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Abstract We report a Time History of Events and Macroscale Interactions during Substorms (THEMIS-D)
spacecraft crossing of a magnetopause reconnection exhaust ~9 ion skin depths (di) downstream of an X
line. The crossing was characterized by ion jetting at speeds substantially below the predicted reconnection
outflow speed. In the magnetospheric inflow region THEMIS detected (a) penetration of magnetosheath ions
and the resulting flows perpendicular to the reconnection plane, (b) ion outflow extending into the
magnetosphere, and (c) enhanced electron parallel temperature. Comparison with a simulation suggests that
these signatures are associated with the gyration of magnetosheath ions ontomagnetospheric field lines due
to the shift of the flow stagnation point toward the low-density magnetosphere. Our observations indicate
that these effects, ~2–3 di in width, extend at least 9 di downstream of the X line. The detection of these
signatures could indicate large-scale proximity of the X line but do not imply that the spacecraft was
upstream of the electron diffusion region.

1. Introduction

Reconnection at Earth's magnetopause typically involves asymmetric inflow densities on the two sides of
the current sheet [e.g., Paschmann et al., 1979; Sonnerup et al., 1981], with the magnetosheath density higher
than the magnetospheric density, typically by a factor of 10 or more. A consequence of this large asymmetry
is that in the reconnecting current sheet, the stagnation point is shifted toward the magnetospheric side [e.g.,
Cassak and Shay, 2007; Eastwood et al., 2013], and the location of the peak reconnection jet speed in the
exhaust is skewed toward the magnetosphere [e.g., Gosling et al., 1991; Phan et al., 1996].

In the downstream exhaust, the reconnection outflow is confined to the current sheet [Paschmann et al.,
1979; Sonnerup et al., 1981]. However, near the X line, the current sheet width is at its thinnest and the
distance from the stagnation point to the magnetospheric edge (i.e., where the magnetic field begins to
rotate) could be smaller than the gyroradii of magnetosheath ions. A recent simulation by Shay et al.
[2016] showed that this leads to the penetration of magnetosheath ions into the magnetosphere near the
X line. Higher-energy ions penetrate deeper, leading to a Larmor radius effect. Due to their smaller gyroradii,
magnetosheath electrons cannot penetrate into the magnetosphere as deeply as the ions.

In the simulation, the Larmor radius effect was found to occur within ~15 ion skin depths (di) of the X line in
the downstream direction. Farther downstream, the radial distance from the stagnation point to the
magnetosphere is larger than the gyroradii of magnetosheath ions such that magnetosheath ions are mostly
confined to the current sheet. Furthermore, due to the time-of-flight effect, field-aligned magnetosheath
electrons penetrate deeper into the magnetosphere than field-aligned ions [e.g., Gosling et al., 1990;
Khotyaintsev et al., 2006; Oieroset et al., 2015]. This is opposite to the ion gyroradius effect near the X line.

Because of the localization of this magnetosheath ion Larmor radius effect, Shay et al. [2016] suggested that
this signature could be used to provide large-scale context for spacecraft encounters of the dayside
reconnection X line region. This would be particularly useful for crossings that are normal to the current
sheet, as opposed to crossings along the outflow direction, where bidirectional jet signatures could provide
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the context for the identification of the X line region [e.g., Phan et al., 2003; Wilder et al., 2014; Burch et al.,
2016; Phan et al., 2016]. Recently, Khotyaintsev et al. [2016] and Burch and Phan [2016] reported signatures
of magnetosheath ion penetration and electron parallel heating in the magnetospheric inflow region within
1–2 di of the X line.

In this paper, we describe a comprehensive analysis of a Time History of Events and Macroscale Interactions
during Substorms (THEMIS-D) crossing of the dayside magnetopause that exhibits many of the predicted
properties associated with the Larmor radius effect in the magnetospheric inflow region. The observations
are compared with a simulation based on the observed inflow conditions. Our findings suggest that
magnetosheath ion Larmor radius effects extend at least 9 di downstream of the X line.

2. Simulation

In this section, we describe the large (ion)-scale plasma and field structures surrounding the X line based on a
2.5-D particle-in-cell (PIC) simulation, with emphasis on features that can be compared with the THEMIS
observations. The simulation uses inflow parameters that correspond to the THEMIS nearly antiparallel
reconnection event to be discussed: the magnetosheath inflow region was initialized with a magnetic field
of 30 nT, a proton density of 15 cm�3, and ion and electron temperatures of 270 and 40 eV, respectively.
The magnetospheric inflow region had a magnetic field of 50 nT, density of 0.45 cm�3, and ion and electron
temperatures of 1400 eV and 52 eV, respectively. With these parameters, the total pressure is uniform across
the magnetopause current sheet.

The simulation parameters and boundary conditions are somewhat similar to those of Malakit et al. [2013]
and Shay et al. [2016], but there are differences as well. The main differences are the much larger ion
temperature ratio across the magnetopause and larger ion-to-electron temperature ratio in the
magnetosphere. This leads to clearer signatures of the escape of magnetospheric ions near the
magnetopause current sheet not noted in the previous studies. Furthermore, the new simulation reveals
that the “Larmor electric field,” which was thought to be localized near the X line, actually extends more
than 35 di downstream. On the other hand, signatures of magnetosheath ion gyroradius effects are more
localized and therefore better indicators of the proximity to the X line. Details of the simulation setup
can be found in the Appendix A. The simulation results are presented in physical units to allow for quanti-
tative comparison with THEMIS observations.

Figure 1 shows the plasma and field structures of the reconnecting current sheet and its upstream regions,
with the magnetosheath at the top and the magnetosphere at the bottom of the panels. The simulation
results are shown in the LMN coordinate system, with N pointing along the overall current sheet normal
(upward), M along the X line direction (into the plane), and L along the outflow direction (positive to
the right). In the figure, the separatrices are the field lines that converge at the X point. The region of interest
is the magnetospheric inflow region near the X line. Within ~±15 di of the X line (in the ±L directions), the ion
outflow (viL) jet extends beyond the magnetospheric separatrix into the magnetosphere (Figure 1d). In
the same region, there is a strong negative (out-of-plane, blue) ion flow viM (Figure 1e) and a large enhance-
ment of the electron parallel temperature (Figure 1i). There is no significant intrusion of the electron outflow
(veL) jet into the magnetospheric inflow region (Figure 1f). Farther downstream, the ion outflow and the
negative viM are inward of the separatrix, and no parallel electron heating is seen in the magnetospheric
inflow region.

The intrusion of the ion flow into the magnetosphere is due to the penetration of magnetosheath ions.
The fact that there is no intrusion from the electron flow indicates that this is an ion Larmor radius effect
[Shay et al., 2016]. Figures 2d and 2e display the ion distributions in the magnetosheath ion intrusion region
(sampled in rectangular boxes in Figure 2a), which show the Larmor gyroradius signatures and the resulting
net out-of-plane drift (i.e., viM< 0) of the ions. The sketch in Figure 2b explains this effect where
magnetosheath ions (in blue orbits) penetrate into the magnetosphere and perform a partial Larmor orbit.
The net negative viM is due to the imbalance of magnetosheath and magnetospheric ion density in this
region (with magnetosheath density≫magnetospheric density).

The lack of magnetosheath electron penetration into the magnetosphere is attributed to their smaller
gyroradii. Shay et al. [2016] suggested that in order to achieve charge neutrality in the region of excess ions,
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magnetospheric electrons are drawn
into the region by parallel electric
fields, resulting in a large parallel
electron temperature increase seen in
that region. The fact that parallel
electron heating (Figure 1i) occurs in
precisely the same region as the ion
intrusion (Figure 1e) indicates that the
magnetosheath ion intrusion into the
magnetosphere and the electron heat-
ing in the same region are intimately
related. The parallel electric fields and
electron heating are also present in
the Egedal et al. [2011] model. That
model did not relate the electron
heating and parallel electric field to
the magnetosheath ion gyroradius
effect, although an excess of plasma
density in the magnetosphere near
the X line (relative to the downstream
region) present in the model could be
consistent with magnetosheath ion
penetration into the magnetosphere.

A feature that was not noted in pre-
vious simulations by Malakit et al.
[2013] and Shay et al. [2016] is the
into-the-plane (viM> 0, red) flow in
the magnetosphere (Figure 1e). Well
downstream of the X line (|L|> 20 di)
this flow is seen next to the magneto-
spheric separatrix. Closer to the X line,
the positive (red) viM flow is weaker
and is located earthward of the nega-
tive viM region and farther from the
separatrix. Examination of the ion dis-
tributions in this region (Figure 2f)
shows that the positive viM is asso-
ciated with a magnetospheric ion
Larmor radius effect. Magnetospheric
ions, whose orbits intersect the current
sheet and the sunward pointing nor-
mal electric field (EN), do not return to
the magnetosphere (as illustrated in
the sketch in Figure 2b). The loss of
such particles results in a net positive
viM flow (Figure 2f).

Just upstream of the magnetospheric
separatrix, there is a region of negative
(earthward pointing) EN (Figure 1c)
previously termed the Larmor electric
field [Malakit et al., 2013]. This EN is
largest near the X line, but it extends
beyond L=35 di in the present

Figure 1. Simulation results in the L-N plane in ion inertial units. The posi-
tive M direction is into the plane. (a) Reconnecting field component,
(b) into-the-plane magnetic field, (c) normal electric field, (d) ion outflow
velocity, (e) into-the-plane ion velocity, (f) electron outflow velocity,
(g) into-the-plane electron velocity, (h) ion frozen-in condition along N,
and (i, j) electron parallel and perpendicular temperatures.
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Figure 2. The 2-D cuts of 3-D Ion distributions around the magnetospheric inflow regions in the M-N plane, which is close to the plane perpendicular to the
magnetospheric magnetic field. Figures 2c–2f are from simulations, while Figures 2g–2l are from THEMIS-D observations at the locations labeled “1” to “6” at the
bottom of Figures 3a–3l. (a) Structure of into-the-plane velocity viM, with boxes showing sampling locations used to create ion distribution functions in Figures 2c–2f,
(b) schematic of magnetosheath (blue) and magnetospheric (red) ion orbits near the magnetospheric edge of the current sheet and the resulting net viM (green),
(c) ion distribution in the exhaust, (d, e) ion distributions in the negative viM region showing a magnetosheath ion Larmor radius effect, (f) ion distribution in the
positive viM region showing loss of high-energy magnetospheric ions on the negative vM side, (g) observed exhaust ion distribution, (h–k) observed ion distributions
in the viM< 0 region showing the magnetosheath ion Larmor radius effect, and (l) observed ion distribution in the region of positive viM.
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simulation.Malakit et al. [2013] suggested that this field is associated with magnetospheric ion Larmor radius
effects, while Shay et al. [2016] suggested that it is associated with magnetosheath ion Larmor radius effects
instead. The fact that this negative EN region extends far beyond the region where the magnetosheath ion
intrusion occurs indicates that this field is not associated with magnetosheath ion Larmor radius effects
alone. It is likely to be due to a combination of magnetosheath and magnetospheric ion Larmor radius
effects. Finally, the fact that the EN< 0 region in the magnetosphere extends beyond |L| = 35 di, while
the magnetosheath ion gyroradius effects are localized to |L| ~ 15 di, suggests that the latter are a better
indicator of the proximity to the X line.

3. Observations

The present study uses 3 s resolution plasma [McFadden et al., 2008] and magnetic field [Auster et al., 2008] data
and eight samples/second electric field data [Bonnell et al., 2008] from the THEMIS-D spacecraft. The data are
shown in LMN boundary normal coordinates similar to the simulation coordinates (Figure 1), with N along the
magnetopause normal, L along the reconnecting field direction, andM approximately along the X line direction.

Figures 3a–3l show the inbound magnetopause crossing of interest made by the THEMIS-D spacecraft on 9
September 2008at 21:45 UTnear the subsolar point (12.3magnetic local time). The current sheet (i.e.,magnetic
field rotation region) is containedbetween the twoblack vertical dashed lines. Because thefield rotationon the
magnetospheric edge of the magnetopause was gradual, it is difficult to precisely mark the end of magnetic
field rotation. However, a well-defined marker for this edge (in the observation as well as in the simulation) is
the location of peak sunward pointing normal electric field, EN> 0 (Figures 3k and 3s). According to the simu-
lation (Figure 1c), within ~35 di of the X line, the peak EN nearly coincides with the magnetospheric separatrix.
In the THEMIS-D event, at the peak EN location, marked by the third vertical dashed line, themagnetic field has
completedmore than 95% of its rotation from themagnetosheath to themagnetospheric orientation. The full
magnetic field rotation across the magnetopause was ~174°; i.e., the guide field was close to zero.

An ion jet directed in the +L direction with speed ~120–170 km/s (relative to the magnetosheath flow) was
detected throughout the current sheet (Figure 3f) and past the peak EN location (Figure 3k). Figure 3g shows
that the observed jet speed (in blue) was substantially lower than the predicted jet speed (in black) based on
the Walén relation [Paschmann et al., 1986, equation (7)]. This is an indication that THEMIS-D crossed the
reconnection exhaust relatively close to the X line, at a location where the ion outflow had not yet reached
its full speed.

A magnetopause normal speed vN of 14.0 km/s was obtained using the Minimization of the Faraday Residue
method [Khrabrov and Sonnerup, 1998] for the 21:45:13–21:45:32 UT interval surrounding the magnetopause
current sheet (between the two black dashed lines in Figures 3a–3l). With the current sheet crossing duration
of 19 s, the width of the current sheet was ~266 km or ~4.5 ion skin depths based on the magnetosheath
density of 15 cm�3.

The distance of the observation point to the X line can be estimated using the simulation result
(Figures 1a–1j). In the simulation, an exhaust width of 4.5 di occurs at |L| ~ 9 di downstream of the X line.

A unipolar positive magnetic field BM was observed inside the current sheet (Figure 3b). The direction of
this field is consistent with the bipolar Hall magnetic field expected for highly asymmetric reconnection
(Figure 1b) [e.g., Tanaka et al., 2008] (as opposed to quadrupolar Hall field for symmetric reconnection
[e.g., Sonnerup, 1979]). A normal electric field was observed at the magnetospheric edge of the magne-
topause current sheet (Figure 3k). The location and direction of this field is consistent with the Hall elec-
tric field for asymmetric reconnection (Figure 1c) [Vaivads et al., 2004; André et al., 2004]. The ions were
not frozen in (EN≠�(vi×B)N) in this region.

The electron spectrogram (Figure 3d) shows that magnetosheath electrons did not penetrate as deep into
the magnetosphere as the ions (Figures 2k and 3c): magnetosheath ions were observed until 2145:47 UT,
whereas magnetosheath electrons stopped at 2145:38UT (the following electron sample, till 2145:41UT,
shows low- and high-energy magnetospheric electrons, but no magnetosheath electrons). This suggests that
magnetosheath electrons were unable to penetrate as deeply into the magnetosphere as magnetosheath
ions, similar to the simulation.
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4. Detailed Comparison of Observations and Simulation

We now compare in more detail the observed plasma and field profiles (Figures 3a–3k) with the simulation
profiles at L= 9 di (Figures 3m–3s) and the measured and simulated ion distributions shown in Figure 2.

The spacecraft detected several predicted signatures of magnetosheath ion Larmor effects in the magneto-
sphere in close proximity to the magnetopause (located to the right of the last black vertical dashed line).
These signatures include (a) ion energy dispersion, with high-energy ions being able to penetrate deeper into
the magnetosphere (Figure 3c); (b) the intrusion of the outflow jet viL into the magnetospheric inflow region,
past the EN peak (Figure 3f); (c) enhanced out-of-plane velocity (viM< 0) (Figure 3f); and (d) enhanced electron
parallel temperature (Figure 3i) and field-aligned temperature anisotropy (Figure 3j). Note that in both the
simulations and the observations, the electron and ion β are substantially less than unity in the region of large

Figure 3. THEMIS crossing of a reconnecting magnetopause ~9 di downstream of the X line in LMN coordinates and comparison with simulation. (a) Magnetic field
strength, (b) magnetic field, (c, d) ion and electron spectrograms of differential energy flux (eV s�1 cm�2 sr�1 eV�1), (e) ion density, (f) ion velocity, (g) observed and
predicted (from the Walen relation) L component of the velocity, (h) ion temperature, (i) electron temperature, (j) electron temperature anisotropy, (k) normal
component of the electric field and�vi × B, and (l) potential between electric field probe 1 and probe 2. The two black vertical dashed lines in Figures 3a–3l mark the
edges of the current sheet. The red dashed line denotes BL = 0. The electric field data (Figure 3k) is unreliable to the right of the green vertical dashed line because of
cold ion wake effect shown in Figure 3l. Figures 3m–3s show 1-D spatial profiles along N at L = 9 di of the simulation in Figure 1. (m) Magnetic field, (n) electron
density, (o, p) ion and electron velocities, (q) ion temperatures, (r) electron temperatures, and (s) normal electric field and �vi × B.
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parallel temperature anisotropy, making this region stable to the firehose instability. Figures 2h–2k show that
the negative viM is associated with ion distributions having a cutoff on the positive vM side, consistent with
the magnetosheath ion Larmor radius effect seen in the simulation (Figures 2d and 2e). The net negative
viM is due to the fact the density of the penetrating magnetosheath ions is much higher than the density
of magnetospheric ions at this location. Such dynamics do not occur in symmetric reconnection.

Earthward of the negative viM region in the magnetosphere, THEMIS-D observed a positive viM (Figure 3f),
which is similar to the magnetospheric ion gyroradius effect seen in the simulation (Figures 1e and 3o). viM
returned to zero at ~2146:12 UT (outside the time range of the figure). The loss of high-energy
magnetospheric ions on the �vM side (compared to the +vM side) may be present in the observed ion
distribution (Figure 2l), but it is not as clear as in the simulation (Figure 2f).

The observed amplitude of BM relative to BL (Figure 3b) is similar to the simulation (Figure 3m). The observed
negative viM peak occurring earthward (to the right) of the peak of viL (Figure 3f) and peak Te|| (Figure 3i)
is similar to the simulation (Figures 3o and 3r) as well. The observed amplitude of the positive EN of
~18mV/m and of �(vi×B)N of �5mV/m (Figure 3k) is remarkably similar to the simulation (Figure 3s).
Finally, the observed region of negative viM (Figure 3f) spanned ~9–12 s or 170 km. This corresponds to
~2–3 di (based on the magnetosheath density of 15 cm�3), also consistent with the simulation (Figure 3o).
It is also comparable to the ~200 km gyroradii of the highest-energy (~5 keV) exhaust ions (Figures 3c and
2h–2k) in a 50 nT magnetospheric magnetic field.

A major difference between the observations and the simulations is the lack of observed negative EN (also
known as the Larmor electric field) in the magnetospheric inflow region (Figure 3k) that is seen in the simula-
tion (Figure 3s). However, upon closer examination of the electric field data, it is found that the electric field
measurements are erroneous after 2145:36.5 UT (to the right of the vertical green dashed line) in the magne-
tospheric inflow region where a negative EN is predicted. This is due to the cold ion wake effect behind the
spacecraft that occurs in the low-density magnetosphere. A signature of the wake effect is the “shoulder”
seen in the electric field probe-to-probe potential (Figure 3l) [Eriksson et al., 2006]. In other words, EN in this
region is not trustworthy. While the predicted negative ENwas not measured by the electric field experiment,
the normal component of �vi×B in this region was negative (Figure 3k), similar to that in the simulation
(Figure 3s). Furthermore, the ion measurements described above clearly reveal the magnetosheath ion gyro-
radius effect in the magnetospheric inflow region.

Another discrepancy is the ion outflow speed. The observed outflow velocity viL in the exhaust and in the
magnetospheric inflow region was ~100–170 km/s (Figure 3f), whereas in the simulation at L~9 di, the
outflow speed was much higher, reaching 220 km/s (Figure 3o). Furthermore, the observed viL peak occurred
in the inflow region, earthward of the peak EN location, whereas the viL peak in the simulation occurs in the
exhaust, sunward of peak EN. These discrepancies are currently not understood.

5. Summary and Discussions

We have examined a THEMIS-D crossing of the reconnecting magnetopause, where the observed exhaust
outflow speed was substantially below the predicted reconnection outflow speed, suggesting that the
crossing was relatively close to the X line. In the magnetospheric inflow region, THEMIS observed signa-
tures of magnetosheath ion intrusion into the magnetosphere that were predicted by simulations to
occur within 15 di downstream of the X line. The downstream distance of the THEMIS-D crossing of the
exhaust is estimated to be ~9 di by finding the location in the simulation where the exhaust width
matches that of the observed width of 4.5 di. However, if we estimate the distance by assuming a constant
exhaust opening angle of 11° (corresponding to a reconnection rate of 0.1), that would put the spacecraft
22.5 di downstream of the X line. The vastly different estimates from the two methods may be due to
the fact that the assumption of constant opening exhaust angle is not valid close to the X line for asym-
metric reconnection (Figure 1). The detection of magnetosheath ion Larmor effects 9 di downstream from
the X line is consistent with the simulation (Figures 1a–1j), whereas 22.5 di downstream is not. In the
simulation these effects do not extend beyond |L| ~ 15 di. The observed depth of the magnetosheath
ion intrusion was 2–3 magnetosheath ion skin depths or about one gyroradius of the highest-energy
(~5 keV) exhaust ions.
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Did the spacecraft cross the electron diffusion region? The simulation in section 2 (and discussed in more
detail in Shay et al. [2016]) revealed a simple way to recognize the electron diffusion region, namely, the
presence of EN> 0 at the current sheet center (BL= 0). Figure 3k shows that the region of enhanced positive
EN observed by THEMIS occurred near the magnetospheric edge of the current sheet, far from BL= 0 (marked
by the vertical red dashed line). This is consistent with the simulation finding that EN> 0 at BL= 0 occurs
within ~2.75 di downstream of the X line; with a realistic proton-to-electron mass ratio, this length could
be even smaller. We thus conclude that THEMIS-D probably did not encounter the electron diffusion region
during this crossing.

Finally, our simulation suggests that the Larmor electric field, which was thought to be localized near the
X line, extends more than 35 di downstream. On the other hand, signatures of magnetosheath ion gyroradius
effects are more localized and are therefore better indicators of proximity (within |L| ~ 15 di) to the X line.
Detection of ion gyroradius effects, however, does not imply that a spacecraft is upstream of the electron
diffusion region.

Appendix A

The computational results discussed in this manuscript are from a 2.5-D collisionless antiparallel asymmetric
reconnection simulation generated with the particle-in-cell (PIC) code P3D [Zeiler et al., 2002]. The simulation
values are in physical units similar to the observations. Lengths are normalized to one ion skin depth
(~59 km), based on a number density of 15 cm�3. Times are normalized to one ion cyclotron time (Ωci

�1),
which for a magnetic field of 50 nT is about 0.35 s. The speed of light in the simulation is reduced to
csim = 0.0084 c which corresponds to cAsheath/csim = 0.067 and cAsphere/csim = 0.63, and the artificial ion to
electron mass ratio is set to mi/me= 25. The ion Larmor radius effects, which are the focus of this
manuscript, are not noticeably modified by the artificially large electron mass, which we have verified by
also simulating a case with mi/me= 100. The simulation was performed over a doubly periodic domain in
the L, N plane with L×N=102.4 × 51.2 di, grid spacing Δ= 0.05 di and time step Δt=0.002 Ωci

�1. A density
of 15 cm�3 at a given cell corresponds to 400 particles per cell. The simulation was initialized with a
doubly asymmetric current sheet [Malakit et al., 2010]. The magnetosheath inflow region was initialized
with a magnetic field of 30 nT, a density of 15 cm�3, and ion and electron temperatures of 270 and 40 eV,
respectively. The magnetospheric inflow region had a magnetic field of 50 nT, number density of
0.45 cm�3, and ion and electron temperatures of 1400 eV and 52 eV, respectively. A density of 15 cm�3 and
an electron temperature of 40 eV gives about 40 Debye lengths per ion skin depth. The simulation was
evolved until it reached a steady state and then was averaged over 100 time steps spanning one ion
cyclotron time to smooth the data.
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