2 �

B1B2

4�

B1 + B2

�1B2 + �2B1
. �13�

Note, this relation is invariant under a relabeling of 1 and 2,
as it must be. This equation was rederived independently for
a different application in Ref. 41, which we discuss in Sec. V.
In the limit of symmetric fields and densities �B1=B2�B and
�1=�2���, Eq. �13� reduces to the standard Sweet-Parker
result of vout

2 �B2 /4��. When the magnetic fields are sym-
metric �B1=B2�B� but the densities are asymmetric, it re-
duces to

vout
2 �

B2

4���1 + �2�/2
, �14�

the Alfvén speed based on the arithmetic mean of the densi-
ties. When the densities are symmetric ��1=�2��� but the
magnetic fields are asymmetric, Eq. �13� reduces to

vout
2 �

B1B2

4��
, �15�

the Alfvén speed based on the geometric mean of the up-
stream magnetic fields.

Returning to Eq. �11�, we find an expression for the re-
connection rate E�v1B1 /c�v2B2 /c. Eliminating the inflow
velocities and using Eq. �12� gives

E � � �outB1B2

�1B2 + �2B1
�vout

c

2�

L
, �16�

where we used Eq. �13� to eliminate two factors of vout.
The density �out in the outflow region is difficult to cal-

culate from first principles. We assume that �out scales like
the effective mass density of a newly reconnected flux tube,
as was assumed for the symmetric magnetic field case in Ref.
40. Consider the reconnection of two flux tubes containing
magnetic flux �. If the magnetic field strengths are different,

the cross-sectional area A of the flux tubes is different �see
Fig. 2�. In particular, ��B1A1�B2A2. Then, the effective
mass density is the total mass �1A1L+�2A2L divided by the
total volume A1L+A2L. Using A2�A1B1 /B2, one finds

�out �
�1B2 + �2B1

B1 + B2
. �17�

When the upstream densities are symmetric, �out is their
common value independent of the fields, and when the fields
are symmetric, �out is the average of the upstream densities,
as is to be expected. That �out scales like the effective mass
density of the newly reconnected flux tube assumes that the
volume of the flux tube does not change while the mass in
the flux tube redistributes itself. �This assumption is equiva-
lent to assuming that the volume of plasma flowing into the
dissipation region per unit time scales like the volume of
plasma flowing out per unit time: Lv1+Lv2�2�vout.� Equa-
tion �17� may need to be modified for strongly asymmetric
systems as the assumptions may not be tenable.

The expressions for the outflow speed and reconnection
rate simplify using the expression for �out in Eq. �17�. In
particular, eliminating �out from Eq. �13� gives

vout
2 �

B1B2

4��out
. �18�

That is, the general outflow speed scales like the Alfvén
speed based on the geometric mean of the upstream fields
and the density of the outflow. Eliminating �out from Eq. �16�
gives

E � � B1B2

B1 + B2
�vout

c

2�

L
. �19�

This expression reveals that the reconnection rate is a prod-
uct of the aspect ratio of the dissipation region, the outflow
speed, and an effective magnetic field strength given by the
“reduced” field. We remind the reader that Eqs. �13� and �16�

FIG. 2. A newly reconnected flux tube during asymmetric reconnection. The
cross-sectional areas are A1 and A2 and the length is L.
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are valid independent of the assumptions made about the
outflow density.

It is important to note that the dissipation mechanism has
not been specified, so the results thus far describe asymmet-
ric reconnection in general.

We now turn to the structure of the dissipation region. In
particular, where is the X-line located? Using Eq. �12�, one
sees that the strong magnetic field is convected into the dis-
sipation region more slowly than the weak magnetic field.
From this result, one might expect the X-line to be offset
from the center of the dissipation region toward the strong
field side. However, this is not the case. The crux is that
while the velocity is greater on the weak field side, the flux
of magnetic energy �vB2 is smaller. Since there is no flux of
magnetic energy across the X-line and the outflux of kinetic
energy is relatively evenly distributed across the outflow
edge of the dissipation region, the X-line is actually offset
toward the weak field side.

Interestingly, the same line of reasoning applies to the
location of the stagnation point of the flow within the dissi-
pation region. The stagnation point is displaced from the
center of the dissipation region to whichever side has the
smaller mass flux into the dissipation region. Since the mass
flux ��v�� /B, the stagnation point is displaced to which-
ever side has a smaller � /B. This can be either toward the
strong or weak magnetic field side depending on the densi-
ties.

The immediate corollary to these two arguments is that,
unlike in symmetric reconnection, the X-line and stagnation
point need not be colocated and, in general, will not be. This
implies that there is a net bulk flow of plasma across the
X-line during asymmetric reconnection. This is intimately
related to the result of Ref. 17, which stated that the waves
available to change the field and density require two steps
�an intermediate wave and a slow expansion fan�.

Once again, the present arguments are independent of
the dissipation mechanism. Therefore, the decoupling of the
X-line and the stagnation point is a generic feature of asym-
metric reconnection.

The interior structure of the dissipation region, in light of
the present discussion, is sketched in Fig. 1. The dotted line
through WX is the neutral line where the magnetic field goes
through zero, with the X-line at its center �marked X�. The
distance from the top and bottom edges of the dissipation
region to the X-line �BX and DX� is defined as �X1 and �X2.
The dotted line through ST is where the inflow velocity goes
through zero, with the stagnation point at its center �marked
S�. The distance from the upstream edges to the stagnation
point �BS and DS� is defined as �S1 and �S2. These length
scales satisfy the relationship

2� = �X1 + �X2 = �S1 + �S2. �20�

We define the distance between the X-line and the stagnation
point as �XS. Therefore,

�XS = �S1 − �X1 = �X2 − �S2. �21�

We now turn to deriving analytic expressions for the
location of the X-line and stagnation point within the dissi-
pation region. The analysis proceeds by returning to the con-

servation laws in Eqs. �6�–�9�, which hold for arbitrary vol-
umes. For the energy equation �Eq. �8��, we choose the
volume extending from the top edge to the neutral line �la-
beled ABXW in Fig. 1�. The key is that the magnetic energy
through the neutral line WX is zero, the flow energy across it
can be shown to be negligible, and there is no flux through
the midplane BX by symmetry. Therefore, energy balance
requires

L� B1
2

8�
v1� � �X1�1

2
�outvout

2 �vout. �22�

Similarly, using the lower volume CDST gives

L� B2
2

8�
v2� � �X2�1

2
�outvout

2 �vout. �23�

The sum of these two equations reproduces Eq. �11�.
For the mass equation �Eq. �6��, we choose the volume

extending from the top edge to the line through the stagna-
tion point, labeled ABST in Fig. 1. Since the mass flux across
the stagnation point ST and the midplane BS vanishes, mass
conservation requires

L��1v1� � �S1��outvout� . �24�

Similarly, using the lower volume CDST gives

L��2v2� � �S2��outvout� . �25�

The sum of these two equations reproduces Eq. �10�.
Taking the ratio of Eq. �23� to Eq. �22� and using Eq.

�12� yields

�X2

�X1
�

B2

B1
. �26�

This quantifies the result that the X-line is offset toward the
plasma with the weaker magnetic field. Similarly, the ratio of
Eq. �25� to Eq. �24� gives

�S2

�S1
�

�2B1

�1B2
, �27�

which quantifies the result that the stagnation point is offset
toward whichever side has the smaller value of � /B. We
return to the relative location of the X-line and stagnation
point in Sec. IV.

Other relationships between these length scales are ob-
tained by taking the ratio of Eq. �22� to Eq. �24� and Eq. �23�
to Eq. �25�, giving

�X1

�S1
�

�outB1

�1B2
and

�X2

�S2
�

�outB2

�2B1
, �28�

where we used Eq. �18�. Similarly, the ratio of Eq. �22� to
Eq. �25� and Eq. �23� to Eq. �24� gives

�X1

�S2
�

�out

�2
and

�X2

�S1
�

�out

�1
. �29�

Also, using Eqs. �26� and �21�, one can show
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�XS

�X1
�

�1B2 − �outB1

�outB1
, �30�

which relates the distance from the X-line to the stagnation
point to the upstream densities and magnetic field strengths.
Once again, we reiterate that the dissipation mechanism has
not entered the present analysis, so Eqs. �22�–�30� hold for
asymmetric fast reconnection in general. We also note that
Eqs. �26� and �27� are valid independent of the assumptions
used in estimating �out in Eq. �17�.

Just as in symmetric reconnection, in order to find the
reconnection rate and absolute size of the dissipation region
in terms of upstream quantities, a dissipation mechanism
must finally be introduced. Since complete theories of colli-
sionless or anomalous resistivity mediated reconnection do
not even exist for symmetric reconnection, and for the pur-
poses of making comparisons to numerical simulations, we
consider asymmetric collisional reconnection, thereby ex-
tending the Sweet-Parker model to asymmetric systems.
Thus, let R=�J in Eq. �5�, where � is a constant and uni-
form resistivity and J= �c /4��� �B is the current density.

Evaluating the outflow component of Eq. �9� over the
domain ABXW going through the neutral line and using Eq.
�5�, one finds v1B1 /c��JX, where JX is the out-of-plane
current density at the X-line. Taking JX�cB1 /4��X1, this
gives

v1 �
�c2

4��X1
. �31�

�By a similar argument, v2��c2 /4��X2.� Beginning from
Eq. �19� and using Eq. �20�, one can eliminate �X2 using Eq.
�26�, leaving

v1 � �B2

B1
�vout

�X1

L
,

where we used E�v1B1 /c. Solving the previous two equa-
tions simultaneously gives

�X1 �
 �c2L

4�vout

B1

B2
. �32�

Using Eq. �26�,

�X2 �
 �c2L

4�vout

B2

B1
. �33�

Using Eqs. �31�, �32�, and �12� gives

v1 �
�c2vout

4�L

B2

B1
and v2 �
�c2vout

4�L

B1

B2
. �34�

Finally, the reconnection rate is, using E�v1B1 /c,

E �
1

c

�c2vout

4�L
B1B2. �35�

Expressions �32�–�35�, with vout given by Eq. �13�, specify
the salient quantities, specifically for asymmetric Sweet-
Parker reconnection, in terms of the magnetic fields and den-
sities upstream of the dissipation region. The length of the
dissipation region L for Sweet-Parker reconnection extends

to length scales of the order of the system size,42–44 and is
taken as a known quantity. Note, the expression for the re-
connection rate is invariant under an interchange of “1” and
“2,” as it must be. Further, these results reduce to the stan-
dard Sweet-Parker results in the symmetric limit, as they
must.

III. NUMERICAL SIMULATION RESULTS

The scaling results from the preceding section are veri-
fied in the limit of asymmetric magnetic fields with symmet-
ric densities in a collisional plasma. We use the massively
parallel code F3D

45 to perform two-dimensional numerical
simulations of resistive MHD. Equations �1�–�5� are evolved
explicitly using the trapezoidal leapfrog method in time and
finite difference in space. Magnetic field strengths, mass den-
sities, velocities, lengths, times, electric fields, pressures, and
resistivities are normalized to representative values of B0, �0,
the Alfvén speed cA0=B0 / �4��0�1/2, L0, t0=L0 /cA0, E0

=cA0B0 /c, P0=�0cA0
2 , and �0=4�cA0L0 /c2, respectively.

The computational domain is of size Lx�Lz=409.6
�204.8L0 with a cell size of 0.1�0.1L0 and uses periodic
boundary conditions. The initial magnetic field profile is a
double tearing mode configuration,

Bx�z� = �− B01 tanh� z − Lz/4

w0
� Lz

4
	 z 	

Lz

2

− B02 tanh� z − Lz/4

w0
� 0 	 z 	

Lz

4
� �36�

with an initial current sheet width of w0=2.0L0, and the same
field reflected about z=0 for −Lz /2	z	0. Simulations are
performed for �B01,B02�= �1,1� , �1,2� , �1,3� , �1,4� , �1,5�,
and �2,4� in units of B0. We initially have a uniform density
of �0 with the pressure profile uniquely determined by en-
forcing total global pressure balance and taking the mini-
mum value of the plasma 
min=8�P /Bmax

2 =1, where Bmax

=max�B01,B02�. Therefore, the initial temperature profile is
asymmetric. Reconnection is initiated using a coherent
magnetic perturbation of B=−�0.012B0Lz /2��ẑ
���sin�2�x /Lx�sin2�2�z /Lz��. The resistivity �=0.05�0 is
constant and uniform and the ratio of specific heats � is 5/3.
There is no viscosity, but fourth-order diffusion with coeffi-
cient 0.0001L0

3cA0 is used in all of the equations to damp
noise at the grid scale. Initial random perturbations on the
magnetic field of amplitude either 0.00005 or 0.0001 B0 and
on the velocity of amplitude 0.08 cA0 break the symmetry so
that any secondary magnetic islands that form are ejected
from the X-line.

The simulations are evolved until transient effects have
subsided and a quasi-steady-state is achieved. The recon-
nected flux � as a function of time is shown for each of the
six simulations in Fig. 3. The out-of-plane current density Jy

is plotted in Fig. 4�a� for the �B01,B02�= �1,3� simulation,
though this plot is representative of all of the asymmetric
simulations. There is a characteristic “bulge” of the island as
it grows preferentially into the weak field side, as has been
reported in essentially every previous study of reconnection
with asymmetric magnetic fields.
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An important result of the present study is the elucida-
tion of the decoupling of the X-line and the stagnation point.
That this is the case is shown in Fig. 4�b� from the same
�1,3� simulation. Plotted is a cut of Jy across the X-line
�scaled up by a factor of 3 to make it more visible� and the
reconnecting magnetic field Bx as the dotted and �blue� solid
lines, respectively. The inflow velocity vz is plotted as the
�red� dashed line using the vertical scale on the right. Care
must be taken to measure vz because the X-line is moving in
the inflow direction �see the discussion in the following sec-
tion�. The velocity of the X-line is determined as the time
rate of change of the y coordinate of the X-line, which is
0.007 for the time slice plotted. The velocity data above,
therefore, have been shifted up by 0.007 in order to be in the

frame of the moving X-line. Clearly, there is a nonzero ve-
locity at the X-line, and the stagnation point occurs at a
distinct point shifted toward the strong field plasma, as pre-
dicted by the theory.

Notice that the peak of Jy does not occur at the X-line,
denoted by the vertical dashed line. This is interesting in
light of the required balance in Ohm’s law. Figure 4�c� shows
the different terms in Ohm’s law; the resistive contribution
�Jy is the dotted line, the convective contribution vzBx �in
the moving frame of the X-line� is the �blue� solid line, and
their sum is the dashed line. The total electric field is essen-
tially uniform, as it must be in the steady state. Note, how-
ever, that in between the X-line and the stagnation point, the
resistive term is larger than the reconnection electric field
and the convection term is negative. Therefore, the resistivity
actually serves to increase the magnetic field immediately to
the left of the X-line, unlike in symmetric Sweet-Parker re-
connection.

To perform quantitative comparisons with the theory in
the preceding section, salient quantities are measured by av-
eraging over a suitably steady time. These times are marked
by boxes in Fig. 3. The reconnection electric field E is mea-
sured as �JX, where JX is the out-of-plane current density
evaluated at the X-line. The outflow speed vout is measured
as the average of the maximum total velocity from the left
and right sides of the dissipation region. The length of the
dissipation region L is measured as the half-width at 1 /e of
the maximum of the out-of-plane current density Jy in a cut
across the X-line in the outflow direction.

The measurements of the thicknesses � and the magnetic
field strengths B1 and B2 are challenging due to an extra
piece of physics specific to collisional reconnection. In the
numerical simulations, a purely resistive layer is observed on
the strong field side, below the edge labeled CD in Fig. 1. In

FIG. 3. Reconnected flux � as a function of time t for each of the simula-
tions performed. The boxes denote the times over which steady-state quan-
tities are averaged.

FIG. 4. �Color online� �a� The out-of-plane current den-
sity Jy �grayscale� and the magnetic field lines �the con-
tours� for the �B01 ,B02�= �1,3� simulation. The aspect
ratio of the plot is not to scale. �b� A cut across the
X-line in the inflow �z� direction of the reconnecting
magnetic field Bx �solid line, blue�, the out-of-plane cur-
rent density Jy �dotted line�, and the inflow speed vz in
the frame of the moving X-line �dashed line, red�. We
have scaled Jy by a factor of 3 to make it more visible.
The vertical dashed line marks the X-line. The peak in
Jy does not occur at the X-line and vz does not go
through zero at the X-line. �c� The terms in Ohm’s law
for the same simulation, namely the convection term in
the frame of the moving X-line �solid line, blue�, the
resistive term �dotted line�, and their sum �dashed line�.
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this diffusive layer, there is no outflow and the inflow veloc-
ity does not change, but the magnetic field diffuses, leaving
the field at the edge of the dissipation region �the salient field
for determining the outflow speed� smaller than its
asymptotic value B02. In other words, the outflow jet is nar-
rower than the out-of-plane current on the strong field side.
As such, the method often used to measure the thickness, the
half-width at half-maximum of the out-of-plane current den-
sity, overestimates the value. Therefore, care must be taken
to eliminate the effect of the purely resistive part of the cur-
rent sheet in making these measurements.

In light of the above discussion, we measure the thick-
nesses �X1 and �X2 by finding the maximum in the out-of-
plane current density Jy in a cut across the X-line. �Note, the
maximum of Jy does not occur at the X-line; see Fig. 4�b��.
Then, �X1 �the value on the weak field side� is defined as the
distance from the half-maximum of Jy to the X-line. See the
box to the right of the X-line in Fig. 4�b�. To eliminate the
purely diffusive part of the current on the strong field side,
we assume that the current is symmetric about its maximum,
and find where the half-maximum would be. Then, �X2 is the
distance from that point to the X-line. See the box to the left
of the X-line in Fig. 4�b�. The effect is not a large one for the
smaller field simulations, but becomes more important for
the �B01,B02�= �1,4� and �1,5� simulations. The quantity �XS

is measured directly as the distance between the X-line and
the point on the strong field side where Jy goes through the
same value as it does at the X-line. Equations �20� and �21�
are used to calculate �S1 and �S2.

The upstream magnetic field strengths B1 and B2 are
measured by taking a cut in the z direction of the outflow
velocity a distance of �3/4�L downstream of the X-line, find-
ing where the outflow has fallen off to 1/e2�0.13 of its peak
value both above and below the neutral line, mapping these
distances back to the X-line, and measuring the magnetic
field strength at this distance above and below the X-line.
This method ensures that the measured value is representa-
tive of the field driving the outflow. The reason we go only
3/4 of the way down the sheet to make this measurement is
that the opening out of the sheet into the island skews the
measurement if taken too far down the sheet. If instead of the
present method we measure the upstream field by finding the
field where the symmetrized out-of-plane current goes
through 1/e2 of its maximum, the results are not very differ-
ent. The time-averaged inflow velocities in the frame of the
moving X-line are calculated indirectly as the predicted re-
connection rate E divided by the appropriate upstream field
B1 or B2.

The measured quantities are given as the first eight rows
in Table I. The uncertainties of the measured quantities are
estimated as the standard deviation of the time average. The
uncertainties for E, vout, L, B, and � are approximately 5%,
4%, 7%, 6%, and 7%, respectively.

To check the theory in Sec. II, we test the veracity of the
conservation laws for energy and mass. The plots in Fig. 5
show the energy conservation �a� through the whole dissipa-
tion region �the box ABCD in Fig. 1 as described by Eq.
�11��, �b� above the neutral line �ABXW as described by Eq.
�22��, and �c� below the neutral line �CDXW as described by

Eq. �23�� and the mass conservation, �d� through the whole
dissipation region �ABCD as described by Eq. �10��, �e�
above the line through the stagnation point �ABST as de-
scribed by Eq. �24��, and �f� below the line through the stag-
nation point �CDST as described by Eq. �25��. For each plot,
the influx is plotted on the horizontal axis, the outflux is on
the vertical axis, and the dashed line with a slope of 1 marks
their predicted equality. The agreement is within the stated
uncertainties, which is about 10% for each of these plots,
using standard propagation of error techniques. The plot in
�f� shows the data are bunched around a similar value for
many of the simulations; this is because the v2 dependence
on B2 is rather weak and as B02 increases, the size of the
purely diffusive layer increases, leading to a less dramatic
change in B2 for a given change in B02.

The predictions relating upstream magnetic fields and
densities to the reconnection parameters �X1, �X2, �XS, vout,
and E are tested using Eqs. �32�, �33�, �30�, �15�, and �35�.
The numerical results are shown in the final five rows of
Table I to compare with the raw data in rows 4–8.

The scaling is more easily seen in the plots. Figure 6
shows �a� the predicted and measured outflow speeds using
Eq. �15� for symmetric densities, �b� the reconnection rate E
in terms of the geometry as predicted in Eq. �19�, and �c� the
reconnection rate E purely in terms of upstream quantities as
predicted in Eq. �35�. Propagation of error for the quantities
on the horizontal axes in Figs. 6�a�–6�c� gives uncertainties
of 4%, 15%, and 6%, respectively. The agreement between
theory and simulation for these plots is very good within the
stated uncertainties.

Plots �a� and �b� of Fig. 7 show the measured and pre-
dicted values of the thicknesses �X1 and �X2 in terms of up-
stream quantities as given in Eqs. �32� and �33�. Plot �c�
shows the scaling of �X2 /�X1 and �S1 /�S2 versus B2 /B1 as
dots and diamonds, respectively, which tests Eqs. �26� and
�27�. The agreement in the � plots is again quite good, within

TABLE I. Measured and calculated quantities from the numerical simula-
tions. The first eight rows are quantities measured directly from the simula-
tion output. �See the text for how they are obtained and normalized.� The
final five rows use Eqs. �32�, �33�, �30�, �15�, and �35�, respectively, using
values from the first three rows to calculate the predictions, for the quantities
in rows 4–8.

B01 ,B02 �1,1� �1,2� �1,3� �1,4� �1,5� �2,4�

B1 0.90 1.03 1.02 1.06 0.95 2.08

B2 0.88 1.70 2.38 2.82 3.22 3.35

L 86 94 111 107 112 106

�X1 2.15 1.56 1.35 1.20 1.08 1.20

�X2 2.15 2.45 2.71 2.89 3.09 1.93

�XS 0.01 0.84 1.40 1.60 1.94 0.67

vout 0.93 1.33 1.61 1.80 1.86 2.54

E 0.023 0.035 0.041 0.047 0.046 0.092

�X1 2.21 1.47 1.23 1.08 0.97 1.11

�X2 2.18 2.42 2.88 2.86 3.29 1.80

�XS 0.00 0.95 1.65 1.78 2.33 0.68

vout 0.89 1.32 1.56 1.73 1.75 2.63

E 0.020 0.035 0.041 0.049 0.048 0.093
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FIG. 5. Verification of conservation of energy and mass flux through various subregions of the dissipation region defined in Fig. 1. Plotted are energy flux
through �a� the whole dissipation region ABCD, �b� the region above the X-line ABXW, �c� the region below the X-line CDXW, and the mass flux �d� through
the whole region ABCD, �e� the region above the stagnation point ABST, and �f� the region below the stagnation point CDST. Influx is on the horizontal axis,
outflux is on the vertical axis, and the dashed lines are the predicted slope of 1 from Eqs. �10�, �11�, and �22�–�25�.

FIG. 6. �a� Measured and calculated values of the outflow velocity vout using Eq. �15�. Measured and calculated values of the reconnection rate E, using the
general expression relating E to �b� the geometry of the dissipation region, as given by Eq. �19�, and �c� to the upstream densities and magnetic fields as given
by Eq. �35�. The dashed line has the predicted slope of 1.
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the 12% uncertainty found using propagation of errors. The
data in Fig. 7�c� compare fairly well to the estimated uncer-
tainty of 10%, but show some effects of the purely diffusive
layer outside of the dissipation region for larger B02.

A look at the raw data confirms the predictions of Eq.
�29�, which, in the limit of uniform density, predicts �S1

=�X1+�XS��X2 and �S2=�X2−�XS��X1. In other words, the
dissipation region is symmetric around the peak in the out-
of-plane current, modulo the purely diffusive region. As
such, Eq. �30� is automatically satisfied, as well.

The present simulations were performed with asymmet-
ric fields but symmetric densities. A recent study40 consid-
ered the complementary case of asymmetric densities with
symmetric fields. Their study used an anomalous localized
resistivity. They found that the reconnection rate was propor-
tional to an Alfvén speed based on an average of their den-
sities, in agreement with Eqs. �14� and �19�. Furthermore,
their outflow jets were displaced toward the low-density
plasma, in qualitative agreement with Eq. �27�.

IV. OBSERVATIONAL SIGNATURES

In this section, we highlight general observational signa-
tures of asymmetric reconnection. These signatures are dis-
cussed for particular systems in Sec. V. We have already
noted the “bulge” due to the island growing preferentially
into the weak field side, which occurs because it is easier for
the newly reconnected field lines to bend the weaker field
than the stronger field upstream of the island.

We also observe that the X-line itself drifts in the inflow
direction toward the plasma with the stronger magnetic field,
in the reference frame of the simulation. This effect is often
not observed in simulations because of the use of a stationary
localized resistivity. It was first observed in simulations by
Ugai,23 and is also apparent in the results of Refs. 24 and 31,
none of which used fixed anomalous resistivity. The physical
cause of the drift is relatively simple. In symmetric recon-
nection, magnetic field lines upstream of the dissipation re-
gion bend due to the opposing influences of the inflow at the

dissipation region and the island expanding downstream.
When the magnetic fields are asymmetric, it takes more en-
ergy to bend the magnetic fields on the strong field side than
it takes for the X-line to propagate toward the strong field.
As such, the drift speed of the X-line can be comparable to
the inflow speed on the strong field side. For the present
simulations, v2�cE /B2=0.041/2.38=0.017 for the data
shown in Figs. 4�b� and 4�c�, while the drift speed is 0.007.
This is consistent with the physical picture presented here, as
first stated by Ugai.23

We have already noted that the X-line and stagnation
point are not colocated in asymmetric reconnection. This fact
has important observational consequences. In particular, the
location of the stagnation point relative to the X-line deter-
mines which plasma crosses the X-line and, therefore, on
which side of the X-line the mixing of the plasmas will oc-
cur. We find that the stagnation point will be on whichever
side of the X-line has the higher Alfvén speed. To derive this,
note that the stagnation point is on the strong field side of the
X-line if �X2��S2. Using Eqs. �28� and �17�, this expression
is equivalent to

cA2 � cA1, �37�

where cAi=Bi / �4��i�1/2 for i=1,2. Similarly, if cA1�cA2, the
stagnation point is shifted toward the weak field plasma of
the X-line. Therefore, whichever plasma has the smaller
Alfvén speed will flow across the X-line. We discuss appli-
cations of this result to the magnetosphere in the next sec-
tion.

Another interesting signature is the profile of the recon-
necting magnetic field in a cut across the X-line. In symmet-
ric Sweet-Parker reconnection, the profile is well fit by a tanh
profile. For asymmetric reconnection, the simulation results
suggest that the profile is well fit by a piecewise tanh func-
tion as opposed to a shifted tanh function of the form Bx�z�
=Bavg+Bdiff�tanh�z /w0��. To ensure that this profile is not a
consequence of the initial conditions that used a piecewise
tanh profile, we perform a simulation with initial conditions

FIG. 7. Measured and calculated values of �a� �X1 and �b� �X2 from the predictions of Eqs. �32� and �33�. �c� Plot of �X2 /�X1 �dots� and �S1 /�S2 �diamonds�
as a function of B2 /B1. The dashed line has the predicted slope of 1 from Eqs. �26� and �27�.
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of a shifted tanh. We find that even with these initial condi-
tions, the steady-state configuration is best fit by a piecewise
tanh function.

Finally, as noted in the preceding section, the resistive
simulations performed here displayed a purely diffusive
layer outside of the layer formed by the outflow jet on the
strong field side, which can be seen in Fig. 4�b�. This layer
may be expected to be present, for example, in laboratory
experiments of collisional plasmas. However, the present
simulations were done with an exceptionally large resistivity,
so the layer is unlikely to be prevalent in laboratory plasmas
at ambient resistivities. It is not expected to exist at all in
collisionless asymmetric reconnection.

V. DISCUSSION

In this paper, we have generalized the Sweet-Parker
model of resistive reconnection to allow for upstream plas-
mas with different magnetic field strengths and densities. In
particular, we have derived scaling laws from first principles
for the reconnection rate, outflow speed, and structure of the
dissipation region in terms of the upstream densities and
fields. A summary of the predictions potentially useful to
observations is collected in Table II. These results are de-
rived without appealing to a particular dissipation mecha-
nism, and therefore are generally valid.

We have verified the theory in the limit of asymmetric
magnetic field with symmetric density using numerical simu-
lations of resistive MHD. The theory is also in good agree-
ment with recent MHD with anomalous resistivity simula-
tions of reconnection with asymmetric density and
symmetric fields.40

The analysis has elucidated the decoupling of the X-line
from the stagnation point during asymmetric reconnection.
The position of the X-line within the dissipation region is set
by the balance of energy flux, while the position of the stag-
nation point is set by the balance of mass flux. For arbitrary
upstream parameters, these two points need not be coinci-
dent. This is a generic feature of asymmetric reconnection.

Observational signatures of asymmetric reconnection
were also discussed. We find that in addition to the well-
studied bulge due to the island growing preferentially into
the weak field plasma, the dissipation region drifts into the
strong field plasma, as first observed in Ref. 23. Further, we
have shown that the X-line is closer to the weak field plasma
than the strong field plasma, and the stagnation point is on

whichever side of the X-line that the Alfvén speed is larger.
As such, plasma from the side with the smaller Alfvén speed
flows across the X-line.

The most obvious potential application of the present
result is for asymmetric reconnection in the magnetosphere,
specifically at the dayside magnetopause. Typical parameters
are Bsh�20 nT, nsh�20 cm−3, Bsp�50 nT, and nsp

�0.5 cm−3,7,8 where the “sh” subscript refers to the magne-
tosheath and “sp” refers to the magnetosphere. As such, the
bulge extends into the magnetosheath, as has been reported
often in observations. Further, since cA,sh	cA,sp, the stagna-
tion point is on the magnetosphere side of the X-line. There-
fore, there is a flow of magnetosheath plasma across the
X-line into the magnetosphere. This is in agreement with the
numerical results of Ref. 46, as well as many of the numeri-
cal studies in the Introduction and many satellite observa-
tions. The values for the outflow speed and the reconnection
electric field using the typical parameters quoted earlier are
vout�180 km/s and E�0.52 mV/m, respectively, assuming
a dissipation region aspect ratio � /L of 0.1.

Another application is in asymmetric reconnection in the
magnetotail, as in the Øieroset et al. study using Wind
observations.14 In particular, they measured parameters of
B1=8.8 nT, n1=0.1 cm−3, B2=10.3 nT, and n2=0.01 cm−3.
While a naive average of the two densities would give
0.055 cm−3, the prediction for the density in the outflow re-
gion using Eq. �17� is nout=0.059 cm−3, in excellent agree-
ment with the measured value of nout=0.06 cm−3. Future
comparative studies of asymmetric reconnection in the mag-
netopause and magnetotail would be very interesting.

The results presented here comprise only part of a more
general understanding of reconnection in realistic physical
systems. The present results still assume antiparallel mag-
netic fields. In the uniform density case, the introduction of a
uniform out-of-plane �guide� field should not affect the
results.23 However, if there is a density gradient across the
dissipation region, the reconnection will be qualitatively dif-
ferent in the presence of a guide field because of the intro-
duction of diamagnetic drifts in the outflow direction, which
has been shown to reduce the reconnection rate.39,47

The addition of an asymmetric guide field �i.e., a system
with field lines of arbitrary strength at arbitrary angles� is
also an interesting problem. It is not even clear in which
plane the reconnection will predominantly occur.34 It has
been conjectured41 that in such a system, the plane of recon-

TABLE II. Summary of the key results for observations of asymmetric reconnection. The subscripts “1,” “2,”
and “out” refer to upstream values on either side of the dissipation region and values for the outflow. The
stagnation point lies on whichever side of the X-line has the larger Alfvén speed.

Physical quantity Result

Density of outflow, Eq. �17� �out���1B2+�2B1� / �B1+B2�
Outflow speed, Eq. �13� vout

2 ���B1B2� / �4�����B1+B2� / ��1B2+�2B1��
Reconnection rate, Eq. �19� E���B1B2� / �B1+B2���vout /c��2� /L�
Location of X-line, Eq. �26� ��X2 /�X1���B2 /B1�
Location of stagnation point, Eq. �27� ��S2 /�S1����2B1 /�1B2�
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nection will be determined by maximizing the outflow speed
given by Eq. �13�.

Future studies should also consider asymmetric Hall re-
connection, which is orders of magnitude faster than Sweet-
Parker reconnection5,6 and is imperative for applications in
the magnetosphere and laboratory plasmas. In antiparallel
symmetric Hall reconnection, the thicknesses of the ion and
electron dissipation regions are of order of the ion and elec-
tron skin depths c /�pi and c /�pe. These length scales depend
on the density. A subject of much debate is the dependence of
the Hall reconnection process on the ion skin depth c /�pi. If
the Hall reconnection rate is independent of c /�pi, with the
length of the dissipation region �10c /�pi, as argued in Refs.
45 and 48–50, then what is the aspect ratio of the dissipation
region �which impacts the reconnection rate� when the recon-
necting plasmas have different skin depths? Alternately, if
the reconnection rate depends on c /�pi, as argued in Refs.
51–55, how will the reconnection rate scale for a system with
different skin depths? More importantly, a study of asymmet-
ric Hall reconnection may elucidate which of the scenarios
is, in fact, correct.

Limitations of the fluid simulations performed here in-
clude using a constant and uniform resistivity instead of a
Spitzer resistivity related to the temperature and not includ-
ing Joule heating.
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