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ABSTRACT

We examine velocity-space kinetic entropy, a spatially local measure of entropy for systems out of thermal equilibrium, during an encounter
of an electron diffusion region at a magnetic reconnection site in Earth’s magnetotail by the Magnetospheric Multiscale (MMS) mission. We
start by generalizing the theory of kinetic entropy to the case of non-uniform velocity space grids and transforming the equations into spheri-
cal energy coordinates useful to experimental plasma detectors. The theory is then applied to MMS data and compared to particle-in-cell
simulations of reconnection. We demonstrate that the entropy-based non-Maxwellianity measure from the MMS data is of sufficiently high
precision to reliably identify non-Maxwellian distributions and therefore the measurements when kinetic effects are most significant. By
comparing two different non-Maxwellian measures, we show that total entropy density suffers from “information loss” because it lacks a
dependence on the velocity space grid, and so has lost information about how well a distribution function is resolved. Local velocity-space
kinetic entropy density recovers this information. We quantify information loss and argue that the considerations needed to minimize it are
crucial for instruments designed to measure distribution functions in situ.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0073248

I. INTRODUCTION
Energy at large scales gets dissipated at small scales in essentially

all plasmas, and how this conversion and dissipation occurs often
impacts the plasma dynamics at the large scales.1 For example, the
evolution of collisionless shocks,2 plasma turbulence,3 and magnetic
reconnection4 all influence—and are influenced by—small-scale
energy conversion and dissipation processes. Magnetic reconnection,
where a change in magnetic field topology facilitates a rapid release of
magnetic energy,5 plays a central role in the spoiling of confinement in
tokamaks, the release of energy in solar flares, and the energy cycle
within Earth’s magnetosphere. In the magnetosphere, reconnection
leads to the release of 1015 J of energy over just a few minutes.6 Even
though energy conversion occurs at global scales, dissipation at elec-
tron scales contributes greatly.7 Several scalar, reference-frame-

invariant parameters were proposed as a means of locating reconnec-
tion sites8–14 to identify and understand the dissipation processes.
However, electron scales remained inaccessible to observations until
the launch of the Magnetospheric Multiscale (MMS) mission,15 which
now allows us to investigate kinetic processes that lead to dissipation
and test aspects of kinetic theory, including kinetic entropy.

The importance of entropy is captured by the second law of ther-
modynamics—in a closed, isolated system in which energy is con-
served, entropy never decreases. From a thermodynamic perspective,
high entropy is synonymous with a lack of energy that can be con-
verted into mechanical work. From a kinetic theory perspective,
entropy describes the disorder inherent to the system. The more
ordered a system, the lower its entropy and the more effective the
stored energy is able to perform mechanical work. As an example, in
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the electron diffusion region (EDR) of magnetic reconnection, electro-
magnetic fields do work on charged particles. This alters their particle
distribution functions, often making them more ordered than
Maxwellian distributions. Non-Maxwellian distributions can be used
to identify locations of electromagnetic energy dissipation16–20 and
may indicate that further dissipation of kinetic energy to thermal
energy may occur. Entropy and non-Maxwellianity, therefore, should
be able to identify locations like the EDR where key kinetic-scale
energy conversion processes take place.21

By comparing the current state of a system to its equilibrium,
Maxwellianized state, non-Maxwellianity measures were developed.
One contains the quadratic difference in distribution functions,13,14

while others contain the difference in entropies.22,23 These were used
to study dissipation in solar wind turbulence,13,14 Earth’s bow shock,24

dayside regions,25 magnetotail plasma sheet,22 collisional magnetic
reconnection,26 and numerical simulations of collisionless magnetic
reconnection.23 It was shown that the form involving the difference in
entropies, or the Kaufmann and Paterson non-Maxwellianity,22 can
increase without bound the worse the velocity-space bins over- or
under-resolve the distribution function.23 An inadequate velocity-
space bin size in simulations can lead to unphysical results for dissipa-
tion21 even though the simulations are able to reproduce macroscopic
properties of reconnection.

In perfectly collisionless systems, there is no dissipation—ideal
kinetic physics is reversible. This was demonstrated in gyrokinetic sim-
ulations of magnetic reconnection in which the plasma has a reduced
number of degrees of freedom27; however, reconnection becomes less
reversible in fully kinetic simulations with decreasing guide field
(increasing degrees of freedom).28 Irreversibility and non-conservation
of entropy in simulations are tied to phase mixing29 and numerical
noise.30 Numerical noise, however, is not present in real systems, yet
observations of reconnection at the magnetopause revealed an unmea-
sured “residual” dissipation potentially linked to wave activity,31 which
can lead to irreversible anomalous dissipation due to Landau
damping.32

Without collisions, the distribution function in kinetic plasmas
can take on highly non-Maxwellian shapes. Elongated and striated dis-
tributions can be present near reconnection X-lines,9,33 while other
shapes map to different regions and processes of reconnection16,34–37

and are tied to energy dissipation38,39 via scalar energy conversion
parameters.10,40 As mentioned, though, only entropy uniquely identi-
fies irreversible dissipation. As the distributions become more struc-
tured, the number of arrangements that lead to the same distribution
decreases, resulting in an increased non-Maxwellianity and decreased
entropy.30 Non-Maxwellianity, structured distributions, and the pro-
cesses that lead to dissipation, then, are all intricately related.

In this paper, we study the local velocity-space kinetic entropy in
a magnetotail EDR during magnetic reconnection using electron-scale
measurements from MMS. To do so, we derive a generalized kinetic
entropy for arbitrary velocity-space grids; in particular, the logarithmic
spherical energy grid used by experimental plasma instruments. We
show that kinetic entropy density and entropy-based non-
Maxwellianity measures are in good agreement with a dedicated 2.5D
particle-in-cell (PIC) simulation and that the non-Maxwellianity mea-
sure is capable of identifying non-Maxwellian distributions in the
MMS data. We further show that the entropy-based non-
Maxwellianity calculated using kinetic entropy density is not positive

definite as it should be and that this is caused by the inappropriate
velocity-space grid-scale resolution. The velocity-space kinetic entropy
captures the role of the velocity-space grid and gives physically mean-
ingful results. We describe their difference in terms of a new concept,
“information loss,” which is used to quantify the extent to which the
velocity-space grid over- or under-resolves the distribution function in
velocity-space. We show that information loss is important for MMS
observations.

There are a number of important consequences of the present
study. First, the good agreement of kinetic entropy densities in MMS
observations (in an open naturally occurring system) and PIC simula-
tions (in a closed system) shows that closed simulations can be useful
to help interpret observations in naturally occurring open systems.
Second, we argue that knowledge of information loss is an important
consideration for future satellite instrument development. Third, we
argue that information loss is likely important in other attempts to
measure non-Maxwellianity using observational data, potentially jeop-
ardizing the accuracy of the measurement. This implies that a source
of apparent irreversibility in observations is the amount of information
lost by not properly resolving the distribution function.

The paper is organized as follows: Sec. II reviews the theoretical
development of kinetic entropy, then generalizes the theory to non-
uniform velocity space grids, and transforms the equations to spherical
energy space to be applied to satellite observations. Section III
describes the in situ data used in the study (Sec. IIIA), gives an over-
view of the reconnection event being analyzed (Sec. III B), and
describes the PIC simulations carried out (Sec. III C). Section IV
describes our results; beginning with a Maxwellian lookup table used
to minimize errors between the observed distribution and its associ-
ated Maxwellianized version needed to calculate non-Maxwellianity
(Sec. IVA); followed by a comparison between observations and PIC
simulations (Sec. IVB); and ending with a look at kinetic entropy,
non-Maxwellianity, and their connection to distribution functions that
represent different dissipation processes (Sec. IVC). Section V demon-
strates how course-graining velocity-space can lead to a loss of infor-
mation regarding dissipation. Finally, Sec. VI discusses our results and
Sec. VII presents a summary of our conclusions.

II. KINETIC ENTROPY: THEORY
In this section, we review the theory of velocity-space kinetic

entropy and non-Maxwellianity, following closely the steps outlined in
Appendix A of Liang et al.,21 then generalize the theory to satellite
applications that use non-uniform velocity space bins and require a
transformation to logarithmic, spherical energy coordinates. More
complete derivations of the kinetic entropy parameters, along with
other quantities used or discussed throughout the paper, can be found
in the supplementary material.

A. Review of kinetic entropy with a uniform velocity
space grid

Kinetic entropy S as defined by Boltzmann41 is written as

S ¼ kB lnX; (1)

where kB is Boltzmann’s constant, X ¼ Ntot !=
Q

j;k Nj;k! is the total
number of microstates that correspond to a given macrostate, Ntot is
the total number of particles in the system, Nj;k is the number of

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 29, 022902 (2022); doi: 10.1063/5.0073248 29, 022902-2

Published under an exclusive license by AIP Publishing

https://www.scitation.org/doi/suppl/10.1063/5.0073248
https://scitation.org/journal/php


particles in the jth, kth cell of phase space, and the product over j and
k is overall position- and velocity-space cells, respectively. We suppress
writing a possible time t dependence here and throughout for simplic-
ity. We call this form “combinatorial entropy” because of how the
microstates are counted.

By breaking up phase space into discrete bins and applying
Stirling’s approximation, combinatorial entropy can be written in
terms of the particle distribution function f ðr; vÞ ¼ Nj;k=ðD3rD3vÞ
as21,41

S ¼ kB Ntot ln
Ntot

D3rD3v

! "
$
ð
d3r
ð
d3vf ðr; vÞ ln f ðr; vÞ½ &

$ %
; (2)

where the small phase space cells have uniform dimensions of size D3r
and D3v. In writing this expression, the phase space volume has been
written as infinitesimals d3rd3v in the integral in the second term but
remains D3rD3v in the first term. This implies that Eq. (2) is only
semi-continuous and that the finite grid size of any practical simula-
tion or measurement device factors into the total entropy.21,23

By considering the permutation of particles in position- and
velocity-space separately, the total combinatorial entropy can be
decomposed into position-space combinatorial entropy Sr and
velocity-space combinatorial entropy SV, each of which has a semi-
continuous representation similar to Eq. (2).21,42 It is illustrative to
note that the same semi-continuous forms of position- and velocity-
space entropy can be derived directly from Eq. (2). After adding and
subtracting

Ð
d3rnðrÞ ln ½nðrÞ& and some simplification, Eq. (2)

becomes

S ¼ Sr þ SV ; (3)

where

Sr ¼ kB Ntot ln
Ntot

D3r

! "
$
ð
d3rnðrÞ ln nðrÞ½ &

$ %
; (4)

SV ¼
ð
d3rsVðrÞ; (5)

sVðrÞ ¼ kB nðrÞ ln nðrÞ
D3v

' (
$
ð
d3vf ðr; vÞ ln f ðr; vÞ½ &

$ %
: (6)

The second term in Eq. (6) is often referred to as the total kinetic
entropy density sðrÞ,

s ¼ $kB
ð
d3vf ðvÞ ln f ðvÞ½ &; (7)

where we begin to suppress the r dependence except where it is impor-
tant to retain. This is the density of S because its position space integral
gives the total kinetic entropy S in Eq. (2) (up to a constant).

For a drifting Maxwellian distribution of the form

fMðvÞ ¼ n
m

2pkBT

! "3=2

e$m v$uð Þ2=2kBT ; (8)

where m is the mass of the particles, n is the number density, u is the
bulk flow velocity, and T is the temperature; Eq. (7) is exactly solvable
and gives the kinetic entropy density sM of a Maxwellian distribution

sM ¼
3
2
kBn 1þ ln

2pkBT
mn2=3

! "' (
: (9)

Substituting this into Eq. (6) gives

sM;V ¼
3
2
kBn 1þ ln

2pkBT

m D3vð Þ2=3

 !" #
; (10)

the velocity-space entropy density of a Maxwellian distribution.
Because the Maxwellian distribution describes a plasma in local

thermodynamic equilibrium, and because that equilibrium state has
the highest entropy of all distributions with the same energy and num-
ber of particles,41 the difference in kinetic entropy density between an
observed distribution and its associated Maxwellian, or the non-
Maxwellianity of the distribution,22

!MKP ¼
sM $ s
ð3=2ÞkBn

; (11)

is a measure of the departure from Maxwellianity of a local distribu-
tion function and gives a measure for the possibility for dissipation to
occur. Equation (11) was defined by Kaufmann and Paterson22 and is
normalized by 3

2 kBn ¼ cvn, where cv is the specific heat per particle at
constant volume for an ideal gas, to make !MKP dimensionless.

One disadvantage of !MKP is that it is not bounded, making its
interpretation difficult.23 To remedy this, a new non-Maxwelllianity
measure formed from the velocity-space entropy density [Eq. (6)] was
introduced,23

!M ¼ sM;V $ sV
sM;V

: (12)

Providing the velocity space grid is chosen appropriately, as discussed
in Liang et al.,23 this measure is not only dimensionless, positive defi-
nite and vanishes when the distribution is a Maxwellian (similar to
!MKP), but is also bounded. It can be written in terms of total entropy
density s [Eq. (7)],

!M ¼ sM $ s

sM þ kBn ln n=D3v
) * ;

but we will evaluate it in terms of !MKP [Eq. (11)],
23

!M ¼
!MKP

1þ ln ð2pkBTÞ= m D3vð Þ2=3
h in o ; (13)

because this allows us to isolate the effects that discretizing phase space
has on our ability to measure entropy and non-Maxwellianity. We will
explore these effects further in Secs. V and VI.

B. Generalization to non-uniform velocity space grids
We now consider the velocity-space kinetic entropy and non-

Maxwellianity in the context of observations by the MMS mission.
The derivations in Sec. IIA were performed assuming uniformly sized
velocity-space bins. In practice, however, the instruments that measure
the particle distribution functions, such as the Fast Plasma
Investigation43 (FPI) on MMS, have logarithmically spaced energy
bins, meaning D3v is not a constant and cannot be pulled out of the
summation that leads to the first term in Eqs. (2) and (6). We now fol-
low the same procedure as for Eqs. (1)–(6), deriving the combinatorial
form of Sr and SV but with the velocity-space bin size represented by
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Dvk to indicate it is different for every velocity-space cell. Focusing on
the velocity-space entropy, we obtain

SV ¼
X

j

kB

$
nðrjÞD3r ln nðrjÞD3r

h i

$
X

k

f ðrj; vkÞD3rD3vk ln f ðrj; vkÞ
+ ,- .

$
X

k

f ðrj; vkÞD3rD3vk ln D3rD3vk
) *h i%

: (14)

Now we split the D3rD3vk pairs, bringing the constant D3r out-
side of the summations, let SV ¼

P
j sVD3r, and take the limit of small

velocity-space bin sizes to get

sV ¼ sþ kBn ln n$ kB

ð
d3vðvÞf ðvÞ ln d3vðvÞ

+ ,
; (15)

where we write an explicit dependence of d3v on v, and s is the entropy
density from Eq. (7) with d3v replaced by d3vðvÞ. This is the generali-
zation of Eq. (6) for the case of non-uniform velocity bins. From here
onward, when we are developing the theory, the velocity-space ele-
ment will be referred to as d3vðvÞ, but for discussions of the theory,
which applies to satellite instrumentation, we will refer to it as D3vk. If
D3vk were constant, it could be pulled out of the integral and
the resulting $n ln ðD3vÞ combines with the second term to recover
Eq. (6).

To calculate !M , we replace D3v with D3vk in Eq. (10), take the
limit of small bin size, substitute the result and Eq. (15) into Eq. (12),
and then simplify to get

!M ¼
sM $ s$ kB

ð
d3vðvÞ ln d3vðvÞ

+ ,
fMðvÞ $ f ðvÞ½ &

sM þ kBn ln n$ kB

ð
d3vðvÞ ln d3vðvÞ

+ ,
fMðvÞ

: (16)

Substituting Eq. (9) into the denominator and factoring out 32 kBn gives

!M ¼
!MKP $ 2=ð3nÞ

ð
d3vðvÞ ln d3vðvÞ

+ ,
fMðvÞ $ f ðvÞ½ &

1þ ln 2pkBT=mð Þ $ 2=ð3nÞ
ð
d3vðvÞ ln d3vðvÞ

+ ,
fMðvÞ

: (17)

Note that the densities of f ðvÞ and fMðvÞ are equal by definition. This
means that if D3vk were constant, the final term in the numerator of
Eq. (17) would vanish and the third term in the denominator would
reduce to$ln ðD3vÞ2=3, which recovers Eqs. (11) and (12).

The prior expressions are valid regardless of the velocity space
grid sizes. Here, we derive expressions for spherical energy space coor-
dinates that particle detectors use. For the case of MMS-FPI, an addi-
tional step is needed; the particle energy E is normalized via

U ¼ E
E0 þ E

; (18)

where E0 is a constant used to bound the energy integration limits of
the distribution function between 0 and 1 (more on this in Sec. IIIA).
To perform the coordinate transformations, we assume a non-
relativistic system and follow the notation of Moseev and Salewski.44

First, we establish the relationship between v, E, andU:

v ¼
ffiffiffiffiffiffiffiffi
2E
m
;

r
dv ¼ dEffiffiffiffiffiffiffiffiffi

2mE
p ;

v ¼
ffiffiffiffiffiffiffi
2E0
m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U

1$ U
;

r
dv ¼

ffiffiffiffiffiffiffi
E0
2m

r
dU

ffiffiffiffi
U
p
ð1$ UÞ3=2

;

E ¼ E0U
1$ U

; dE ¼ E0
ð1$ UÞ2

dU :

Next, we find the Jacobians of the transformations as

Jvx ;vy ;vz!/;h;v ¼ det
0000
@ðvx; vy; vzÞ
@ð/; h; vÞ

0000 ¼ v2dvdX; (19)

Jvx ;vy ;vz!/;h;E ¼ det
0000
@ðvx; vy; vzÞ
@ð/; h;EÞ

0000 ¼
ffiffiffi
2
p

m3=2

ffiffiffi
E
p

dEdX; (20)

Jvx ;vy ;vz!/;h;U ¼ det
0000
@ðvx; vy; vzÞ
@ð/; h;UÞ

0000 ¼
ffiffiffi
2
p E0

m

! "3=2 ffiffiffiffi
U
p

ð1$ UÞ5=2
dUdX;

(21)

where dX ¼ sin hdhd/ is an element of solid angle in velocity space,
and / and h are the azimuth and polar angles, respectively.

These relationships can then be used to transform the kinetic
entropy equations into spherical, normalized energy coordinates.
Starting with the Maxwellian distribution [Eq. (8)],

fMð/; h;UÞ ¼
n

ðpkBTÞ3=2
m
2

! "3 E0U
1$ U

( exp

$
ffiffiffiffiffiffiffiffiffiffiffiffi
E0U
1$ U

r
sin h cos/$

ffiffiffiffiffiffiffi
1
2
m

r
ux

 !2

kBT

2

664

3

775

( exp

$
ffiffiffiffiffiffiffiffiffiffiffiffi
E0U
1$ U

r
sin h sin/$

ffiffiffiffiffiffiffi
1
2
m

r
uy

 !2

kBT

2

664

3

775

( exp

$
ffiffiffiffiffiffiffiffiffiffiffiffi
E0U
1$ U

r
cos h$

ffiffiffiffiffiffiffi
1
2
m

r
uz

 !2

kBT

2

664

3

775
; (22)

where fM has been written such that n ¼
Ð
fMdUdX. Next, we do the

same for Eqs. (7) and (15)–(17) to get

s ¼ $kB
ffiffiffi
2
p E0

m

! "3=2 ð ffiffiffiffi
U
p

ð1$ UÞ5=2
f ð/; h;UÞ ln f ð/; h;UÞ½ &dUdX ;

(23)

sV ¼ sþ kBn ln
nffiffiffi
2
p m

E0

! "3=2
" #

$kB
ffiffiffi
2
p E0

m

! "3=2

(
ð ffiffiffiffi

U
p

ð1$ UÞ5=2
ln

ffiffiffiffi
U
p

ð1$ UÞ5=2
dUdX

" #
f ð/; h;UÞdUdX;

(24)
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!M ¼
sM $ s$ E0kB

ð
UdUdX ln UdUdXð Þ fMð/; h;UÞ $ f ð/; h;UÞ½ &

sM $ kBn ln n$ E0 ln E0ð Þ½ & $ E0kB
ð
UdUdX ln UdUdXð ÞfMð/; h;UÞ

; (25)

!M ¼

!MKP $
1
3n

2E0
m

! "3=2 ð ffiffiffiffi
U
p

ð1$ UÞ5=2
ln

ffiffiffiffi
U
p

ð1$ UÞ5=2
dUdX

" #
fMð/; h;UÞ $ f ð/; h;UÞ½ &dUdX

1þ ln
22=3pkBT

E0

 !

$ 1
3n

2E0
m

! "3=2 ð ffiffiffiffi
U
p

ð1$ UÞ5=2
ln

ffiffiffiffi
U
p

ð1$ UÞ5=2
dUdX

" #
fMð/; h;UÞdUdX

: (26)

We made the substitutions E0 ¼
ffiffiffi
2
p
ðE0mÞ

3=2 and U ¼
ffiffiffi
U
p

ð1$UÞ5=2
in

Eq. (25) to save space, and we continue to suppress the dependence of
the distribution function on r. An additional note is that if the roles of
v and r were switched, one could arrive at a position-space entropy
density that is local in velocity space and its equivalent expression for
non-Maxwellianity. We do not pursue this line of thought on practical
grounds.

III. DATA
A. MMS

Kinetic entropy and non-Maxwellianity are explored using
data from the dual electron spectrometer (DES) from the FPI43 on
the MMS mission.15 DES measures the full 3D electron distribu-
tion function every 30ms in burst mode. We integrate the distribu-
tion using the new theory of Sec. II B to calculate kinetic entropy
parameters. For consistency in results [e.g., calculations of sM using
Eq. (9) vs Eq. (7) with Eq. (8)], we perform our own numerical
integration of the distribution function for both the kinetic entropy
parameters and the plasma moments using the method prescribed
by the FPI team. This involves (1) removing photoelectrons gener-
ated by sunlight entering the instrument aperture; (2) correcting
for the spacecraft potential that acts as a barrier to cold particles
and changes the energy of incoming plasma; and (3) precondition-
ing the distribution, which entails normalizing the energy range
according to Eq. (18) and extrapolating the /, h, and U integration
limits so that / is cyclic, h ranges from [0, p], and U ranges from
[0, 1]. The value of E0, conditions for energy extrapolation, and
energy integration limits are provided in the metadata of the offi-
cial DES moments files available through the MMS Science Data
Center.45 Finally, trapezoidal integration is performed in spherical,
normalized energy coordinates.

In addition to DES data, we also make use of the FIELDS instru-
ment suite,46 which contains the fluxgate magnetometer (FGM)47 and
the electric field double probes (EDP)48,49 instruments that measure
the magnetic and electric fields, respectively. Vector data are displayed
in the LMN boundary normal coordinate system obtained via a mini-
mum variance analysis of the electron bulk velocity (MVA-Ve) within
the EDR.50,51 In this system, êL points along the Earthward exhaust,
êN points North toward the inflow region, and êM ¼ êN ( êL points
along the reconnecting current. This coordinate system results in a
reliable reconnection rate.51

B. Event overview
Measurements from July 11, 2017, around 22:34:00 universal

time (UT), are shown in Fig. 1. The MMS satellites15 were embedded
in the central magnetotail plasma sheet, as indicated by the hot, dense
ion and electron populations in Figs. 1(b)–1(d). As MMS3 traversed
the plasma sheet from the Southern to the Northern Hemisphere, it
observed a rotation of the reconnecting magnetic field BL [Fig. 1(a)], a
reversal of an ion jet Vi;L [Fig. 1(e)], and a reversal of an electron jet

FIG. 1. MMS encounter with an electron diffusion region.38 (a) Magnetic field com-
ponents and magnitude, (b) ion and (c) electron energy spectrograms, (d) electron
number density, (e) ion and (f) electron bulk velocity, and (g) electric field compo-
nents. Data are shown in the LMN-coordinate system of Nakamura et al.54
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Ve;L [Fig. 1(f)], indicating that MMS crossed from the earthward to
the tailward exhausts of a reconnection site. Hall electric fields EN [Fig.
1(g)] signal the separation of charge within the ion diffusion region.
The strong out-of-plane electron flow Ve;M co-incident with the elec-
tron jet reversal was found to be caused by accelerated, meandering
electrons accelerated by the reconnection electric field EM in the EDR.
The EDR is further identified by the departure of the perpendicular
electron bulk flow from the ExB drift velocity, indicating a violation of
the frozen-in condition.38 Farther into the tailward exhaust, MMS
encountered electron-scale vortices52 within ion-scale flux ropes52,53

(not shown) associated with a turbulent exhaust structure.
The EDR for this event has been studied extensively. Some of the

primary conclusions from previous studies were that this symmetric
magnetotail reconnection event with weak guide field is characterized
by a 2D, laminar process;38,50 the normalized reconnection rate was
0.1–0.22;38,51,54,55 the structure of the X-line is supported by electron
non-gyrotropy;50,55,56 and electrons are accelerated to super-Alfv"enic
velocities after spending at least three gyroperiods in the current
sheet.38 In addition, Torbert et al.38 describes a (2 calibration factor
that has been applied to the ion velocities in Fig. 1(e). For more
detailed analysis of this event, readers are referred to the cited papers.

C. Simulation
The observed reconnection event was nearly symmetric and rea-

sonably laminar, and previous studies employing 2.5D PIC simula-
tions have shown good agreement with the observations.38,50,54,56 We
therefore also employ 2.5D PIC simulations to compare with the
observations. We use the massively parallel PIC code P3D,57 where
particles are stepped forward in time using the relativistic Boris particle
stepper58 and electromagnetic fields are stepped forward using the
trapezoidal leapfrog method59; the fields can have a smaller time step
than that of the particles. P3D employs the multigrid approach to
clean the electric field, E, to enforce r ) E ¼ q=!0, where q is the net
charge density, every 10 particle time-steps. We employ periodic
boundary conditions in both directions with a large enough computa-
tional domain that the boundaries are not expected to play much of a
role in the region of interest at the time examined. A motivation for
choosing periodic boundary conditions over open ones is to see
whether the local kinetic entropy densities obtained in a closed system
are representative of the local kinetic entropy obtained in the (open)
real system.

The initial setup of the simulation has two Harris current sheets
(CS) and a uniform background (BG) plasma population for which
the density nBG and temperature Ts;BG for species s (either e for elec-
trons or i for ions) can be chosen independently from the Harris sheet
parameters. The initial magnetic field profile is BLðNÞ ¼ B0½tanh½ðN
$ lN=4Þ=w0& $ tanh½ðN $ 3lN=4Þ=w0& $ 1&, where B0 is the asymp-
totic reconnecting magnetic field far upstream, w0 is the half-thickness
of the current sheet, and lN is the width of the computational domain
in the êN direction. Initially, the electrons and ions in the Harris sheets
have the same density profile, nCSðNÞ ¼ n0ðsech2½ðN $ lN=4Þ=w0&
þ sech2½ðN $ 3lN=4Þ=w0&Þ, where n0 ¼ B2

0=½8pkBðTe;CS þ Ti;CSÞ& and
Ts;CS are the temperatures of the current sheet population for each
species.

For the plasma parameters in the simulations, we employ the
same values used by Nakamura et al.54 The upstream (lobe) magnetic
field is B0 ¼ 12 nT, and the density at the center of the initial CS is

n0 ¼ 0:0896 cm$3. The electron CS temperature Te;CS ¼ 1:053
keV¼ 0.125 T0 and ion CS temperature Ti;CS ¼ 3Te;CS, where
T0 ¼ miV2

Ai0=kB ¼ 8:424 keV and VAi0 ¼ 875 km/s is the Alfv"en
speed based on n0 and B0. The background (lobe) electron tempera-
ture Te;BG ¼ 0:351 keV¼ 0.04167 T0 and the background ion temper-
ature Ti;BG ¼ 3Te;BG. The BG density is nBG ¼ 0:0296 cm$3

¼ 0:33 n0. These parameters result in an upstream electron Debye
length of kDe ¼ 0:018di0 ¼ 1:37( 104 m, and upstream total beta of
b ¼ 0:11.

The speed of light c is 1:75( 104 km/s, which is smaller than
that of Nakamura et al.54 but is sufficiently larger than other speeds of
our system. The initial current sheet half-thickness w0 ¼ 456 km¼ 0.6
di0, where di0 ¼ c=xpi0 ¼ 760 km is the ion inertial length based on
n0, xpi0 ¼ ðn0e2=!0miÞ1=2 is the ion plasma frequency, and e is the
proton charge, which is the same as in Nakamura et al.54 The electron
to ion mass ratio is me=mi ¼ 0:01, which is larger than in Nakamura
et al.54 and is a factor of 18.36 larger than the realistic value. This
means the electron-to-ion inertial length ratio in the simulations is a
factor of 4.28 larger than the realistic length ratio. This difference will
be noted while drawing comparisons between observation and simula-
tion results, but we do not expect that electron scale properties of the
reconnection region are altered when properly normalized to a realistic
value.

The length of the computational domain is lL ¼ 2:66( 104 km
¼ 35 di0, and its width is lN ¼ 1:33( 104 km¼ 17.5 di0. The system
size is smaller than that of Nakamura et al.54 but since the focus of our
study is a trajectory, which passes very close to the electron diffusion
region, a smaller system size is sufficient; our system size is not large
enough for ions to fully couple to the reconnected field downstream of
the X-point, but this is not expected to affect dynamics at the electron
scale that are the focus of this study. The grid-length D in both direc-
tions is 6.5 km¼ 0.008 545 di0, which is chosen to be smaller than the
smallest length scale of the system (the electron Debye length). The
time step Dt ¼ 0:652 ms¼ 0.000 75 X$1ci0 is chosen to be smaller than
the smallest timescale of the system (the electron plasma frequency),
where Xci0 is the ion cyclotron frequency based on B0. The time step
for electromagnetic fields is half of that for the particles. There are
4096( 2048 grid cells, which are initialized with 100 weighted par-
ticles per grid (PPG). To initiate reconnection, an X point/O point
pair are seeded in both current sheets using a weak magnetic field per-
turbation of the form dBL ¼ $0:08B0 sin ð2pL=lLÞ sin ð4pN=lNÞ and
dBN ¼ 0:08B0½lN=ð2lLÞ& cos ð2pL=lLÞ½1$ cos ð4pN=lNÞ&.

Kinetic entropy is calculated in the simulations employing the
implementation from Liang et al.21 with one noteworthy difference.
The velocity-space grid scale Dvi for ions and Dve for electrons was
imposed to be equal to each other in previous works.21,23 In the pre-
sent study, we allow Dvi and Dve to be chosen independently.
Moreover, this study employs two populations in the initial Harris
sheet profile, compared to a single drifting Maxwellian distribution in
previous works. Therefore, we optimize the velocity-space grid scale
analogously to the previous works, but specifically check the agree-
ment between kinetic entropy density calculated by the simulation and
the theoretical value in both the background plasma and the current
sheet center simultaneously. We calculate the kinetic entropy density
for each species in the simulations with varying velocity-space grids in
order to find the optimal velocity-space grid scale at t¼ 0. This is an
important step because if the velocity space grid is too small, the
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distribution is over-resolved, meaning there is not a statistically signifi-
cant number of particles per grid cell. Meanwhile, if the grid size is too
large, the distribution is under-resolved and important structures are
lost (see Sec. V for a detailed explanation). The kinetic entropy density
for either species is given by Eq. (7) with f ¼ fCS þ fBG, consisting of
both the current sheet and background populations at t¼ 0. Since
these integrals cannot be done analytically, we carry out these integrals
numerically. After we choose a (Cartesian) velocity-space grid scale for
electrons, we numerically compute the entropy and compare it to the
theoretical value. This results in agreement to within 61% in the
upstream region and 62% at the center of the current sheet. The opti-
mal velocity-space grid scale for each species is 60$ 65% of the
smaller of the background and current sheet thermal speeds. For elec-
trons, each velocity-space direction is binned from ð$1:67; 1:67Þ
(104 km/s ¼ ($18.71, 18.71) VAi0 with 22 bins of size Dve ¼ 1:48
(103 km/s¼ 1.7005 VAi0. For ions, the binning range is
ð$7:34; 7:34Þ ( 103 km/s ¼ ($8.38, 8.38) VAi0 with 54 bins with bin-
size Dvi ¼ 2:72( 102 km/s¼ 0.3105 VAi0.

Previous simulation studies21,23 employed a lookup table similar
to the one discussed in Sec. IVA to calculate the Maxwellianized
entropy sM. A lookup table for the simulation is advantageous because
the simulated plasma has PIC noise, while the analytical expression
does not. Using raw density and temperature values with an analytical
expression for the Maxwellianized entropy leads to disagreement with
the theoretical value. The lookup table allows comparable amounts of
error in the simulated and theoretical values, which improves the
agreement with theory.

For the present study, we find that unlike in Liang et al.,23 the
results for sM when using a lookup table are significantly different than
when not using one. The reason for the disagreement is mixing
between macroparticles of different numerical weight; previous studies
employed a lookup table that assumed the weights were the same for
all macroparticles. As macroparticles of different weight mix, the
lookup table becomes less accurate. This could be addressed by includ-
ing a third axis of the lookup table to incorporate particle weight, but
that is not undertaken for the present study. We therefore directly cal-
culate sM to get simulated values of the non-Maxwellianity parameters.

The simulation results we present are carried out with no initial
out of plane (guide) magnetic field Bg. It is important to put this choice
in the context of previous numerical simulations of the observed event
that employed a weak initial guide field.54,56 We perform and compare
results from test simulations with and without a weak initial guide field
of Bg ¼ $0:36 nT ¼ $0:03B0. Figure 2 shows 2D plots of the out-of-
plane magnetic field component BM, where the X-line is located at (0,

0) and the separatrices are the black curves. In the presence of the
weak guide field [Fig. 2(a)], we find that BM has a value of about—0.6
nT ¼ $0:05B0 in the vicinity of the EDR. This is not seen in MMS3
data [see Fig. 4(e); BM does not become appreciably negative in the
shaded region]. In our simulations without an initial guide field [Fig.
2(b)], we find that BM is again negative in the vicinity of the X-line
along the virtual spacecraft trajectory marked by the thick black curve,
but has a smaller value of $0.24 nT ¼ $0:02B0, closer to the MMS3
observations. We find no comparable virtual trajectory in the simula-
tion with an initial guide field that reproduces the signature of BM
observed by MMS3, so we use the Bg ¼ 0 simulation for this study.
Egedal et al.56 also used a guide field weaker than that of Nakamura
et al.54 for similar reasons.

Finally, we note that the virtual spacecraft trajectory is selected
from a set of possible trajectories, chosen by eye (as opposed to using
more systematic approaches to determine the trajectory50,56,60) The
selected trajectory is one which produces qualitatively similar trends of
magnetic field and electron flow speeds when compared with MMS3
observations. We do not anticipate significantly different values by
employing more systematic approaches. In what follows, all plots are
made from the lower current sheet at the simulation time of 23.4 s
¼ 27 X$1ci0 , when the system has achieved a steady-state reconnection
rate (not shown).

IV. RESULTS
A. Maxwellian lookup table

In order to compute the non-Maxwellianity of a measured distri-
bution f ðvÞ, it must be compared to its associated Maxwellian—a
Maxwellianized distribution fMðvÞ of the form Eq. (8) with the same
density and temperature as the measured distribution f ðvÞ. [The bulk
velocity need not be calculated because it does not factor into Eq. (6)
or (7).] For a continuous, analytical function, the density and tempera-
ture of fMðvÞ are defined to be equal to those of f ðvÞ. However, the
distribution function f ð/; h;EÞ measured by particle instruments is
discrete, not continuous, and is in spherical energy coordinates, not
Cartesian velocity coordinates. These differences introduce numerical
errors into calculations involving the distribution function. Namely,
the computed value of the Maxwellian kinetic entropy density, sM, can
be less than the kinetic entropy density calculated directly from MMS
data, s. Given that sM is the maximum entropy density for a fixed
number of particles and total energy, sM < s is unphysical.

To create a Maxwellianized distribution, we write fM [Eq. (8)] in
spherical velocity coordinates. We then calculate fMð/; h; vÞ at the
same azimuth, polar, and velocity bin centers as FPI and transform it
to fMð/; h;UÞ using the steps outlined in Sec. IIIA. In this way, the
Maxwellian distribution is treated the same as the measured distribu-
tion. The result is Eq. (22).

Numerical errors between the measured distribution and its asso-
ciated Maxwellian prompted us to create a Maxwellian lookup table
for the MMS observations. We start by determining the range of
observed densities and temperatures for the event. Then, we create our
lookup table coordinates nlut and Tlut on a 2D grid in density- and
temperature-space that spans the observed ranges. For each value of
nlut and Tlut in the lookup table, we use a Monte Carlo approach to
generate a Maxwellian distribution governed by Eq. (22) with u ¼ 0,
giving fMð/; h;UÞ at each nlut, Tlut. This constitutes the Maxwellian
lookup table. We note, however, that for any fMð/; h;UÞ in the lookup

FIG. 2. Out-of-plane magnetic field BM from simulations (a) with and (b) without an
initial guide field of Bg ¼ $0:36 nT ¼ 0:03B0. The separatrices are thick black
curves, and the thick black line in (b) is our selected virtual spacecraft trajectory
[Associated dataset available at https://doi.org/10.5281/zenodo.5807744] (Ref. 62).
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table, its numerically integrated density nM and temperature TM are
not necessarily equal to the nlut and Tlut used to produce it due to the
coordinate transformations, discretization, and extrapolation that fM
underwent.

Figure 3 shows the percent error in (a) density Dn=n ¼ ðnlut
$ nMÞ=nlut ( 100% and (b) temperature DT=T ¼ ðTlut $ TMÞ=Tlut

(100% as a function of the lookup table coordinate Tlut during the
EDR encounter on July 11, 201738 (Sec. III B, Fig. 1). Errors in both
density and temperature are independent of density. Absolute errors
in density are greater than 6.4% for low temperatures and decrease
monotonically and non-linearly to 1.9% with increasing temperature.
Similarly, absolute errors in temperature reach a maximum of 2.9%
at 400 eV then decrease non-linearly to 1.1% at the upper limit of
the temperature range. The negative (positive) sign on the relative
errors for density (temperature) indicates that the Maxwellianized

distribution consistently has a higher density and lower temperature
than the lookup density and temperature.

Adjustments in the lookup table method reduce the errors
between the observed and associated Maxwellian parameters. During
the EDR encounter, the observed density and temperature are used to
lookup the associated errors from Figs. 3(a) and 3(b), which are then
plotted as a function of time in Figs. 3(c) and 3(d) (blue). To reduce
the errors, instead of selecting fM at the grid point (nlut, Tlut) that is
closest to the observed values (n, T), we select fM at the grid point

(n0lut ; T
0
lut) that minimizes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDn=nÞ2 þ ðDT=TÞ2

q
. These adjusted

results are plotted in orange. While still noisy, the adjusted lookup val-
ues for nM and TM result in errors that are on average zero.

The effect of these adjustments on measures of kinetic entropy is
shown in Figs. 3(e) and 3(f). Because the Maxwellian distribution has
the highest entropy of any distribution with the same total number of
particles and internal energy, it should be true that Ds=s * 0 and
DsV=sV * 0. This is the case for Ds=s but not for DsV=sV . After
adjusting the lookup table method (orange curves), DsV=sV * 0 at all
times, but Ds=s > 0 at times near 22:34:03. Both s and sV were calcu-
lated by integrating f ð/; h;UÞ and fMð/; h;UÞ using Eqs. (23) and
(24). We also compute sM via Eq. (9) using n and T from the official
FPI moments and compare it to the observed s. This is the green
curve in Fig. 3(e); it matches with our adjusted values of Ds=s,
which serves as validation of our methodology. The reason s gives
unphysical values is because, unlike sV, s does not contain informa-
tion about the velocity space grid scale. This is just one of several
reasons23 that sV is a better choice for studying kinetic entropy; we
will discuss this further in Sec. V.

B. Comparison between observations and the
PIC simulation

Figure 4 shows a comparison between observations (left) and the
PIC simulation (right) in the same format as Fig. 7 of Nakamura
et al.54 MMS3 passed closest to the reconnection X-line and its data
are plotted during the 5 s interval starting at 22:34:00 UT because this
is the time interval surrounding the EDR most commonly shown in
previous studies.38,50,51,54,55 In this study, we focus on the electron
entropy in and immediately surrounding the EDR in the subinterval
from 1.95 to 3.315 s, which is highlighted by the gold box in the MMS
panels. Since the structure velocity is VL ¼ $170 km/s and the elec-
tron inertial length is de ¼ 30 km,38 the spacecraft traversed a distance
of 7.7 de during this time.

The corresponding path of the virtual spacecraft trajectory
through the simulation is 5:3 di0 ¼ 30:64 de long, where (no) subscript
0 indicates that the (current sheet density, n0) upstream density was
used. This would correspond to a path length of 7.1 de in a simulation
with a realistic mass ratio (withme 18.36 times lighter), which is nearly
the same as the path length in the observations. The data are taken at a
single time after the simulation has reached a steady state. We include
simulation results both in normalized units (left vertical axis) and
physical units (right vertical axis), the latter of which allows for a
quantitative comparison with the MMS data.

Quantitatively, the density [Figs. 4(a) and 4(b)]; electron temper-
ature anisotropy A ¼ Te;k=Te;? $ 1, where Te;k and Te;? are the elec-
tron temperatures parallel and perpendicular to the magnetic field
[Figs. 4(c) and 4(d)]; and magnetic field [Figs. 4(e) and 4(f)] are similar

FIG. 3. Maxwellian lookup table illustrating the numerical errors introduced by coor-
dinate system transformations and how it is used to correct for those errors. (a)
Density and (b) temperature lookup tables relating the observed density and tem-
perature to those of the equivalent Maxwellian distribution. The error as a function
of time during the period of interest for (c) density, (d) temperature, (e) entropy den-
sity, and (f) velocity space entropy density without (blue) and with (orange) using
the lookup table. Lookup table results are validated by calculating the total entropy
analytically using Eq. (9) (the green curve in panel e).
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FIG. 4. Comparison between MMS observations (left) and a PIC simulation (right) of a magnetotail EDR encounter. MMS observations are shown over an extended region to
provide context and comparison to previous results (see the text). The gold rectangle highlights the EDR and region of overlap with simulation. Comparisons are made between
(a) and (b) electron density, (c) and (d) electron temperature anisotropy, (e) and (f) magnetic field, (g) and (h) electron bulk velocity, (i)–(n) electric field in the spacecraft and
electron rest frame, and (o) and (p) total and M-component of the rate of energy conversion between the electric field and the electrons. Simulation data are shown in real units
(right-axis) on the same scale as MMS observations with the exception of panel (p), which is much smaller in magnitude. Overall, observations and simulations are in qualita-
tive agreement [Associated simulation dataset available at https://doi.org/10.5281/zenodo.5807744] (Ref. 62).
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between observations and the simulation. The electron bulk flow [Figs.
4(g) and 4(h)] has similar structure but is smaller in the simulation by
about a factor of 4; this is because the simulated electron mass is 18.36
times larger than the realistic value, so the electron Alfv"en speed is
4.28 times smaller. The electric field components in the simulation ref-
erence frame E and in the electron rest frame E0 [Figs. 4(i)–4(n)] all
have similar profiles to the observations, but the L and N components
are about two times smaller in amplitude in the simulations than in
the observations. Similarly, the rate of energy conversion between the
electric field and the electrons [Figs. 4(o) and 4(p)] is a factor of about
4 lower in the simulations. We note that there is good agreement in
the normalized simulation values and those presented in Nakamura
et al.54 (see their Fig. 7), so the quantitative differences with the obser-
vations seen here are consistent with previous studies. The overall
agreement between the simulation and observations gives us confi-
dence in our comparison and interpretations of entropy that follow
(Sec. IVC).

Some differences in density visible in Figs. 4(a) and 4(b) can be
attributed to the trajectory of the virtual spacecraft through the simula-
tion EDR. Along the trajectory, the density profiles both increase, but
the simulation profile exhibits a local minimum not present in the
observations. The density profile along a vertical cut through the EDR
has a double peak with the peaks appearing just upstream of the X-
line at the turning points of the meandering motion.62 If our virtual
trajectory began closer to, but still below, the central current sheet and
sloped gently downward, the density profile would gradually increase
as in the observations. However, the qualitative agreement between
the fields and flows just described would suffer. We choose to keep
this trajectory because of the importance of B and Ve to reconnection.
We will revisit this issue when comparing entropy in Sec. IVC.

C. Kinetic entropy: Application
We now compare observations and simulation results of kinetic

entropy parameters along the satellite trajectory to (a) determine
whether local kinetic entropy measurements in a large, open system
can be interpreted in a similar manner to those of a closed system and
(b) draw a link between kinetic entropy and the dissipation processes
of reconnection. Figure 5 again shows the virtual satellite trajectory
through the simulation domain during the gold highlighted interval,
as well as a 2D snapshot of !M from Eq. (12). We then plot total and
velocity-space entropy densities s and sV along with their associated
Maxwellianized values sM and sM;V , and the non-Maxwellianity mea-
sures !M and !MKP from both MMS (left) and the simulation (right) in
the same format as Fig. 4. We note that s and sM do not have real units
on the right axis because the units are not physical.21 From
22:34:00–1.95 (the left edge of the gold box), MMS3 made a brief
excursion into the inflow region38 where entropy reaches a maximum
during the separatrix crossing and a minimum at the furthest excur-
sion. During the same interval, the non-Maxwellianity peaks in the
inflow region, a characteristic that has been noted in previous simula-
tions of reconnection.30 That non-Maxwellianity peaks outside of the
regions where energy is being dissipated will be discussed below in the
context of the electron distribution functions.

As MMS3 enters the EDR (the gold box), passes southward of
the X-line, and exits into the tailward exhaust, entropy density gradu-
ally increases in the observations; however, in the simulation, entropy
density has a U-shaped profile with a minimum below the EDR. As

expected from Eq. (9), these traces have the same overall structure as
the density profiles in Figs. 4(a) and 4(i).

The non-Maxwellianity measure !MKP [Eq. (11), Figs. 5(d) and
5(g)] is computed using both s [Eq. (7), blue] and sV [Eq. (15), green].
The MMS observations result in unphysical values within the EDR of
the electron Kaufmann and Paterson non-Maxwellianity !MKP;s;e based
on s, where it becomes negative. The Maxwellian distribution should
have the highest entropy of any distribution with the same number of
particles and energy, so !MKP;s;e should be positive. The reason !MKP;s;e

is negative will be explained in Sec. V. In contrast, the electron
Kaufmann and Paterson non-Maxwellianity !MKP;sV ;e using the veloc-
ity space entropy density sV is always positive, consistent with theoreti-
cal constraints.

The other non-Maxwellianity measure !M [Figs. 4(d) and 4(g),
orange] is computed using the appropriate version of Eq. (12) for
MMS and the simulation. It is smaller in magnitude than !MKP because
its normalization term sV ensures that !M is bounded to the range [0,1]
for a properly defined velocity space grid.23 When comparing observa-
tions to simulations, both !M and !MKP have similar shapes within the
EDR despite the fact that s and sV are different. In addition, both val-
ues of !M are more similar in magnitude than the values of !MKP. This
implies that the local measure of kinetic entropy density sV as mea-
sured in the closed simulation can be interpreted in the same manner
as it is in the large, open magnetotail system by MMS.

Now we relate kinetic entropy measurements to various kinetic
processes that occur during reconnection by examining the electron
distribution functions in the MMS data [Figs. 5(j)–5(l)] and the PIC
simulation [Figs. 5(m)–5(o)] at the times and locations indicated by
vertical dashed lines in Figs. 5(b)–5(i) and by the “x” in the EDR of
Fig. 5(a). The simulated distributions are on a different scale; as noted,
multiplying the axes by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
+ 4:3 will give the proper ranges for

a real mass ratio simulation. The two simulated distributions corre-
sponding to the MMS observations outside the EDR were taken from
representative upstream locations in the simulation. The first distribu-
tion [Figs. 5(j) and 5(m)] is taken from the Earthward exhaust after
the electrons have re-magnetized and become mostly Maxwellian. The
second distribution [Figs. 5(k) and 5(n)] is from the inflow region
where parallel potential structures generate a temperature anisot-
ropy.63,64 Here, sV is lower, but the non-Maxwellianity is relatively
large. The third distribution [Figs. 5(l) and 5(o)] is from the heart of
the EDR where meandering motion in the current sheet creates cres-
cents and striations.33,35,38 Here, the non-Maxwellianity is intermedi-
ate between the inflow and Maxwellian distributions. That regions of
elevated non-Maxwellianity in the MMS observations can be related to
kinetic processes during reconnection is consistent with previous
numerical simulations30 and motivates the utility of the entropy-based
non-Maxwellianity measure as an indicator of kinetic-scale energy
conversion and dissipation processes that occur during reconnection.

V. INFORMATION LOSS
The differences in non-Maxwellianity measures demonstrated in

Fig. 5 come about because of subtle differences in the combinatorial
and semi-continuous forms of entropy derived in Sec. II. In the combi-
natorial form of entropy, we break up phase space into bins of size
D3rD3v and count the number of arrangements of particles within
each bin. There is a direct relationship between the number of particles
and the grid scale that becomes apparent when the bins become too
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FIG. 5. Kinetic entropy and non-Maxwellianity in an EDR and their relationship to structures in the distribution function. (a) 2D plot of electron non-Maxwellianity !Me in the PIC
simulation, the virtual satellite trajectory through the EDR, representative magnetic field lines, and the location of the EDR distribution in panel o, marked by an “x.” (b) and (f)
Total and (c) and (g) velocity space kinetic entropy density for the measured (orange) and Maxwellianized (blue) distributions. (d) and (h) Kaufmann and Paterson non-
Maxwellianity !MKP using total (blue) and velocity space (green) entropy density. (e) and (i) Velocity space non-Maxwellianity !M (orange). For (b)–(i), MMS data are in the left
column and simulation data are in the right column. (j) and (m) Upstream, (k) and (n) inflow, and (l) and (o) EDR electron distribution functions from MMS3 (j)–(l) and the PIC
simulation (m)–(o) [Associated simulation dataset available at https://doi.org/10.5281/zenodo.5807744] (Ref. 62).
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small and Stirling’s approximation is no longer valid. In the semi-
continuous form of entropy, we coarse-grain phase space and repre-
sent the system of particles with a distribution function, tacitly assum-
ing that our choice of grid sizes is appropriate and that the statistics in
each cell are sufficient. In practice, however, there is no way to ensure
this assumption holds for every distribution of particles that we
encounter. As a result of the assumption, we lose the connection
between the distribution function, the grid size, and the actual number
of particles within each bin. Two important consequences are that (1)
the definition of total entropy density s defined in Eq. (7) lacks infor-
mation connecting the grid scale D3v to the number density n of par-
ticles within each cell and (2) the total Maxwellian entropy density, sM
defined in Eq. (9), lacks information connecting the grid scale D3v to
the thermal velocity of the distribution vth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
. This missing

information results in unphysical values for !MKP in Fig. 5(d). The defi-
nition of sV adds that information back in, as represented by the
nðrÞ=D3v in the first term of Eq. (6), and by the v2th=ðD

3vÞ2=3 factor in
the result for sM;V [Eq. (10)]. As a result, !MKP;sV is positive definite.
The dependence on D3v serves to regularize !MKP to give !M and is pre-
sent in the denominator of Eq. (13) that relates the two non-
Maxwellianity measures.23 We interpret the denominator as the
amount of “information” lost when a grid scale is imposed on velocity
space, and we investigate it further here.

As a demonstration of the effect of the course-grained, non-uniform
velocity-space grid on the distribution function, we return to the discus-
sion of why !MKP;s;e < 0 within the EDR, but !MKP;sV ;e is always positive
[shown again in Figs. 6(f) and 6(g)]. Looking at the final term of sV in Eq.
(15), we see a correction due to the non-uniformity of the velocity-space
grid. This means that, in the computation of s [Eq. (7)], non-Maxwellian
structures in the EDR are weighted more heavily by the non-uniform
velocity space bins than the associated populations in the Maxwellianized
distribution. By including the correction term, !MKP;sV ;e > 0 throughout
the interval, as it should be on theoretical grounds.

To quantify the information loss as a result of discretizing veloc-
ity space, we write the expressions for !M for the MMS and simulation
equations in the form

!M ¼ Rð !MKP þ BcgÞ; (27)

where Bcg is a bias and R is a regularization factor that arise from
course graining velocity space; in the simulations with a uniform
velocity-space grid, Bcg ¼ 0. Figure 6 shows the information loss for
the MMS data [Eq. (17)], which has non-uniform velocity-space bins.
The first two MMS panels (a) and (b) show s and sV for the measured
and associated Maxwellian distributions for context. Panels (c)–(e)
plot Bcg, R, and RBcg , and panels (f)–(h) contain !MKP [Eq. (11)] and
!M [Eqs. (16) and (17)] to facilitate understanding where the informa-
tion loss leads to issues in the calculated values of non-Maxwellianity.

The bias term Bcg significantly departs from 0 within the EDR;
this is also where !MKP < 0. For comparison, !M > 0 in the same
region. The reason is that the correction for non-uniform velocity-
space grid in sV propagates into Bcg. Given that

Bcg ¼ $
2
3n

ð
d3vðvÞ ln d3vðvÞ

+ ,
fMðvÞ $ f ðvÞ½ &; (28)

and noting that the density of the observed and Maxwellianized distri-
butions are the same, it is the ln ½d3vðvÞ& factor that weighs the

measured non-Maxwellian distribution structures present in the EDR
more heavily than the associated populations in the Maxwellianized
distribution. By correcting for the non-uniform velocity-space grid, Bcg
makes !M > 0.

The regularization term R serves to scale !MKP into the range
½0; 1& so that !M is normalized for an appropriate velocity-space grid
size23 [Fig. 6(g)]. From Eq. (17), the regularization term RMMS for
MMS observations is

RMMS ¼ 1þ ln
2pkBT
m

! "
$ 2
3n

ð
d3vðvÞ ln d3vðvÞ

+ ,
fMðvÞ

" #$1
;

(29)

which contains the natural log of the thermal velocity vth
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p
and the Maxwellianized distribution weighted by the

natural log of the bin volume. When d3vðvÞ is uniform, we recover

FIG. 6. Analysis of information loss as a result of coarse graining velocity space in
the MMS observations. (a) and (b) Total s and velocity space sV entropy densities
in the same format as Figs. 5(b) and 5(c). (c) Bias Bcg, (d) regularization R, and (e)
their product. Non-Maxwellianity terms (f) !MKP calculated using s and sV, and (g) !M
calculated from Eqs. (25) and (26).
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the regularization factor for a uniform velocity-space grid [Eq.
(13), Sec. II]

RSim ¼ 1þ ln pv2th=ðD
3vÞ2=3

h i- .$1
: (30)

The simulation regularization factor is plotted in Fig. 7(a) as a function
of distance along the virtual spacecraft trajectory. As seen in Fig. 5(g),
!M is normalized in the simulations such that its magnitude is similar
to the observations.

Together, R and Bcg represent the amount of information lost by
coarse-graining velocity space. Bcg depends only on the uniformity of
the velocity-space grid, while R additionally depends on the relative
size of the velocity-space grid scale and the thermal speed.21,23

Consequently, it can be different for ions than for electrons. This has
implications for satellite missions like MMS that study dissipation pro-
cesses, as discussed further in Sec. VI.

To better understand the dependence of information loss on
velocity-space bin size and the plasma environment being sampled,
Fig. 7(b) shows contours of RSimðDv; vthÞ on a log-log scale.
Information loss is minimized when !MKP ¼ !M or when RSim ¼ 1
(green line); it occurs where Dv ¼

ffiffiffi
p
p

vth and will be discussed in
greater detail in the sections that follow. When Dv,

ffiffiffi
p
p

vth, the dis-
tribution is over-resolved and there are too few particles per bin.
When Dv-

ffiffiffi
p
p

vth, the distribution is under-resolved and important
structures can be lost. In both of these limits, R! 0 to compensate
for !MKP !1.23 Another critical point is Dv ¼

ffiffiffiffiffi
pe
p

vth. There,
R! 61, indicating that !M ! 61 while !MKP remains finite. This
is because the choice of grid scale makes sM;V ! 0 such that the
observed distribution appears to be infinitely far from equilibrium.

In the PIC simulation presented here, the way we choose our
velocity space grid scale is described in Sec. IIIC. The black dashed
line represents the approximate ideal velocity-space grid size from
Liang et al.21 The dashed lines are the optimal velocity-space ion
(blue) and electron (red) grid sizes for the background (dotted) and
current sheet (solid line) populations used in this study. The difference
between these lines and the line RSim ¼ 1 is discussed below. Because
the bin spacing is uniform, the grid scale falls on a line of constant
RSim.

For comparison, the MMS ion (blue) and electron (red) velocity-
space bin sizes are shown in diamonds for the average thermal velocity
[hvth;ii ¼ 973 and hvth;ei ¼ 14 997 km/s with hTii ¼ 4943 and hTei
¼ 638 eV] within the EDR. Because of the non-uniform grid spacing,
each bin suffers from a different amount of information loss. The ion
bin sizes are somewhat evenly spaced around Rsim ¼ 1 and overlap
with the ideal simulation grid sizes. The smallest bins overlap with the
optimal velocity-space grid size in the simulations but correspond to
energy channels far below the bulk ion energy [Fig. 1(b)]. Meanwhile,
the majority of electron bins over-resolve the distribution and none
reach the line of RSim ¼ 1. The highest energy bins overlap with the
optimized simulation bin sizes, but these correspond to the highest
energy channels and extend beyond the upper edge of the energy dis-
tribution [Fig. 1(b)]. This means that MMS measurements suffer from
information loss for both ions and electrons due to its non-uniformly
spaced velocity-space grid and because the velocity-space bins that
overlap with the energy spectra of the plasma are either too large or
too small, so that they under- or over-resolve the distribution
function.

VI. DISCUSSION
Entropy in a closed, isolated system never decreases, so it can be

thought of in terms of a system’s approach to equilibrium via the pos-
sible dissipation of energy and the irreversibility of the processes acting
within it. A simulation with periodic boundary conditions is a closed
system, so this interpretation can be directly applied to the simulated
process—magnetic reconnection in our case. However, natural sys-
tems are open. In Earth’s magnetotail, at the smallest scales, the elec-
tron diffusion region receives energy from the upstream inflow region,
and at the largest scale the magnetotail itself receives energy from the
solar wind and ionosphere. In such cases, a measurement of entropy
can no longer be interpreted in terms of the second law. This has led
us to investigate local measures of entropy to determine whether such
quantities in closed systems can be used to help interpret measure-
ments in open systems.

FIG. 7. (a) Variations in the regularization term variation as a function of distance
along the virtual spacecraft trajectory. (b) Contours of the regularization term R as a
function of thermal speed vth and linear velocity space grid scale Dv. Black dashed
lines show the optimized bin size from Liang et al.,21 and dash-dotted and solid
lines show the optimized bins with respect to the background and current sheet
populations, respectively, for our simulation. Data for ions and electrons are shown
in blue and red, respectively. Diamond data points show the logarithmically spaced
velocity space bins used in MMS instruments [Associated dataset available at
https://doi.org/10.5281/zenodo.5807744] (Ref. 62).
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A local measure of entropy is also beneficial because spacecraft
are unable to sample all of the accessible position space of a system,
but particle detectors are designed to sample all of velocity space.
Instead of considering the macroscopic evolution of entropy as a sys-
tem approaches equilibrium, we consider how close the local distribu-
tion of plasma is to equilibrium by comparing it to its Maxwellianized
distribution. As we have seen, the parallel potential in the inflow
region and the reconnection electric field in the EDR both do work to
organize the distribution, reducing the number of available arrange-
ments and producing low-entropy, high non-Maxwellianity states (see
also Liang et al.23). Non-Maxwellianity indicates the degree to which a
distribution is organized and, therefore, can be used to identify regions
where dissipation processes take place, like the EDR. Recent work has
shown a connection between structures in the distribution and the
Vlasov equation65 and could lead to deeper insights into non-
Maxwellianity.

Information loss arises from discretizing velocity space and can
be enhanced when the bin size is not uniform. The non-uniform
velocity-space grid used by FPI weights accelerated, non-gyrotropic
structures in the distribution function more heavily than their associ-
ated Maxwellianized populations. As a result, a bias correction term
appears in !M . This bias is not present when velocity bins are uni-
formly spaced. Additional information loss occurs if the velocity-space
bin size is not chosen properly with respect to the thermal velocity of
the plasma. This loss is enhanced with non-uniformly spaced bins and
is different for ions and electrons. For ion and electron distributions of
the same shape to have the same value of velocity space kinetic
entropy, sV;e ¼ sV ;i, requires vth;e=Dve ¼ vth;i=Dvi. A result of infor-
mation loss is that dissipation processes cannot be accurately mea-
sured,21 and the reversibility of dissipation processes cannot be
determined. With regard to MMS, an analysis of the generalized
Ohm’s law during magnetopause reconnection revealed an unmea-
sured, residual amount of dissipated energy that was unaccounted
for.31 Preliminary analysis shows an intriguing similarity between
information loss and this residue term.

Information loss is minimized if !MKP ¼ !M . This occurs most
simply when the velocity space grid is uniform, making Bcs ¼ 0 and
reducing the regularization term RMMS [Eq. (29)] to RSim [Eq. (30)];
and when the RSim is unity, that is, when Dv ¼

ffiffiffi
p
p

vth + 1:77vth. This
suggests that the ideal bin size is slightly larger than the thermal
velocity; however, simulations found best agreement with theoreti-
cal values when the bin size was Dv ’ 0:69vth.

21 The discrepancy
here is likely related to particle noise in PIC simulations, as higher
numbers of particles per grid (>100) would lead to better statistics
at high speeds.

The contour where Dv ¼
ffiffiffi
p
p

vth is associated with interesting
characteristics of sV and sM;V . If Dv is proportional to

ffiffiffiffi
T
p

, as it is when
Dv ¼

ffiffiffi
p
p

vth, then the Maxwellian velocity-space entropy density, sM;V
in Eq. (10), is independent of temperature. If Dv ¼

ffiffiffi
p
p

vth exactly, then
sM;V ¼ 3

2 kBn ¼ cVn, meaning sM;V is proportional to the amount of
energy required to raise the temperature of an ideal gas in thermal equi-
librium by one degree. Because there is no free energy in either the ini-
tial or final equilibrium states, the external work used to increase the
temperature contributes directly to increasing the entropy. For this par-
ticularly chosen grid scale, we see that !MKP ¼ ðsM $ sÞ=sM;V , which is
similar in form to !M [Eq. (12)] and implies that sM $ s ¼ sM;V $ sV .
Finally, Dv ¼

ffiffiffi
p
p

vth is the point where the logarithm in RSim

transitions from positive to negative, which is a more intuitive point for
indicating that the distribution is over- or under-resolved.

Considerations for minimizing information loss have clear impli-
cations for the design of particle instruments. In a simplified model,
an electrostatic analyzer can be thought of as a curved parallel plate
capacitor. The voltage on each plate selects the range and center ener-
gies Ek of the energy bins, while the curvature of and separation
between the plates determines the range of energies DEk of the par-
ticles that can pass through the capacitor. For a given configuration,
DEk=Ek is constant, meaning DEk increases with energy. An aperture
can then be placed on the capacitor to limit the overall amount of flux
into the device, thereby determining the instrument’s geometric factor.
A lot of care goes into deciding the requirements on Ek, DEk, and the
geometric factor, but ultimately the choice imposes a grid scale and
count rate on the measured particle distribution. This means that
information loss is inherent to all measurements and that new design
considerations need to be taken into account to minimize it. The way
to minimize it is to ensure that the velocity space bin sizes,
Dvk ¼ DEk=

ffiffiffiffiffiffiffiffiffiffiffi
2mEk
p

, does not greatly over- or under-resolve the ther-
mal velocity in the range of energies present in the energy distribution.

Other measures of non-Maxwellianity, including enstrophy,14

the Greco ! parameter,13 and the Graham ! parameter,25

X ¼
ð
d3v f $ fMð Þ2;

!Greco ¼
1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
d3v f $ fMð Þ2;

s

!Graham ¼
1
2n

ð
d3vjf $ fbiMj;

are not entropy-based and may not suffer as heavily from information
loss as !MKP . One reason is that the ln ½f ðvÞ& term in s enhances subtle
variation in the distribution, similar to how the powers of v affect
higher-order moments. Unfortunately, these other non-Maxwellian
parameters are all defined to be positive, meaning that unphysical neg-
ative values, like those shown in Fig. 5 for !MKP, are masked. While the
X and ! non-Maxwellianity parameters are not entropy-based, there
are approaches to calculating kinetic entropy in simulations beyond
what were described in this paper (Jara-Almonte and Ji26 and referen-
ces therein). More work is needed to quantify non-Maxwellianity and
information loss using those approaches.

While reconnection transfers energy from the fields to the
plasma, it is not clear if there is an exchange of entropy between the
particles and the electromagnetic fields. The fact that the reversibility
of reconnection depends on the strength of the guide field27,28 suggests
that changes in entropy are due solely to plasma dynamics. In a closed,
collisionless system (such as the simulation performed in this study)
entropy is a conserved quantity; however, simulations have shown that
both total energy and kinetic entropy are conserved to within numeri-
cal precision,21 meaning that while electromagnetic energy is con-
verted entirely into particle kinetic energy, there is no similar exchange
in entropy between the fields and the plasma. Interestingly, as we
showed in Fig. 5, plasma entropy is a local minimum in the EDR
where structured distributions are found and electromagnetic energy
is being dissipated. This suggests that the electromagnetic fields do
work to organize the inflowing distribution (lowering the entropy)
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and that downstream processes thermalize it (increasing entropy). Yet
are the electromagnetic fields simply a reservoir of energy or do they
also exchange entropy? If plasma entropy is related to order and disor-
der, then similar considerations for the fields might suggest that waves
and turbulence increase electromagnetic entropy. There exists a statis-
tical description of radiation entropy that develops a quantity similar
to !M as the deviation of the observed radiation from an ideal black
body,66 a Boltzmann H-theorem for classical wave modes that can be
applied to waves often present during reconnection,67 and a formula-
tion of the second law to describe an ensemble of turbulent eddies.68

More work is needed to determine how such theories influence the
evolution of kinetic entropy. This is relevant to both laboratory experi-
ments like PHASMA,69 which directly measure distribution functions
non-perturbatively and future space missions like HelioSwarm70 that
study turbulent processes leading to dissipation.

VII. SUMMARY
In this study, we examine kinetic entropy associated with dissipa-

tion processes occurring within a magnetotail electron diffusion region
using both in situ observations and a PIC simulation. We generalize
the theory of kinetic entropy21,41 to the case of non-uniform velocity
space bins and transform them to spherical energy coordinates for
application to experimental datasets. In doing so, we implement a
Maxwellian lookup table to reduce numerical errors between the
observed distribution and its associated Maxweillian. The theory is
then applied to MMS observations of a magnetotail EDR and com-
pared to the kinetic entropy density and non-Maxwellianity from a
PIC simulation of the observed event. Good agreement between obser-
vations and simulations indicates that the insights gained from local
kinetic entropy density and non-Maxwellianity measures in numerical
simulations in a closed domain can be useful when interpreting obser-
vations in a naturally occurring open system.

We demonstrate that kinetic entropy density s leads to a non-
Maxwellianity measure !MKP that is not positive definite, as it should
be on physical grounds, because it is biased by the non-uniform veloc-
ity-space grid of MMS that weighs non-Maxwellian structures more
heavily than their associated Maxwellianized structures. A similar issue
is likely to be happening in previous observational studies using the
quadratic non-Maxwellianity ! measure.13,14,25,71 The velocity-space
kinetic entropy sV corrects for the non-uniform grid and results in a
non-Maxwellianity measure !MKP;sV that is positive definite, as it
should be on theoretical grounds. We quantify the reason that s leads
to unphysical results while sV does not by introducing “information
loss”; s lacks information connecting the grid scale to the number of
particles within each cell. This information is contained in sV and
serves to regularize !MKP so that the resulting !M is bounded. We show
that !M is capable of identifying non-Maxwellian distributions, indica-
tive of kinetic effects and dissipation processes that occur during
reconnection.

The new concept of “information loss” is captured by two quanti-
ties, R and Bcg, that measure the extent to which the choice of velocity
space grids affects measurements of kinetic entropy. We show that to
minimize information loss, the velocity space grid scale needs to be
chosen so that the thermal velocity of the plasma is not over- or
under-resolved. This involves having a uniform velocity space grid
with Dv +

ffiffiffi
p
p

vth. Unfortunately for experimental particle detectors, a
uniform velocity space grid is not possible; however, the energy

resolution of the instrument DEk=Ek can be optimized to minimize
information loss by having Dvk ¼ DEk=

ffiffiffiffiffiffiffiffiffiffiffi
2mEk
p

adequately resolve vth
within the energy range of the energy distribution. Thus, entropy and
information loss are important considerations for satellite instrument
development.

SUPPLEMENTARY MATERIAL
See the supplementary material for more complete derivations of

the kinetic entropy and other parameters derived and discussed in this
work. This includes the alternate derivation of Eq. (2) described in Sec.
IIA, the velocity-space kinetic entropy density, sV, for both uniformly
and non-uniformly spaced velocity-space grids [Eqs. (6) and (15)], the
condition for equal entropy for ions and electrons discussed in Sec. VI,
an alternate derivation of the relationship between !M and !MKP [Eq.
(13)], and !M for the case of non-uniform velocity space bins. It also
contains transformations from ðvx; vy; vzÞ to ð/; h; vÞ; ð/; h; EÞ, and
ð/; h;UÞ for fM, s, sV, and !M , as well as the density, velocity, and tem-
perature moments of the distribution. Finally, it contains tables of the
calculated moments and entropy parameters for a model, measured,
and Maxwellianized distribution to serve as a demonstration of the
numerical errors described in Sec. IVA.
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