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ABSTRACT
The physical foundations of the dissipation of energy and the associated heating in weakly collisional plasmas are poorly
understood. Here, we compare and contrast several measures that have been used to characterize energy dissipation and kinetic-
scale conversion in plasmas by means of a suite of kinetic numerical simulations describing both magnetic reconnection and
decaying plasma turbulence. We adopt three different numerical codes that can also include interparticle collisions: the fully
kinetic particle-in-cell VPIC, the fully kinetic continuum Gkeyll, and the Eulerian Hybrid Vlasov–Maxwell (HVM) code. We
differentiate between (i) four energy-based parameters, whose definition is related to energy transfer in a fluid description of a
plasma, and (ii) four distribution function-based parameters, requiring knowledge of the particle velocity distribution function.
There is an overall agreement between the dissipation measures obtained in the PIC and continuum reconnection simulations,
with slight differences due to the presence/absence of secondary islands in the two simulations. There are also many qualitative
similarities between the signatures in the reconnection simulations and the self-consistent current sheets that form in turbulence,
although the latter exhibits significant variations compared to the reconnection results. All the parameters confirm that dissipation
occurs close to regions of intense magnetic stresses, thus exhibiting local correlation. The distribution function-based measures
show a broader width compared to energy-based proxies, suggesting that energy transfer is co-localized at coherent structures,
but can affect the particle distribution function in wider regions. The effect of interparticle collisions on these parameters is
finally discussed.
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1 IN T RO D U C T I O N

Understanding energy dissipation and heating in weakly collisional
plasmas is a key challenge in the study of space and astrophysical
plasmas, such as the solar corona, solar wind, the outer magneto-
spheres of planets, and compact astrophysical objects. At variance
with neutral fluids and collisional plasmas (e.g. magnetofluids),
interparticle collisions are typically weak in these systems and
are often neglected. One example is during magnetic reconnection,
where magnetic fields with a reversing component effectively break
and cross-connect at length-scales at and below the gyroradius of the
particles (kinetic scales), allowing the conversion of magnetic energy

! E-mail: oreste.pezzi@gssi.it

to kinetic, thermal, and non-thermal energy (Yamada, Kulsrud & Ji
2010). Another example is that weakly collisional plasmas are often
observed to be in a strongly turbulent state (Federrath et al. 2010;
Bruno & Carbone 2016; Narita 2018; Beresnyak 2019; Fraternale
et al. 2019). Hence, they are characterized by the cross-scale transfer
of fluctuation energy from large injection scales to smaller, kinetic
scales, where energy dissipation is expected to occur (Schekochihin
et al. 2009; Howes 2015b; Matthaeus et al. 2015; Vaivads et al. 2016;
Verscharen, Klein & Maruca 2019). These features have, at least, two
profound implications.

First, the dynamics of weakly collisional plasmas involve the
whole phase-space, both in configuration and velocity space, as
opposed to collisional systems for which the proximity to local
thermal equilibrium restricts velocity distribution functions to be
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near-Maxwellians due to efficient collisional thermalization. In-
deed, VDFs in weakly collisional plasmas frequently display non-
equilibrium features, such as temperature anisotropy and agyrotropy,
rings, beams of accelerated particles, etc. (Marsch 2006; Servidio
et al. 2012, 2015; Lapenta et al. 2017; Perri et al. 2020). In turbulence,
this interesting dynamics has been envisioned as a phase-space
cascade (Tatsuno et al. 2009; Plunk & Tatsuno 2011; Kanekar et al.
2015; Parker et al. 2016; Schekochihin et al. 2016; Servidio et al.
2017), where the plasma exhibits a power-law scaling – typical of
turbulence – in both physical and velocity space. In this perspec-
tive, by expanding particle VDFs in velocity space using Hermite
polynomials, a power-law Hermite spectrum was recently observed,
reflecting the presence of fine velocity-space structures, in both in
situ observations (Servidio et al. 2017) and numerical simulations
(Cerri, Kunz & Califano 2018; Pezzi et al. 2018). This clearly
illustrates the necessity of using kinetic models to describe such
plasmas. Moreover, non-Maxwellian structures in particle VDFs are
observed to be significant in the vicinity of intense current sheets or
other nearby coherent structures such as vortices, where MHD-like
dissipation is thought to occur (Osman et al. 2011; Servidio et al.
2012; Matthaeus et al. 2015; Parashar & Matthaeus 2016).

Secondly, concepts about energy dissipation and conversion in
neutral fluids and magnetofluids do not necessarily carry over to
weakly collisional systems. The rate and parametric dependence of
dissipation and kinetic-scale energy conversion for such plasmas is
extremely challenging and is not thoroughly understood. One chal-
lenge is that various physical mechanisms and processes can cause
dissipation and kinetic scale energy conversion in various physical
circumstances. In weakly collisional plasmas in which kinetic effects
play a crucial role in the dynamics, such as during turbulence and
reconnection, it may be difficult to assess quantitatively the relative
importance of the various dissipative mechanisms, and likewise
the net effect of a given dynamical process may be unclear due
to reversibility. To address these issues different mechanisms and
concepts of dissipation have been proposed and, hence, several
dissipation surrogates have been adopted (see e.g. Vaivads et al.
2016; Matthaeus et al. 2020, for recent reviews). However, a unified
and general picture of when and where different views work better
is still lacking.

Another important question is the following: do the sites identified
potential sites of dissipation correspond to regions where interparticle
collisions, although weak, dissipate energy in an irreversible way?
Addressing this question has encouraged the examination of a differ-
ent concept of dissipation associated with the growth of entropy due
to collisions (TenBarge, Howes & Dorland 2013; Navarro et al. 2016;
Pezzi et al. 2019c; Liang et al. 2019). Although collisions typically
act on large characteristic times (Spitzer Jr. 1956; Vafin, Riazantseva
& Pohl 2019), their effects are enhanced where particle VDFs
exhibit strong distortions, since intense velocity-space gradients are
dissipated very quickly by collisions (Landau 1936; Rosenbluth,
MacDonald & Judd 1957; Balescu 1960; Schekochihin et al. 2009;
Pezzi, Valentini & Veltri 2016; Pezzi 2017). Non-Maxwellian VDFs
make intraspecies collision operators non-zero, thus activating this
dissipation channel.

In the following, we classify eight different dissipation proxies into
two general classes that we call ‘energy-based’ and ‘VDF-based’.
The energy-based definition describes dissipation as a transfer of
energy within a fluid-like description. Often such transfer occurs
from an ordered component (e.g. magnetic or bulk flow fluctuations)
into a random (e.g. internal) component. On the other hand, VDF-
based surrogates directly quantify the presence of non-equilibrium
features in the particle VDF. The two classes of dissipation proxies

are correlated, since the distortion of the particle VDF is often the
consequence of a transfer of energy and vice versa. The dissipation
proxies here adopted do not explicitly distinguish signatures asso-
ciated with particular phenomena, e.g. Landau damping, cyclotron
damping, or stochastic processes (Chandran et al. 2010; Numata &
Loureiro 2015; Li et al. 2016; Chen, Klein & Howes 2019). Future
studies will analyse the connection between these dissipation mea-
sures – useful to detect potential sites of inhomogeneous dissipation
in a turbulent environment – and the underlying plasma processes,
e.g. highlighted through the field-particle correlation (Klein & Howes
2016; Klein, Howes & TenBarge 2017; Chen et al. 2019; Klein et al.
2020).

In this work, we investigate numerically the functionality of
several dissipation proxies belonging to the two classes introduced
above. We focus on two different types of numerical simulations:
magnetic reconnection in a single current sheet and the development
of a turbulent cascade at kinetic scales. We exploit three different
numerical Boltzmann–Maxwell algorithms, of both Lagrangian and
Eulerian type, that can include interparticle collisions. In particular,
we adopt the fully kinetic particle-in-cell VPIC code (Bowers et al.
2008), and two Eulerian Vlasov–Maxwell codes. These latter codes
are the fully kinetic continuum Vlasov–Maxwell solver implemented
in the Gkeyll simulation framework (Juno et al. 2018) and the
Hybrid Vlasov–Maxwell (HVM) code with kinetic protons and fluid
electrons (Valentini et al. 2007). We find that the dissipation measures
well characterize significant features of both magnetic reconnection
and turbulence, such as the reconnection diffusion region and the
intermittent current sheets surrounding turbulent vortices. The dissi-
pation surrogates evaluated from the PIC and Gkeyll reconnection
simulations agree to a wide extent. Slight differences between the two
runs result from the presence of secondary islands in the Gkeyll
simulation that are not present in the PIC simulation. A qualitative
correspondence between the signatures in the reconnection simula-
tions and the self-consistent current sheets generated in turbulence
is also found, despite larger variations observed in the turbulent case
with respect to the magnetic reconnection one. The parameters show
a regional correlation: their local peaks take place in similar spatial
regions, but they are not necessarily point-to-point correlated (Yang
et al. 2019; Matthaeus et al. 2020). When including interparticle
collisions, peaks of the dissipation proxies are in general weaker
than in the associated collisionless system, suggesting that the slow
yet incessant effect of collisions locally reduce the transfer of energy
and the presence of non-Maxwellian features. By considering the
effect of both intraspecies and interspecies collisions, we confirm
that the former mainly dissipate non-Maxwellian features in the
particle VDF, although they may have an indirect effect also on
energy transfer through the pressure tensor isotropization (Del Sarto,
Pegoraro & Califano 2016). On the other hand, the latter also
significantly affect energy-based parameters. Finally, by adopting
a suite of different algorithms and numerical codes, the current work
aims at providing a further contribution to the ‘turbulence dissipation
challenge’ (Parashar et al. 2015), on which several recent efforts have
been dedicated (e.g. Pezzi et al. 2017; Perrone et al. 2018; González
et al. 2019).

The paper is structured as follows. In Section 2, we define and
discuss the dissipation measures investigated in the current work. In
Section 3, numerical models and algorithms adopted for the current
analysis are described. Sections 4 and 5 report numerical results
obtained in the simulations of reconnection and the onset of kinetic
turbulence, respectively. In Section 6, we show one-dimensional
(1D) profiles of the dissipation proxies close to the reconnecting
current sheet and a typical current sheet observed in the turbulence
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simulation. Finally, conclusions and discussions are presented in
Section 7.

2 D I S S I PAT I O N M E A S U R E S IN W E A K LY
COLLISIONAL PLASMAS

In this section, we introduce the framework and summarize the
dissipation proxies adopted in this work. We consider a weakly
collisional plasma, composed of protons (p) and electrons (e). The
Boltzmann–Maxwell equations, describing non-relativistic plasmas,
in cgs units are:

∂fα

∂t
+ v · ∂fα

∂ r
+ qα

mα

(
E + v

c
× B

)
· ∂fα

∂v
= ∂fα

∂t

∣∣∣∣
coll

(1)

∇ · E = 4πρc (2)

∇ · B = 0 (3)

∇ × E = −1
c

∂ B
∂t

(4)

∇ × B = 1
c

∂ E
∂t

+ 4π

c
j , (5)

where fα(r, v, t) is the α-species VDF (α = p, e); E(r, t) and
B(r, t) are the electric and magnetic fields; and qα , mα , and c
are the α-species charge, mass, and the light speed. The charge
and electric current densities are, respectively, ρc =

∑
αqαnα and

j =
∑

α qαnαuα , where nα =
∫

d3vfα is the α-species number density
and nαuα =

∫
d3vvfα is the α-species number flux density. In the

following subsections, we omit the collisional operator ∂fα /∂t|coll for
simplicity.

2.1 Energy-based dissipation measures

The energy-based dissipation proxies can be introduced from the
energy equations:

∂Ef
α

∂t
+ ∇ ·

(
uαEf

α + uα · Pα

)
= (Pα · ∇) · uα + nαqαuα · E (6)

∂E th
α

∂t
+ ∇ ·

(
uαE th

α + hα

)
= − (Pα · ∇) · uα (7)

∂Em

∂t
+ c

4π
∇ · (E × B) = − j · E, (8)

where Ef
α = ραu2

α/2 is the bulk flow energy density of the
α-species, E th

α = mα

∫
d3vfα (v − uα)2 /2 is the thermal (internal)

energy density of the α-species and Em = (E2 + B2)/8π is the
electromagnetic energy density. In the above equations

Pα = mα

2

∫
d3v(v − uα)(v − uα)fα, (9)

hα = 1
2

∫
d3v(v − uα)2(v − uα)fα, (10)

are the pressure tensor and vector heat flux, respectively.
The left-hand sides of equations (6)–(8) contain terms involving

divergences of fluxes. These terms can be locally important and
correspond physically to energy transport (Pezzi et al. 2019a).
Assuming there is no flux across the domain boundaries (e.g. with
periodic boundary conditions), they have no net effect on the global
energy partition of the system. Energy transfer between bulk flow and
magnetic energy is described by the j · E term, while conversion of
energy between bulk flow and thermal occurs through the pressure–
strain interaction (Pα · ∇) · uα . Including intraspecies collisional

effects (e.g. proton–proton and electron–electron) would not intro-
duce an extra term in equations (6)–(8). However, these collisions
indirectly affect these equations by thermalizing the particle VDF,
thus reducing the non-gyrotropic terms in the pressure tensor and,
in turn, having an impact on the pressure–strain interaction term
(Del Sarto et al. 2016). On the other hand, interspecies collisions
(electron–proton) insert an explicit interspecies energy transfer term
in the energy equations.

The first dissipation surrogate here considered is the Zenitani
measure (Zenitani et al. 2011), widely adopted to describe dissipation
in magnetic reconnection (Zenitani et al. 2011; Phan et al. 2018) and
plasma turbulence (Wan et al. 2015). It evaluates the rate of work
per unit volume done by the electric field on particles, j · E, in the
reference frame co-moving with the considered species, in contrast
with j · E in the simulation frame, which gives the total rate of
energy conversion between the electromagnetic fields and the plasma.
It directly measures the non-ideal energy conversion (Zenitani et al.
2011) and is related to the production of entropy density in the MHD
framework (Birn & Hesse 2005). It reads as

Dα = j ′ · E′ = j ·
(

E + uα

c
× B

)
− ρc (uα · E) , (11)

where j ′ and E′ are the current density and the electric field in
the reference frame co-moving with the species α, respectively. As
shown in Zenitani et al. (2011), neDe = npDp and, in a singly ionized
quasi-neutral system such as the ones considered in the present work,
De & Dp. Dα contains both reversible and irreversible contributions
since the electric field E has contributions from both reversible
(e.g. wave–particle interactions etc.) and irreversible (e.g. collisional
resistive) processes. We note that the probability distribution function
(PDF) of Dα and other dissipation measures are almost symmetric
between negative and positive values (see fig. 4 of Wan et al. 2015).
Net dissipation, which is ultimately an integral over space and time,
arises from slight asymmetry (skewness) in the tails of the PDF.

More recently, the pressure–strain interaction (Pα · ∇) · uα has
been analysed to understand dissipative mechanisms in weakly
collisional plasmas (Yang et al. 2017a, b, 2019; Chasapis et al. 2018a;
Sitnov et al. 2018; Pezzi et al. 2019a; Matthaeus et al. 2020). This
term is commonly decomposed as

− (Pα · ∇) · uα = −Pαθα − !α : Dα, (12)

where Pα, ij = Pαδij + (α, ij; Pα = Pα, ii/3; θα = ∇ · uα; Dα,ij =(
∂j uα,i + ∂iuα,j

)
/2 − θαδij /3; and δij and ∂ i denote the Kronecker

delta and a partial derivative with respect to the ith spatial coordinate,
respectively. The first term on the right-hand side of equation (12),
called P–θα , is associated with plasma expansion and compression.
The last term, called Pi–Dα , is associated with the trace-less
(anisotropic and off-diagonal) parts of the pressure tensor and the
symmetric part of the velocity strain and describes the rate of work
per unit volume done by flow shear. The spatial integral of the Pi–Dα

term measures the thermal energy gain (Pezzi et al. 2019a). Here,
we use the convention that Pi–Dα and P–θα include the minus signs
in equation (12), so that positive values tend to locally increase
the thermal energy. The Pi–Dα term has been adopted to provide
insights on the mechanisms that transfer energy towards smaller
scales, where it is dissipated (Yang et al. 2019). The motivation for
this term being associated with dissipation arises from the MHD
framework, in which traceless pressure–tensor terms are related to
viscous dissipation (Braginskii 1965). Hence, it is interesting to
explore whether this connection remains valid in a weakly collisional
system.
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Another dissipation proxy is associated with the cross-scale
conversion of energy in its non-linear transfer during the turbulent
cascade (Frisch 1995). A proxy of the scale-dependent local energy
transfer rate (LET) in a weakly collisional plasma at proton inertial
scales may be estimated through the combined velocity, magnetic
field and current fluctuations as (Sorriso-Valvo et al. 2018a, b, 2019)

εp,* =
(
|+up|2 + |+b|2

) +up,*

*
− 2(+up · +b)

+b*

*

− dp

2
|+b|2 +j*

*
+ dp(+b · + j )

+b*

*
, (13)

where dp is the proton skin depth. The magnetic field is in velocity
units b ≡ B/

√
4πρ, where ρ is the proton mass density. +g ≡

g(r + ") − g(r) is the increment of a field g between two spatial
points separated by a distance " and is used to describe structures
or fluctuations of that size. The subscript * indicates longitudinal
increment, i.e. the projection along the increment vector ". In this
work, LET values are associated with the starting point of the
increment vector and, for all simulations, the LET parameter εp, * is
computed with * = dp and by averaging the increments taken in the
positive horizontal and vertical directions. Since the LET parameter
εp, * is introduced within a fluid framework, we do not compute it
with * below proton scales, where electron kinetic effects become
important. The definition of LET is motivated by the isotropic
form of the Politano–Pouquet scaling law for the mixed third-order
fluctuations in turbulent incompressible MHD plasmas (Politano
& Pouquet 1998; Sorriso-Valvo et al. 2002, 2007), in this case
also including the Hall–MHD terms (Galtier 2008; Ferrand et al.
2019; Bandyopadhyay et al. 2020; Vásconez et al. 2021). Under
the assumption of stationarity, homogeneity, and large Reynolds’
number, the associated scaling coefficient 〈εp〉 (〈...〉 indicating the
ensemble average) is the constant mean energy transfer (or, in
the stationary steady state, the dissipation) rate of the turbulent
cascade (Kolmogorov 1941). In 3D fluid, fully developed turbulence,
the sign of the averaged third-order moment has to be negative,
corresponding to an ensemble-averaged global net transfer towards
the small scales (the non-linear turbulent energy cascade). Other
terms locally contributing to the energy transfer vanish and are
disregarded here. These represent the different fluid contributions
to the turbulent transfer of energy: kinetic and magnetic turbulent
energy transported by velocity fluctuations, coupled magnetic and
velocity Alfvénic fluctuations transported by magnetic structures,
and two associated Hall terms. In weakly collisional plasmas, the
LET may be unable to describe the contribution of compressibility,
as well as the role of possible non-thermal features. The latter might
enter in the energy budget via the pressure–tensor contributions.
However, it can provide information on the local transfer of ordered
energy towards small scales, where it is made available for conversion
through various possible mechanisms, including dissipation. In
particular, according to the definition used in this work, negative
LET terms can be thought of as locally contributing to the non-linear
energy transfer towards small scales, and positive LET terms describe
a contribution to energy transfer to large scales. In non-turbulent
systems as well as in systems displaying a large-scale structure
(e.g. a single reconnecting current sheet), the interpretation of the
LET sign is more difficult, since the assumption of homogeneity is
not satisfied. However, for this analysis, peaks of LET indicate the
local concentration of cross-scale energy transfer that can be made
available for dissipation, regardless of the sign.

2.2 VDF-based dissipation measures

The first parameter belonging to the class of VDF-based dissipation
measures is the pressure agyrotropy (Scudder & Daughton 2008).
Agyrotropy is a measure of differences in the plasma temperatures
in the two perpendicular directions to a given axis (Scudder &
Daughton 2008; Aunai, Hesse & Kuznetsova 2013; Swisdak 2016).
Standard axis orientations for computing agyrotropy are along the
local magnetic field or the mean magnetic field. Other coordinate
systems, such as the minimum variance frames of the particle VDF,
have been also adopted (Servidio et al. 2015; Pezzi et al. 2017). We
consider here the agyrotropy parameter

√
Qα proposed by Swisdak

(2016), evaluated relative to the local magnetic field. Writing the
pressure tensor Pα in the coordinate system where the local magnetic
field is parallel to the z-axis as

Pα =





Pα,⊥ Pα,12 Pα,13

Pα,12 Pα,⊥ Pα,23

Pα,13 Pα,23 Pα,‖



, (14)

the agyrotropy parameter is defined as

Qα =
P 2

α,12 + P 2
α,13 + P 2

α,23

P 2
α,⊥ + 2Pα,⊥Pα,‖

. (15)

Qα can be computed in an arbitrary coordinate system, as explained
in appendix A of Swisdak (2016).

The variety of non-Maxwellian structures observed during mag-
netic reconnection or in a turbulent plasma is much richer than just
pressure agyrotropies. Another proxy, usually named ε but here
called ξ since ε is already used to indicate the LET proxy, was
proposed by Greco et al. (2012). Here, we propose a slightly different,
non-dimensional definition (the original definition had dimensions
of v−3/2):

ξα(r, t) =
v

3/2
th,α(r, t)
nα(r, t)

√∫
d3v [fα(r, v, t) − gα(r, v, t)]2. (16)

Here, gα is the equivalent Maxwellian distribution function associ-
ated with fα , i.e. constructed using the local values of the density
nα , bulk speed uα , and total temperature Tα of the α-species; while
vth,α =

√
kBTα/mα is the (local) thermal speed.

Similar measures to identify non-Maxwellian VDFs were con-
structed using kinetic entropy. The kinetic entropy density sα is

sα(r, t) = −kB

∫
d3vfα(r, v, t) log fα(r, v, t). (17)

Note the total entropy Sα =
∫

sαd3r of a collisional system is non-
decreasing from the Boltzmann H-theorem, but the entropy density
may locally increase or decrease (Pezzi et al. 2019c). It is possible
to define a velocity–space entropy density svel

α retaining only the
spatially local contribution to entropy from permutations of particles
in velocity space (Liang et al. 2019) as

svel
α (r, t) = sα(r, t) + kBnα(r, t) log

(
nα(r, t)

+v3

)
, (18)

where +3v is the volume of the cell in velocity space. Using these
definitions, two dimensionless non-Maxwellianity parameters have
been introduced:

M̄KP,α(r, t) = sM,α(r, t) − sα(r, t)
(3/2)kBnα(r, t)

=
svel

M,α(r, t) − svel
α (r, t)

(3/2)kBnα(r, t)
, (19)
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proposed by Kaufmann & Paterson (2009), and

M̄α(r, t) = M̄KP,α(r, t)

1 + log
(

2πkBTα

mα (+3v)2/3

) , (20)

proposed by Liang et al. (2020). Here, sM,α(r, t) is the entropy density
evaluated using the equivalent Maxwellian distribution function
gα(r, v, t) associated with the VDF fα(r, v, t), given by

sM,α = 3
2
kBnα

[
1 + log

2πkBTα

mαn
2/3
α

]
. (21)

and svel
M,α(r, t) is computed according to equation (18).

In a system with a fixed number of particles and total energy, the
Maxwellian distribution has the maximum entropy. Hence, M̄KP and
M̄ (along with ξ ) are positive definite. These parameters measure all
higher order VDF disturbances from the local Maxwellian beyond
its second-order moment. This retains information about dissipation,
since high-order variations from the Maxwellian coincide with the
presence of fine velocity–space structures that, in turn, are dissipated
by collisional effects (Pezzi et al. 2016).

3 N U M E R I C A L M O D E L S A N D S I M U L AT I O N S
SETUP

The parameters introduced in the previous section are computed
using the results of kinetic numerical simulations performed with
different codes. All simulations in this work are 2.5D in space
(quantities depend on two dimensions, but vectors have three
components) and 3D in velocity space. For all codes, quantities
are presented using a normalization based on an arbitrary magnetic
field strength B0 and density n0. Spatial and temporal scales are
normalized to the proton inertial length dp = c/ωpp and the proton
cyclotron time .−1

cp , respectively, where ωpp =
√

4πn0e2/mp is the
proton plasma frequency based on n0 and .cp = eB0/mpc is the proton
cyclotron frequency based on B0. Thus, velocities are normalized to
the Alfvén velocity cA = dp.cp; electric fields are normalized to
cAB0/c; pressures and temperatures are normalized to B2

0 /4π and
mpc

2
A/kB , respectively; and entropy is normalized to Boltzmann’s

constant kB [see Liang et al. (2019) for a detailed discussion of the
units of the continuous Boltzmann entropy]. Derived units of the
dissipation measures are therefore as follows: Dα , Pi–Dα , and P–
θα are .cpB

2
0 /4π , εp is c2

A.cp, while Qα, ξα, M̄KP ,α , and M̄α are
dimensionless.

3.1 Numerical algorithms

For the present analysis, we adopt the particle-in-cell VPIC code
and two different Eulerian Vlasov–Maxwell codes: the fully kinetic
Gkeyll code and the hybrid-kinetic HVM code.

VPIC utilizes a 3D, relativistic, fully kinetic explicit algorithm
(Bowers et al. 2008). VPIC has been widely adopted for both
collisionless and weakly collisional plasma simulations, including
simulations of magnetic reconnection and plasma turbulence (e.g.
Daughton et al. 2009, 2011; Karimabadi et al. 2013; Roytershteyn
et al. 2013; Wan et al. 2015; Roytershteyn, Karimabadi & Roberts
2015). The code includes several models of binary collisions, includ-
ing the particle-pairing Coulomb collision algorithm of Takizuka &
Abe (1977) capable of accurately reproducing the Landau collisional
integral over a wide range of parameters. The latter model is used in
this study.
Gkeyll is a highly extensible code framework that contains

solvers for a number of systems of equations of relevance to

plasma physics, including multimoment multifluid (Wang et al.
2015), continuum gyrokinetics (Shi et al. 2019; Mandell et al. 2020),
and continuum Vlasov–Maxwell (Juno et al. 2018; Hakim & Juno
2020). Gkeyll’s Vlasov–Maxwell solver utilizes the discontinuous
Galerkin finite element method for phase-space discretization and a
strong-stability preserving Runge–Kutta method for the integration
in time. The conservative, discontinuous Galerkin implementation
of the non-linear Dougherty operator (Dougherty 1964) is adopted
to include intraspecies collisions (Hakim et al. 2020) (see Juno 2020
for further details).

HVM integrates the Vlasov–Maxwell system within the hybrid
framework, assuming quasi-neutrality and neglecting the displace-
ment current density (Mangeney et al. 2002; Valentini et al. 2007).
The proton Vlasov equation is discretized on a phase-space grid and
integrated numerically, while electrons are assumed to be a massless
isothermal fluid. A generalized Ohm’s law for evaluating the electric
field in Faraday’s law is coupled to the Vlasov equation. Proton–
proton collisions have been recently included through the non-linear
Dougherty operator (Pezzi, Valentini & Veltri 2015; Pezzi et al.
2019b, c).

3.2 Simulations setup

We discuss the two classes of numerical simulations in this work.
The first class employs both collisionless and weakly collisional VPIC

and Gkeyll simulations of a single current sheet that undergoes
symmetric antiparallel magnetic reconnection. In the collisionless
case, we find that VPIC and a separate PIC code P3D (Zeiler
et al. 2002), adopted in Liang et al. (2020), provide consistent
and qualitatively similar results. Although the VPIC and Gkeyll
simulations are very similar in their choice of parameters, there are
small differences we make note of in the subsequent discussion. We
first describe the VPIC simulations.

The VPIC reconnection simulations use a domain size of Lx × Lz

= 25 × 25, with periodic boundary conditions in x and perfectly
conducting boundaries on z. A single-current-sheet initial condition
is used, with magnetic field given by Bx(z) = tanh [(z − Lz/2)/w0],
where w0 = 0.5 is the initial half-thickness of the current sheet.
The initial VDFs are drifting Maxwellians with temperatures Te

= 1/12 and Tp = 5/12 for electrons and protons, respectively;
both temperatures are initially uniform over the whole domain. The
density is set to balance plasma pressure in the fluid sense, with n(z)
= sech2[(z − Lz/2)/w0] + nb, where nb = 0.2 is the background (lobe)
density. Therefore, the total upstream plasma β for this simulation
is nbkB (Te + Tp)/(B2

0 /8π ) = 0.2. The proton-to-electron mass ratio
is mp/me = 25 and the speed of light c = 15. These choices enforce
that the plasma is non-relativistic (the thermal and Alfvén speeds
are much less than the light speed), which is appropriate for the non-
relativistic treatment of kinetic entropy. We employ a time-step of +t
≈ 5.8 × 10−4. The smallest electron Debye length for this simulation
(based on the maximum density of 1 + nb) is λDe = 0.018. The spatial
grid scale is +x = +z = 0.0125 ≈ 0.6944 λDe (Nx = Nz = 2000).
The reference number of particles per cell per particle species is
104 for a density equal to one. We simulate three different electron–
ion collision frequencies: ν = 0, ν = 0.01 .ce = 0.25 .cp and ν

= 0.05 .ce = 1.25 .cp. All types of collisions (electron–electron,
electron–ion, and ion–ion) are taken into account. For each type of
collision, the variance of the scattering angle in the Takizuka–Abe
algorithm is chosen to yield correct ratio of the respective collision
frequencies (see Takizuka & Abe 1977 for more details).

In addition to the parameters for the PIC simulation, the kinetic
entropy diagnostic requires other parameters, discussed in detail in
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appendix B of Liang et al. (2019). For the PIC simulation, we use
a velocity space grid scale of +v ≈ 0.6 vth,e for electrons and +v

≈ 0.5vth,i for ions. We use a velocity range for binning the particles
from −c to c in each dimension for electrons and from −0.4c to 0.4c
for ions.

The Gkeyll reconnection simulation also uses a single current
sheet initial condition, in a domain of size, Lx × Lz = 8π × 4π , which
compared to the PIC simulation is a similar size in x but about half
the size in z. The boundary conditions are periodic in x, a reflecting
wall boundary condition in z. The initial magnetic fields and plasma
parameters are the same as the VPIC simulations: w0 = 0.5, mp/me =
25, Tp = 5/12, Te = 1/12, and nb = 0.2. Likewise, there is only one
Maxwellian component in the current sheet, but c = 50. Since the
continuum Vlasov method in Gkeyll avoids aliasing errors asso-
ciated with under-resolving the Debye length in PIC methods while
still conserving energy, we choose a coarser configuration space grid
resolution to save on the computational cost of a continuum method
while still resolving the reconnection dynamics. Our grid resolution is
+x =+z ≈ 0.4 ≈ 40 λDe (Nx = 64, Nz = 32) with piecewise quadratic
Serendipity polynomials within a grid cell (Arnold & Awanou 2011).
The velocity space range is from −6 vth,α to 6 vth,α with a velocity
space grid of +vα = vth,α along with piecewise quadratic Serendipity
polynomials in velocity space. Zero-flux boundary conditions are
employed in velocity space to ensure energy conservation. We
choose a constant collisionality of νee = 0.01 for electron–electron
collisions and νpp = 0.002 for proton–proton collisions for the
Dougherty collision operator. Reconnection is initiated using a
magnetic perturbation with a spectrum of random wave modes in the
first 20 modes of the system with r.m.s. amplitude δB/B0 = 2 × 10−3.
These random perturbations break the symmetry of the continuum
kinetic initial condition and allow for the study of the standard m =
1 tearing mode that arises from noise in PIC simulations.

The HVM turbulence simulations have 512 grid-points in each
direction and a size Lx = Ly = L = 2π × 20. Periodic boundary
conditions are imposed for the spatial domain. Velocity space is
discretized with 71 grid-points in the range vj = [−5vth, p, 5vth,p] (j
= x, y, z), with the boundary condition f(vj > 5vth,p) = 0. The initial
equilibrium is characterized by spatial homogeneity, Maxwellian
proton VDFs, and a background uniform out-of-plane magnetic field
B0 = ez with βp = 2. This equilibrium is perturbed at t = 0 by
imposing magnetic δB and bulk speed δu = ±δb fluctuations (δb
in Alfvén speed units). Energy is injected at large scales, i.e. k
∈ [2, 6]k0 (k0 = 2π /L), with a flat energy spectrum and random
phases. The r.m.s. amplitude of the fluctuations is δB/B0 = 1/2. No
density perturbations or parallel perturbations are introduced at t =
0. Electron inertia effects are neglected in Ohm’s law, while electron
temperature is set equal to the initial ion temperature. A small
resistivity (η & 10−3) is introduced to suppress numerical instabilities
and does not play a significant role in the plasma dynamics. The
adopted numerical resolution captures two decades of perpendicular
wavenumbers: one above and one below the proton skin depth dp. We
consider two simulations, characterized by a different proton–proton
collisional frequency ν, namely collisionless (ν = 0) and weakly
collisional (ν = 10−3) (see Pezzi et al. 2019c for further details).

4 N U M E R I C A L R E S U LTS : D I S S I PAT I O N
ME ASU R ES IN M AGNETIC RECONNECTIO N

4.1 Proton dissipation proxies for collisionless reconnection

Fig. 1 displays the set of implemented proxies for protons in the VPIC

simulations. The left column collects the results for the collisionless
simulation, i.e. with ν = 0. We initially focus on these results,

and discuss the effects of collisions in Section 4.3. The data are
taken at time t & 22 .−1

cp , after the peak of the reconnection rate.
To compute energy-based parameters involving spatial derivatives,
Gaussian smoothing is used to filter the noise (e.g. Birdsall &
Langdon 2004).

The Zenitani parameter Dp shows signatures consistent with
previous studies (Zenitani et al. 2011; Swisdak 2016), being peaked
with a positive value in the diffusion region. In the exhausts, there
is oscillatory behaviour especially on small scales in the primary
island. This is likely due to time-domain structures (Mozer et al.
2015) such as electron holes, which form Debye-scale bi-directional
electric fields. Such structures are at small scales and produce local
energy conversion between the particles and fields.

The LET parameter εp, * shows a large-scale pattern peaked inside
the magnetic island that is only weakly modulated in the horizontal
direction, as well as a weaker signal approximately coincident with
the electron diffusion region (EDR). As pointed out in Section 2.1,
extracting information about LET is challenging in this reconnection
simulation, where the background field is inhomogeneous and the
fields are not in a steady state of fully developed turbulence. The
signs of LET are opposite on either side of the magnetic reversal
because LET is calculated with an increment with a component in
the positive z direction. The contribution of various terms to the
local εp, * (not shown) reveals that the Hall terms (in particular the
current-helicity term, i.e. the last term in equation 13) dominate
the non-linear energy transfer. This is related to the presence of
Hall-scale electric currents and to the magnetic configuration of the
reconnection region, which thus are the main drivers of the non-linear
interactions. Furthermore, the prevalent positive sign observed for
the MHD cross-helicity term (not shown) suggests that non-linear
interactions are inhibited by the strong presence of coupled velocity-
magnetic field (Alfvénic) fluctuations, which reduce the effective
transfer of energy and possibly the onset of turbulence.

The Pi–Dp plot shows that the pressure–strain term is positive
yet small near the X point on a length-scale in the inflow direction
beyond the EDR. Protons undergo meandering orbits in this region,
producing non-gyrotropic VDFs, while the reconnection inflow and
outflow are associated with bulk velocity shear: this produces a non-
zero Pi–Dp. Inside the islands, a bipolar (positive/negative) signal is
found. The strong negative region suggests energy is locally being
converted from thermal energy to bulk kinetic energy, perhaps in
a region where counterstreaming beams including reflected ions at
the dipolarization front where the denser current sheet population
is being pushed downstream by the reconnected magnetic field are
converted into bulk flow. In contrast, P–θp, which has a peak value
about a factor of 2 larger than Pi–Dp, tends to be quite structured and
positive in most of the island, is negative in the EDR, and is small in
the ion diffusion region (IDR). These results make sense physically:
the plasma in the island is undergoing compression due to the bulk
flows, so that P–θp is positive. In the diffusion region, when upstream
magnetic flux tubes enter the region of weaker magnetic field, they
expand, leading to negative θp = ∇ · up.

Moving to VDF-based parameters, the proton agyrotropy
√

Qp

parameter indicates a proton gyro-scale region of non-gyrotropy
surrounding the diffusion region and the whole island at this stage
of the evolution, owing to the complicated distribution functions
that appear where protons undergo meandering orbits. Local

√
Qp

maxima occur in the inner shell of the magnetic island, where both the
LET and Pi–Dp are locally peaked. Turning to the non-Maxwellianity
parameters, the ξ p parameter similarly shows structure at proton
scales in both the diffusion region and the islands. The structure
of M̄KP,p and M̄p are qualitatively quite similar to ξ p, as expected.
In each case, the protons are most strongly non-Maxwellian in the
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Dissipation in weakly collisional plasmas 4863

Figure 1. Comparison of various dissipation proxies for protons, from the VPIC simulations with ν = 0 (left column), ν = 0.25 (centre), and ν = 1.25 (right).
The proxies are computed at t = 22 for the collisionless run and t = 26 for the weakly collisional runs. From top to bottom: the Zenitani parameter Dp; the LET
parameter εp, * with * & dp; the pressure–strain interaction Pi–Dp; the pressure dilatation P–θp; the agyrotropy

√
Qp; the non-Maxwellian indicators ξp; M̄KP,p;

and M̄p. Solid lines indicate separatrices.
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EDR, with non-zero values also in the IDR and in the island. The main
difference between these last measures, namely the quadratic non-
Maxwellian parameter ξ p and the entropy-based non-Maxwellianity
parameters, is that the latter appear more localized than the former,
suggesting that the entropy-based proxies require relatively more
strongly non-Maxwellian structures to attain appreciable values
relative to ξ p, owing to the natural log VDF dependence in their
definition compared to the quadratic dependence of ξ p.

Summarizing the collisionless simulation results for protons, all
eight dissipation measures in question show structure in and around
the current sheet and magnetic island. For the parameters in this
simulation, the quantities that are most strongly peaked in the EDR
are Dp, ξp, M̄KP ,p, and M̄p. The strongest measure for the IDR is√

Qp, with Pi–Dp, ξp, M̄KP ,p, and M̄p also displaying structure. In
the island, εp, Pi–Dp, and P–θp are significant, with Dp revealing
significant electron-scale variations.

4.2 Electron dissipation proxies for collisionless reconnection

In analogy with protons, electron dissipation proxies are displayed
in Fig. 2. One exception is that the LET parameter is not computed
for electrons, as discussed in Section 2.1. As expected, De & Dp due
to quasi-neutrality. Again, we first focus on the collisionless case in
the left column.

The other energy-based parameters, the electron pressure–strain
interaction terms Pi–De and P–θ e, have highly structured patterns
at much smaller scales than their proton counterparts, as expected.
In the current sheet, Pi–De and P–θ e are both confined to the EDR,
with almost no signal in the IDR. Pi–De is positively peaked in
the magnetic island close to the X-point. There are strong bands of
Pi–De near the upstream edges of the EDR, where velocity shear
due to electron meandering orbits is significant. In the island, both
Pi–De and P–θ e have strong variations in the small-scale structures
discussed in the previous subsection. The intense electric fields are
expanding and compressing the electron fluid as seen in P–θ e, and
these fluctuations in the local velocity shear give a non-zero Pi–De.
There is also coherent structure of Pi–De as the electrons leave the
EDR and develop a velocity shear as they move around the pre-
existing magnetic island.

For the VDF-based proxies, all four proxies
√

Qe, ξe, M̄KP,e and
M̄e are peaked in the EDR where the strong signature of De is
present. For

√
Qe, it is peaked at the upstream edges of the EDR

where the meandering orbits meet the upstream electrons, and is
relatively smaller near the magnetic field reversal where distributions
have a characteristic wedge shape (Ng et al. 2011). Interestingly,
the agyrotropy

√
Qe is only non-zero in the EDR, while the non-

Maxwellianities ξe, M̄KP,e and M̄e are non-zero in both the EDR and
IDR. The reason for this is that the electrons upstream in the IDR
are trapped (Egedal et al. 2005), and it has been shown that they
produce gyrotropic distributions elongated in the parallel direction
(Egedal et al. 2008; Egedal, Le & Daughton 2013). Consequently,
the agyrotropy in the IDR is zero, while the non-Maxwellianity is
non-zero, as is seen in the simulation results.

All four VDF-based proxies also show strong signatures close to
the separatrices, where complicated distributions at the boundaries
between upstream plasma and the magnetic island occur. This is a
key distinction between these proxies and the energy-based proxies,
which are not peaked near the separatrices. This signature suggests
that the energy conversion in the island and exhaust is not taking
place near the edges of the islands, but more towards the core as
the bent field lines straighten. The VDF-based proxies also display
non-zero signals at the small-scale structures in the exhaust.

4.3 Collisional effects on proton and electron dissipation
proxies

We now turn to the effect of interspecies and intraspecies collisions
on the dissipation measures for both protons and electrons. To put the
numerical collisionality in perspective, we compare it to two known
critical collision frequencies for reconnection. Collisionless (Hall)
reconnection transitions to collisional (Sweet–Parker) reconnection
at a critical resistivity ηc (Cassak, Shay & Drake 2005). The initial
current sheet thickness w0 = 0.5 is about four times smaller than
dp, so it is expected that collisionless reconnection will occur for
small enough resistivity. From fig. 3 of Cassak et al. (2005), the
critical resistivity is ηcc2/4πcAdp & 0.2, which in normalized units
for this study is ηc & 1. Then, the critical collision frequency is νc

= ηcnee2/me & 5. Therefore, for ν = 0.25 and 1.25, as is used here
in the VPIC simulations, reconnection is expected to remain Hall-
like. The time-scale for magnetic diffusion in the electron current
sheet is 4πd2

e/ηc2 = 1/ν, so the diffusion time-scales are 4 and 0.8
for ν = 0.25 and 1.25, respectively. In comparison, the electron
Alfvén transit time through the EDR is 2de/(0.1cAe) & 2, where cAe

is the electron Alfvén speed. Consequently, collisions are expected
to have a noticeable effect in the EDR in the VPIC simulations for ν =
0.25, and a significant effect for ν = 1.25. A second critical collision
frequency is that at which collisions affect electron trapping upstream
of the EDR, which is approximately ν = 0.1 (Le et al. 2015). Thus,
the trapping of electrons will be minorly affected for ν = 0.25 and
significantly affected for ν = 1.25. In contrast, the collisionality for
the Gkeyll simulation is very low, below both thresholds, so the
evolution is essentially collisionless.

Fig. 1 displays the proton dissipation proxies for the ν = 0.25
(centre) and ν = 1.25 (right) VPIC simulations. Data are from t &
26 for both ν = 0.25 and 1.25, when the magnetic energy of these
simulations is nearly the same as the collisionless case at t = 22. The
ν = 0.25 case is just after the peak in reconnection rate, as for the ν

= 0 case. The ν = 1.25 case is just before the peak in reconnection
rate, which explains why the island is somewhat smaller for this case.

The energy-based parameters should be affected by the presence
of inter-species collisions due to the exchange of energy between
species. For ν = 0.25, collisions affect the small-scale structures that
were present in the collisionless case, especially in Dp and P–θp.
However, as expected, the large-scale structure of these parameters
is not greatly altered for this collisionality. For ν = 1.25, however,
collisions significantly alter the dissipation proxies. The signals in
the magnetic islands are severely weakened, as are the signals in the
EDR and IDR. Despite being weaker, the large-scale structure of the
measures is largely unchanged.

In a similar way, VDF-based parameters are qualitatively unaf-
fected by collisional effects for ν = 0.25, with only weak quantitative
differences. On the other hand, for ν = 1.25, VDF-based parameters
are strongly quantitatively affected. As collisions drive distributions
toward Maxwellianity, especially those with fine velocity–space
structures, i.e. the non-Maxwellianity measures ξ p, M̄KP,p, and M̄p,
are strongly decreased. The agyrotropy

√
Qp is also reduced by

strong collisions, but not as drastically as the non-Maxwellianity
measures, as it is less sensitive to sharp peaks in velocity space. This
result again confirms that collisional dissipation acts on different
characteristic time-scales depending on the scale of the velocity–
space distortion in the particle VDF: finer velocity space structures
produce shorter dissipation time-scales (Landau 1936; Rosenbluth
et al. 1957; Balescu 1960; Pezzi et al. 2016).

We analyse now the effect of collisions on electron dissipation
proxies for the VPIC simulations, which bears many similarities to
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Dissipation in weakly collisional plasmas 4865

Figure 2. Same as Fig. 1, but for electrons instead of protons.

the effect on proton dissipation proxies. The small-scale structures in
the island largely disappear even for the weaker collisionality of ν =
0.25. However, at variance with the protons, P–θ e shows persistent
small-scale structure even at large collisionality ν = 1.25. The non-
Maxwellianity proxies for electrons are very small for ν = 1.25. This
is consistent with collisions being dynamically important on the time-
scale of the electron transit through the EDR; they Maxwellianize
almost fully. In contrast, the EDR remains clearly visible in the
non-Maxwellianity measures for ν = 0.25. The agyrotropy is non-
zero at the edges of the EDR for all three simulations, suggesting
that the meandering orbits are sufficient to produce this signal even

for the highest collisionality considered here. The trapped electrons
upstream of the EDR are weaker for ν = 0.25 and nearly non-existent
for ν = 1.25, consistent with the predictions from Le et al. (2015).

We finally describe the weakly collisional continuum Gkeyll
simulation. The Gkeyll simulation includes only the effects of
intraspecies collisions.

Fig. 3 shows the proton dissipation proxies, plotted at a slightly
earlier time t & 18, but this time is after the peak of the reconnection
rate which takes place at an earlier time with respect to the VPIC case
owing to the smaller system size. The plots reveal that the X-line is not
located exactly in the centre of the domain and there is a significant
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Figure 3. Same dissipation proxies as plotted in Fig. 1, but for the protons
in the Gkeyll reconnection simulation.

left–right asymmetry. This is because the random perturbation to the
initial condition seeding reconnection breaks the symmetry in the x
direction.

Three of the energy-based measures, Dp, Pi–Dp, and P–θp, show
broad agreement with the VPIC results in Fig. 1. The Gkeyll
simulation has a more structured Pi–Dp near the X-line due to a
secondary island near z = z0 and x − x0 & [1, 2], which develops
shortly after the peak of the reconnection rate. The secondary island
has a bipolar structure in Pi–Dp analogous to the bipolar structure
downstream in a dipolarization front in the VPIC simulation, visible
at z = z0 and x − x0 & [−9, −4] in Fig. 1. The strongest difference
between the two data sets is observed in the LET diagnostic εp, which
displays broader features in the Gkeyll simulation. This is likely
due to the coarser configuration-space resolution.

For the VDF-based diagnostics, the Gkeyll simulation gives
qualitatively and quantitatively similar results in the exhaust, es-
pecially the inner shell of the magnetic island. However, small
differences arise in these diagnostics due to the secondary island
in the Gkeyll simulation. Indeed, this structure generates intense
deviations from the thermal equilibrium due to the mixing and rapid
rotation of protons trying to align with the local magnetic field.
Inside the proton scale island, we observe strong deformation of the
proton VDF which manifests as an intense agyrotropy

√
Qp and

non-Maxwellianity ξ p, M̄KP,p and M̄p .
Turning to electron dissipation proxies, displayed in Fig. 4, the

Gkeyll simulation results display a good agreement with the VPIC

data. In fact, the overall structure in energy-based diagnostics such
as De and Pi–De and distribution function-based diagnostics such
as

√
Qe and ξ e, agrees better for electrons than for protons. For

example, De and Pi–De are positive in the electron diffusion region,
and we observe enhancement of all the distribution function-based
diagnostics near the separatrices. This better agreement can be linked
to the secondary island not having as dramatic an impact on the
electron dynamics in the magnetic island.

Figure 4. Same dissipation proxies as plotted in Fig. 2, but for the electrons
in the Gkeyll reconnection simulation.

The comparison of this wide array of diagnostics from these
two different codes in different regimes, from collisionless VPIC to
weakly collisional Gkeyll to collisional VPIC, reveals the diversity
of information content each diagnostic contains. In many cases,
we observe little qualitative difference between the energy-based
diagnostics from different simulations while VDF-based diagnostics
are more sensitive both qualitatively and quantitatively to the strength
of collisions and subtle differences in the underlying kinetic evolution
of the reconnection process, such as the secondary island which forms
in the Gkeyll simulation.

5 N U M E R I C A L R E S U LTS : D I S S I PAT I O N
MEASURES I N TURBULENT PLASMAS

We here describe the structure of dissipation proxies in plasma
turbulence at kinetic scales. Since the HVM code using the hybrid
model neglects electrons, we only treat proton parameters. In these
simulations, energy injected at large scales generates a cascade
towards smaller scales. The time corresponding to the most intense
turbulent activity is t = t∗ = 30, in which a turbulent state
characterized by an intermittent pattern of current sheets that border
magnetic islands and vortices (Servidio et al. 2015; Wan et al. 2015)
is reached. We show simulation results at t = t∗ in Fig. 5, with the
output of the collisionless (left) and collisional (right) simulation.
Panels from (a) to (h) display Dp, εp,* with * & dp, Pi–Dp, P–θp,√

Qp, εp, M̄KP,p, and M̄p, respectively.
We begin by analysing the energy-based parameters. Dp, LET

εp, *, and the Pi–Dp term are all peaked close to the most intense
current sheets. This confirms that current sheets are the sites with
the most intense local energy conversion and dissipation. Dp has a
preferred sign, being positive in most of the regions of highest energy
conversion. This implies there is a net conversion of energy from
the electromagnetic fields to protons. Similarly, the predominantly
negative LET supports the standard picture of a direct global energy
cascade towards small scales. The regions of larger energy transfer
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Figure 5. Various dissipation surrogates evaluated at the time of maximum turbulent activity in HVM simulations, t = t∗. The two columns at left refer to the
collisionless case, and the two at the right are for the weakly collisional case. Panels from (a) to (h) display Dp, εp, * with * & dp, Pi–Dp, P–θp,

√
Qp, ξp, M̄KP,p,

and M̄p, respectively.

are generally located near the current sheets, and some complexity
in the fine local details of the transfer can be observed. A detailed
analysis of each term of the right-hand side of equation (13)
reveals that the total energy (kinetic plus magnetic) available to
be transported by the longitudinal component +up, * is the main
contributor to the LET parameter in this HVM simulation. In this
case, it is also confirmed (not shown) that the global (Yaglom–Hall)
law shows a linear scaling in the interval roughly corresponding
to the MHD-turbulence range (2dp ! * ! 10dp), as also recently
reported in similar simulation setups by Sorriso-Valvo et al. (2018a)
and Vásconez et al. (2021).

As displayed in previous HVM (Pezzi et al. 2019a) and in PIC
simulations (Yang et al. 2019), Pi–Dp is highly structured, having
both positive and negative regions close to intense current sheets.
Conversely, P–θp is larger than its Pi–Dp counterpart and has
significant contributions both at the current sheets and in magnetic
islands since it is related to large-scale plasma compression (red)

and rarefaction (blue). The most intense regions of P−θp are at
current sheets, reflecting the rapid collision or separation of large-
scale magnetic islands.

The four VDF-based proxies bear many similarities. They are
highly structured, with local peaks close to current sheets. As with
the reconnection simulations, there are also differences between
these measures. It is more common to get appreciable values of√

Qp than other VDF-based measures, especially M̄KP,p and M̄p.
This indicates that the agyrotropy provides an overall picture of the
presence of large-scale kinetic effects in the VDFs (namely the 2nd
order VDF moment), while fine-scale structures in the VDF are larger
contributors to non-Maxwellianity measures.

The collisionless and weakly collisional simulations do not
reveal significant differences in the energy-based parameters for
the collision frequency in use. The inclusion of proton–proton
collisional effects does not affect the statistical characteristics of
turbulence at the proton scale. This can be explained since, at
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variance with interspecies collisional effects, intraspecies collisions
do not generate a resistivity-like term which directly affects the
electric field and hence fluid quantities. On the other hand, VDF-
based parameters are dissipated by collisions, signature of the
collisional thermalization. Since these parameters are sensitive to
the presence of out-of-equilibrium structure in the proton VDF, they
are affected by intraspecies collisional effects. The effect of collisions
is less visible in

√
Qp since collisions preferentially dissipate

fine velocity–space structures (Pezzi et al. 2016), which contribute
less to

√
Qp. The effect of collisions is visible in ξ p and in the

entropy density-based non-Maxwellianity proxies. The maximum
values of these three parameters are smaller by about 10 per cent in
the weakly collisional simulation than the collisionless simulation.
Similarly, average values are reduced by about 20 per cent for ξ p and
30 per cent for M̄KP,p and M̄p when including collisions. The effect
of collisions becomes more significant at later times (not shown
here, see fig. 4 of Pezzi et al. 2019c). Indeed, at the final time of the
simulation, maxima of ξ p and of the entropy density-based proxies
are, respectively, about 20 and 30 per cent smaller when collisional
effects are considered, while their average values are reduced by 40
and 60 per cent, respectively. The different dissipation (in terms of
both maximum and averaged values) of ξ p and the entropy density-
based proxies suggests that the latter react more to collisional effects
than ξ p since entropy-based proxies are dissipated more efficiently
via collisions.

6 O N E - D I M E N S I O NA L P RO F I L E S O F
DISSIPATION PROXIES

We conclude by presenting 1D cuts of the dissipation surrogates
adopted in this work across a typical current structure. We include
both the reconnecting current sheet and a typical current sheet
observed in the turbulent HVM simulation. We focus on the colli-
sionless simulation, since our aim is mainly discussing how these
parameters look when crossing a particular structure. Moreover,
for the magnetic reconnection simulations, we show cuts for only
the VPIC runs, since Gkeyll and VPIC provide similar results.
These plots help reveal comparative proxy structure near to the
current sheets, and may also be useful for future comparison with
in situ spacecraft observations, e.g. for the Pi–D measure (Chasapis
et al. 2018b). For applications of these results to observations or
laboratory experiments, it is important to emphasize that the results
are undoubtedly sensitive to the plasma parameters and to the reduced
2D physical-space dimensionality (Howes 2015a; Li et al. 2016).
Note also that multispacecraft observations are necessary to compute
the spatial derivatives needed to calculate some of these diagnostics
(e.g. Pi–D measure).

Fig. 6 shows the dissipation proxies along a cut in the reconnection
simulation through the X-point in z. The vertical dotted and dashed
lines mark the upstream edges of the EDR and IDR, respectively.
These edges are defined by the location at which the electron and
ion out-of-plane currents are 20 per cent of their maximum (Shay
et al. 2001). The upper panels show the results for the protons, and
the lower panels are for electrons, with energy-based measures in
the left plots and VDF-based measures on the right. For the energy-
based measures, De & Dp shows a clear peak in the EDR. The LET
parameter εp, *, scaled by a factor of 10 to make it easier to see,
displays the negative-positive double-peaked structure in the EDR
seen in Fig. 1, and is negligible elsewhere. The sign of εp,* is the
same sign as Bx for this current sheet. The electron and ion Pi–D
and P–θ show moderately intensified signals within the EDR with
tails extending into the IDR. Compared to the Zenitani measure, both

P–θ and Pi–D display rapidly fluctuating patterns but only Pi–D is
positive definite within the IDR, i.e. the same sign of Dp.

For the VDF-based measures, the agyrotropies
√

Qe and
√

Qp

reveal a double-peak structure the diffusion region of each species
correlated with the size of its diffusion region. As discussed in
Section 4.2, this shape is caused by the meandering motions of the
particles traversing their diffusion regions at their gyroscale and
is therefore a characteristic shape of

√
Q in the diffusion region

of antiparallel reconnection. For both electrons and ions, the non-
Maxwellianity proxies ξ , M̄KP, and M̄ , show intensified signals over
the IDR with relatively strong peaks in the EDR. As discussed
in Section 4, the electron non-Maxwellianities not only show the
peaks in the EDR but also broad intensified signals over the IDR. As
analysed in Liang et al. (2020), the broad intensified signals are due
to the gyrotropic distributions created by trapped electrons (Egedal
et al. 2005). This non-zero signal is coincident with negligible signal
in the electron energy-based proxies De, Pi–De and P–θ e.

Fig. 7 similarly displays the dissipation proxies along a vertical cut
through the reconnection simulation at x − x0 = 5, i.e. through the
reconnection exhaust. The format is the same as Fig. 6. For this cut,
the exhaust is between the separatrices at z − z0 & ±1.5. For both
electrons and ions, all energy-based diagnostics, De = Dp, εp, Pi–
D, and P–θ show intensified, yet noisy, signals. The signals include
positive and negative values due to complex flows in this region,
although for this cut the Pi–Dp measure has a sizeable negative value.
The VDF-based proxies for both electrons and ions are intensified in
the exhaust, as well. The electron VDF-based proxies have peaks near
the separatrices, due to the counter-streaming electron flows (Hesse
et al. 2018; Liang et al. 2020). The VDF-based proxies are slightly
broader than the exhaust, which results from the finite Larmor radius
(FLR) effects near the separatrices as shown by the non-gyrotropy√

Qp. Although FLR effects are not seen much in the energy-based
diagnostics, they are picked up by the VDF-based diagnostics ξ p,
M̄KP,p, and M̄p.

Finally, we show in Fig. 8 the dissipation proxies for the col-
lisionless HVM turbulence simulation along a 1D cut close to the
current sheet near (x, y) = (69, 36). Similar results are obtained in the
collisional simulation. All the energy-based parameters (top panel of
Fig. 8) are peaked within the same region, i.e. y & 36. The VDF-
based proxies (bottom panel of Fig. 8) also reveal clear maxima near
the current structure. However, the maxima are somewhat broader
in width (∼2–5) than the energy-based parameters (∼1). Moreover,
the agyrotropy parameter

√
Qp shows large-scale fluctuations quite

far from the current structure. The broader distribution observed for
the VDF-based parameters suggests that energy transfer is localized
close to the coherent structures, but can affect the particle distribution
function in a larger region around these structures.

The 1D cuts of the dissipation proxies for both the reconnection
and turbulence simulations support the idea that peaks of dissipation
measures in a reconnecting current sheet or a turbulent environ-
ment characteristically occur in coincident spatial regions, but not
necessarily at the same exact spatial position. This is consistent
with the notion of regional correlations, suggested by Yang et al.
(2019) and Matthaeus et al. (2020). The selected structure has more
of a resemblance to the 1D cut of the reconnection simulation
at the X-point than at the reconnection exhaust. However, there
are qualitative and quantitative differences. The Zenitani measure
and the diagnostics based on the pressure–strain interaction (Pi–D
and P–θ ) have the same dimensions (see Section 3), hence it is
reasonable to compare their magnitude. In this respect, we notice
that the Zenitani measure is most prominent in the reconnection
simulation, while a positive P–θ is the strongest in the turbulence
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Figure 6. 1D cuts vertically through the x-line showing the various dissipation surrogates in the reconnecting current sheet for the VPIC collisionless reconnection
simulation. The top row refers to proton proxies, displaying energy-based parameters (left, with εp,* scaled by a factor of 10 to make it more visible) and
VDF-based parameters (right). In the right-hand panel, the Zenitani measure Dp is showed as a reference. The bottom row is analogous for the electron proxies.

Figure 7. Same as Fig. 6, but at x − x0 = 5dp.

simulation. This suggests that, when simulating a single reconnecting
current sheet, compressible effects are less significant. On the
other hand, when reconnection occurs in a turbulent environment,
where magnetic islands can merge with each other, compression
is much more significant. The LET parameter, which has different
dimensions than the other three energy-based surrogates, oscillates in
the reconnection simulation, but is strongly negative in the turbulence

one. Qualitative agreement between the structures is found for the
VDF-based surrogates, that are all adimensional, although some
features in the reconnection simulation (e.g. double peaks in the
agyrotropy) are not present in the turbulence simulation perhaps
because of the different numerical resolution. Furthermore, for the
cut through the current sheet in turbulence, the parameters depend on
time due to the turbulent interaction of larger scale magnetic eddies,
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Figure 8. Same as Fig. 6, but for the HVM collisionless turbulence
simulation. The cut is taken at x = 68.7 dp.

so wide variation in parameters across different current sheets and at
different times is expected.

7 D I S C U S S I O N A N D C O N C L U S I O N S

As a result of the weak collisionality of many space and astrophysical
plasmas, several physical processes can locally contribute to the
dissipation of energy and the heating of the plasma. During magnetic
reconnection, magnetic energy is efficiently converted to directed
plasma flows, thermal energy, and energetic particles (Burch et al.
2016; Torbert et al. 2018). During turbulence in a magnetized
plasma, the cascade provides the global amount of energy needed
for fluctuations to be dissipated at small scales (Marino et al.
2008). However, which dissipative mechanisms are dominant and
under which conditions is still not sufficiently understood (Vaivads
et al. 2016). Therefore, a multiplicity of dissipation surrogates
have been adopted in the literature to identify potential sites of
dissipation. Owing to the strongly non-linear dynamics and the
importance of physics at kinetic scales in such systems, numerical
simulations of the Vlasov–Maxwell system (or, including collisions,
the Boltzmann–Maxwell system) are the decisive tool to address
the long-standing issue of plasma heating and energy dissipation in
magnetized plasmas, e.g. Parashar et al. (2009). For example, the
‘turbulence dissipation challenge’ (Parashar et al. 2015) motivated
numerical work to compare different algorithms on the solution of
similar problems to assess the nature of the dissipation in magnetized
turbulence (e.g. Pezzi et al. 2017; Perrone et al. 2018; González et al.
2019).

In the same spirit, we have conducted a survey of a number of
dissipation surrogates with three different kinetic plasma codes – the
fully kinetic particle-in-cell VPIC, the fully kinetic Eulerian Vlasov–
Maxwell Gkeyll, and the Eulerian Hybrid Vlasov–Maxwell codes
– to perform numerical simulations of two important physical phe-
nomena in plasma physics. The first class investigates reconnection in
an isolated current sheet, and the second concerns plasma turbulence

at kinetic scales. We have calculated and compared eight distinct
dissipation proxies, delineated in Section 2. For the sake of clarity,
we have categorized them in terms of (i) energy-based parameters,
whose definition describes energy transfer and conversion; and (ii)
VDF-based parameters, that are directly related to kinetic signatures
in the particle VDF. Energy-based parameters considered here are
the power density by electromagnetic fields on charged particles
(Zenitani et al. 2011), the pressure–strain interaction (Yang et al.
2017a), and a local proxy of the turbulent energy transfer (Sorriso-
Valvo et al. 2018a). The VDF-based parameters are the local pressure
agyrotropy (Swisdak 2016) and three measures describing how
different a local distribution function is from being Maxwellian
(Kaufmann & Paterson 2009; Greco et al. 2012; Liang et al. 2019).

Our findings are that each of the studied measures is non-
zero in key settings in reconnection and turbulence, including
the reconnection diffusion region and magnetic islands, and the
intermittent magnetic shear regions bordering magnetic eddies in a
turbulent system. The region that each proxy is strongest highlights a
potentially different aspect of the physics taking place, as is described
in detail in Sections 4 and 5. It is intended that the discussion therein
will contribute to the assessment of dissipation and energy conversion
in satellite and plasma laboratory experiment measurements. We
here remark on the importance of the VDF-based diagnostics, which
reveal further details about the underlying dynamics of the plasma
compared to the energy-based diagnostics. Indeed, the energy-
based diagnostics give similar results for similar simulations in the
magnetic reconnection setup (i.e. VPIC and Gkeyll runs), as we
expect since these simulations which show little difference in many
of the measures of the plasma response to magnetic reconnection.
However, the additional level of detail provided by VDF-based
diagnostics allows us to more carefully ascertain the kinetic response
of the plasma from small differences which arise naturally between
two different simulation codes, and the added robustness of these
diagnostics is likely to be especially useful when analysing more
general simulations and observations of real plasma systems such as
the solar wind. In contrast, the energy-based diagnostics are directly
related to the turbulence cascade process that connects the energy
containing scales to the kinetic range of scales where the velocity
space structure becomes increasingly important. Therefore both type
of diagnostics are helpful to form a complete picture of the dynamics
leading to dissipation.

The spatial locations where each proxy has a local maximum
can be different between the different proxies. For example, in
the magnetic reconnection simulations, the Zenitani measure is
peaked at the X-point while the pressure–strain interaction terms
are peaked inside the magnetic islands. This confirms a suggestion
that both energy-based and VDF-based parameters display a regional
correlation: structures identified by these parameters often occur in
similar regions, although not necessarily exhibiting a point-to-point
correlation. This underscores a key conclusion of this work: that no
one single measure is universally the best measure for dissipation.
Rather, employing a number of proxies is likely best for assessing
the dissipation and energy conversion in a plasma system.

We also consider the role of collisions by including their dynamical
effect ab initio in the numerical simulations for both reconnection
and turbulence. When including only weak intraspecies (proton–
proton) collisions in the turbulence simulations, the VDF-based
proxies decreased while the energy-based proxies were largely
unchanged. This behaviour is expected since such collisions drive
particle VDFs towards Maxwellian distributions, but they do not
produce a net energy transfer between different species although they
indirectly modify the energy equations by isotropizing the pressure

MNRAS 505, 4857–4873 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/4857/6286913 by C
N

R
 user on 29 June 2021



Dissipation in weakly collisional plasmas 4871

tensor (Del Sarto et al. 2016). On the other hand, both energy- and
VDF-based proxies are influenced by interspecies and intraspecies
(electron–proton) collisions in simulations of magnetic reconnection.
In particular, small-scale structures are dissipated by collisions, and
the distributions in the diffusion region are less non-Maxwellian and
thermalize more rapidly than in the collisionless case.

Interestingly, we find the peaks of dissipation proxies in the
systems with collisions are generally weaker than in the collisionless
system. VDF-based dissipation proxies show this behaviour for all
the simulations reported in the manuscript. These surrogates are local
in position space and provide only a local measure of the complexity
of the distribution function. Energy-based measures also become
weaker in the collisional runs of magnetic reconnection, which
include interspecies collisional effects. This behaviour is an effect of
the work of collisions that, since the beginning of the numerical
simulation, have produced dissipation. In particular, intraspecies
collisions dissipate VDF complexity, while interspecies collisions
affect both the VDF and the energy. Therefore, by looking at these
parameters at a fixed time snapshot, their peaks are weaker in the
collisional runs with respect to the collisionless case. Further, it also
clearly illustrates that the energy-based measures contain information
about both collisional and collisionless processes, implying that they
are not yet capable of distinguishing reversible from irreversible
processes.

Although defining the concept of dissipation in a collisionless
plasma is rather complicated, analysing dissipation surrogates in
collisionless simulations and comparing the evolution of these
proxies in collisionless and collisional runs, as done in this study, is
meaningful. Such a comparison indeed addresses the key question:
are collisions preferentially active in regions where the dissipation
surrogates evaluated in absence of collisions are intense, i.e. where
other dynamical characteristics (e.g. pressure–strain interactions,
non-Maxwellian structures) are significant? Our analysis may in-
directly suggest a positive answer to this question. The regional
correlation of energy-based and VDF-based diagnostics indicate that
non-Maxwellian structures in the particle VDF are expected close to
regions where energy-based dissipation surrogates are also strong.
Moreover, as shown in previous studies (Landau 1936; Rosenbluth
et al. 1957; Balescu 1960; Schekochihin et al. 2009; Pezzi et al.
2016, 2019c), collisions rapidly dissipate strong velocity–space
disturbances in the particle VDF. Hence, we suggest that regions
identified by dissipation surrogates in the collisionless simulations
are regions where collisions, if present, preferentially smooth out
non-Maxwellian features in the particle VDF, thus producing irre-
versible dissipation.

The present study is not intended to be the final word on this
topic, as there are many avenues for future work. The diagnostics
considered here do not discriminate the underlying process which
may lead to energy dissipation or conversion, e.g. Landau damping,
cyclotron damping, phase-mixing, and stochastic heating (Chandran
et al. 2010; Li et al. 2016). In this perspective, a different approach,
based on the field-particle correlation, has been recently adopted
to identify the presence of particular signatures in the particle VDF
(Klein & Howes 2016; Klein et al. 2017; Chen et al. 2019; Klein et al.
2020). This method has the advantage of diagnosing energization
directly in velocity space while the others here adopted involve an
integration over the full velocity space. The field-particle correlation
is also local in physical space and does not require spatial gradients,
which would require multiple spacecraft for in situ observations.
Incorporating the field–particle correlation gives a visual way to
identify energy transfer between particles and fields, and would be
interesting to compare with the other proxies. Indeed, the diagnostics

considered in this work are extremely useful to characterize potential
sites of intermittent dissipation, e.g. in structures close to intense
current sheets. On the other hand, methods such as the field–particle
correlation identifies basic plasma processes, e.g. Landau damping.
Connecting these two points of view would also contribute to
addressing the fundamental question whether dissipation in plasmas
is uniform or intermittent (Vaivads et al. 2016) and deserves a
dedicated, future study. Moreover, kinetic plasma turbulence excites
in a very complex way an entire ensemble of genuinely kinetic
degrees of freedom, i.e. those related to velocity–space structures
in the particle VDF (Servidio et al. 2017; Pezzi et al. 2018), thus
driving free energy towards finer and finer scales in velocity space
where it is dissipated through interparticle collisions (Pezzi et al.
2019c). The relation of the dissipation surrogates considered here
with the enstrophy phase-space cascade will be the subject of a
future work.

Finally, there are many necessary extensions to the current study.
The present simulations varied collisionality, but for a particular set
of field and plasma initial conditions, so the parametric dependence
of the conclusions attained herein should be the subject of future
work. Both the reconnection and turbulence simulations were 2D, and
therefore 3D effects are not captured. The reconnection simulations
studied here employed a small system size in which the protons do
not fully couple back to the large-scale systems, so it is important
to revisit the proton dissipation measures in larger system sizes.
The effect of proton–electron collisions on energy-based parameters
in turbulence should be addressed in future work. The turbulence
simulations considered here addressed decaying turbulence, and
comparisons to driven turbulence would be interesting.
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Vásconez C. L., Perrone D., Marino R., Laveder D., Valentini F., Servidio S.,

Mininni P., Sorriso-Valvo L., 2021, J. Plasma Phys., 87, 825870101
Verscharen D., Klein K. G., Maruca B. A., 2019, Liv. Rev. Solar Phys., 16, 5
Wan M., Matthaeus W. H., Roytershteyn V., Karimabadi H., Parashar T., Wu

P., Shay M., 2015, Phys. Rev. Lett., 114, 175002
Wang L., Hakim A. H., Bhattacharjee A., Germaschewski K., 2015, Phys.

Plasmas, 22, 012108
Yamada M., Kulsrud R., Ji H., 2010, Rev. Mod. Phys., 82, 603
Yang Y. et al., 2017a, Phys. Plasmas, 24, 072306
Yang Y. et al., 2017b, Phys. Rev. E, 95, 061201
Yang Y., Wan M., Matthaeus W. H., Sorriso-Valvo L., Parashar T. N., Lu Q.,

Shi Y., Chen S., 2019, MNRAS, 482, 4933
Zeiler A., Biskamp D., Drake J. F., Rogers B. N., Shay M. A., Scholer M.,

2002, J. Geophys. Res.: Space Phys., 107, 6
Zenitani S., Hesse M., Klimas A., Kuznetsova M., 2011, Phys. Rev. Lett.,

106, 195003

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 505, 4857–4873 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/4/4857/6286913 by C
N

R
 user on 29 June 2021

http://dx.doi.org/10.1017/S0022377816000374
http://dx.doi.org/10.1029/2008JA013035
http://dx.doi.org/10.1103/PhysRevLett.108.045001
http://dx.doi.org/10.1017/S0022377814000841
http://dx.doi.org/10.1103/PhysRevLett.119.205101
http://dx.doi.org/10.1029/1999JA001007
http://dx.doi.org/10.1063/1.5074179
http://dx.doi.org/10.1029/2018GL077874
http://dx.doi.org/10.1063/1.1420738
http://dx.doi.org/10.1103/PhysRevLett.99.115001
http://dx.doi.org/10.1017/S0022377818000302
http://dx.doi.org/10.1007/s11207-017-1229-6
http://dx.doi.org/10.1103/PhysRevLett.122.035102
http://dx.doi.org/10.1002/2015GL066980
http://dx.doi.org/https://doi.org/10.1016/0021-9991(77)90099-7
http://dx.doi.org/10.1103/PhysRevLett.103.015003
http://dx.doi.org/10.1088/0004-637X/774/2/139
http://dx.doi.org/10.1126/science.aat2998
http://dx.doi.org/10.3847/2041-8213/aafb11
http://dx.doi.org/10.1017/S0022377816000775
http://dx.doi.org/10.1016/j.jcp.2007.01.001
http://dx.doi.org/10.1017/S0022377820001567
http://dx.doi.org/10.1007/s41116-019-0021-0
http://dx.doi.org/10.1103/PhysRevLett.114.175002
http://dx.doi.org/10.1063/1.4906063
http://dx.doi.org/10.1103/RevModPhys.82.603
http://dx.doi.org/10.1063/1.4990421
http://dx.doi.org/10.1103/PhysRevE.95.061201
http://dx.doi.org/10.1093/mnras/sty2977
http://dx.doi.org/10.1029/2001JA000287
http://dx.doi.org/10.1103/PhysRevLett.106.195003

