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Abstract. In this work, recent advances on the study of re-
connection in turbulence are reviewed. Using direct numeri-
cal simulations of decaying incompressible two-dimensional
magnetohydrodynamics (MHD), it was found that in fully
developed turbulence complex processes of reconnection lo-
cally occur (Servidio et al., 2009, 2010a). In this complex
scenario, reconnection is spontaneous but locally driven by
the fields, with the boundary conditions provided by the tur-
bulence. Matching classical turbulence analysis with a gen-
eralized Sweet-Parker theory, the statistical features of these
multiple-reconnection events have been identified. A discus-
sion on the accuracy of our algorithms is provided, highlight-
ing the necessity of adequate spatial resolution. Applications
to the study of solar wind discontinuities are reviewed, com-
paring simulations to spacecraft observations. New results
are shown, studying the time evolution of these local recon-
nection events. A preliminary study on the comparison be-
tween MHD and Hall MHD is reported. Our new approach
to the study of reconnection as an element of turbulence has
broad applications to space plasmas, shedding a new light on
the study of magnetic reconnection in nature.

1 Introduction

Magnetic reconnection is a process that occurs in many as-
trophysical and laboratory plasmas (Sonnerup, 1970; Va-
syliunas, 1975; Moffatt, 1978). Systems like the solar sur-
face (Parker, 1983), the magnetosphere (Sonnerup et al.,
1981; Paschmann, 2008), the solar wind (Gosling and Szabo,
2008), the magnetosheath (Retiǹo et al., 2007; Sundkvist et
al., 2007), and laboratory plasmas (Taylor, 1986; Yamada,
2007; Brown et al., 2006) represent just some of the classical

Correspondence to:S. Servidio
(sergio.servidio@fis.unical.it)

systems in which magnetic reconnection occurs. Another un-
derlying common feature of the above systems is the pres-
ence of turbulence (Bruno and Carbone, 2005), so a simul-
taneous description of both reconnection and turbulence is
needed.

In the past 60 yr, most of the theoretical effort has been
addressed to the study of the basic physics of reconnection,
concentrating on idealized geometries. Generally, these two-
dimensional (2-D) models are characterized by a strong cur-
rent density peak, where a magneticX-type neutral point is
found (Dungey, 1958). A well-known description of this
process was provided by Sweet (Sweet, 1958) and Parker
(Parker, 1957). In their work, employing conservation of
mass, pressure balance and constancy of the electric field,
the essential large scale dynamics of magnetic reconnection
was described. In this configuration, a narrow layer called
the “diffusion region” forms, and here the field-lines break
and reconnect. This process produces a plasma flow into the
layer, accompanied by an outflow along the neutral sheet.

Reconnection may be self-sustaining with ad-hoc bound-
ary conditions that supply flux, or it may continue until avail-
able magnetic flux is exhausted (Sato et al., 1978; Birn et
al., 2001). In many cases the reconnecting system has been
idealized as occurring in a limited spatial region, employing
a “rigid-box” topology in which the magnetic field is often
arbitrarily chosen to be straight at the inflow-side bound-
aries. Moreover, simplified “outflow” boundaries are em-
ployed. However, such idealized conditions rarely occur in
nature, since plasmas may frequently experience turbulence
(Bruno and Carbone, 2005; Retiǹo et al., 2007; Sundkvist et
al., 2007). In turbulence, magnetic reconnection may behave
in a less predictable way, departing considerably from rigid-
box models.

We view reconnection as an element of turbulence itself:
it would be difficult to envision a turbulent cascade that pro-
ceeds without change of magnetic topology. Furthermore,
turbulence provides a natural boundary condition, as opposed
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to arbitrary (imposed) conditions. Although some sugges-
tions have been made regarding both the general role of
reconnection in magnetohydrodynamic (MHD) turbulence
(Matthaeus and Lamkin, 1986; Strauss, 1980; Carbone et al.,
1990; Dmitruk and Matthaeus, 2006; Veltri, 1999; Rappazzo
et al., 2007) and the impact of small scale turbulence on re-
connection of large structures (Matthaeus and Montgomery,
1980; Matthaeus and Lamkin, 1986; Malara et al., 1992;
Lazarian and Vishniac, 1999; Lapenta, 2008; Veltri, 1999),
only recently a quantitative study of reconnection in turbu-
lence has been presented (Servidio et al., 2009, 2010a). In the
scenario proposed by Servidio et al., multiple-reconnection
events are present in turbulence. The properties of these
events depend on the local topology of the magnetic field
and the local turbulence conditions.

Simulating numerically the problem of reconnection in-
volves some subtle issues: scientists, generally tempted by
the “high-Reynolds-number-dream”, may push too much on
the resolution, neglecting that this is strongly limited by the
imposed dissipation (or vice-versa). Recently,Wan et al.
(2010) demonstrated that an insufficient numerical (grid) res-
olution may strongly damage the small scale properties of
both turbulence and reconnection. Here we summarize these
main results, providing suggestions and numerical recipes in
order to correctly simulate the problem of reconnection in
turbulence.

Our ideas on magnetic reconnection have broad applica-
tions, and one of them is the turbulent solar wind. In the free
solar wind, in fact, strong magnetic discontinuities are com-
monly observed (Burlaga, 1968; Tsurutani and Smith, 1979;
Ness and Burlaga, 2001; Neugebauer, 2006). These consist
of rapid changes of the magnetic field, across narrow layers.
It is natural to ask whether these discontinuities are related to
the process of reconnection. In recent works byGreco et al.
(2008, 2009) a link between these rapid changes of the mag-
netic field and the presence of intermittent current sheets was
proposed. In the present paper we retrace these ideas provid-
ing evidence that reconnection and discontinuities may be
different faces of the same coin.

Although the combined effects of turbulence and recon-
nection are likely to be important in a variety of physical
systems, the investigations described here are carried out in
the limited context of incompressible MHD, for which the
turbulence problem, as well as the well-resolved reconnec-
tion problem, are already very demanding. We recognize
that effects not included here, such as fully kinetic plasma
dynamics (Drake et al., 2006; Fu et al., 2006; Huang et al.,
2010; Daughton et al., 2011) and strongly compressive ef-
fects (Webb et al., 2003; Jokipii and Lee, 2010) can have
important influences on turbulence and reconnection. Es-
pecially significant are influences on particle acceleration
which can only be addressed in the present class of models
using test particles (Matthaeus et al., 1984; Dmitruk et al.,
2003). We proceed employing a more limited set of mod-
els with the goal of identifying the basic physical principles

Table 1. Table of runs. The second column indicates the resolu-
tion of the simulation, the third column the Reynolds number. In
the fourth column, the energy shell initially excited is reported. The
last column shows the timet∗ at which the analysis have been per-
formed.

Resolution Rµ Fourier modes t∗

(=Rν ) at t = 0

Run 1 40962 1700 4≤ k≤ 10 0.4
Run 2 40962 2500 5≤ k≤ 30 0.2
Run 3 40962 2500 3≤ k≤ 10 0.7
Run 4 81922 5000 5≤ k≤ 30 0.3
Run 5 81922 5000 8≤ k≤ 20 0.3
Run 6 16 3842 10 000 5≤ k≤ 30 0.3

at work in the turbulence-reconnection dynamical system.
Indeed this may be the only tractable approach available at
present to undertake this difficult nonlinear problem. In the
future, more complete models may be able to address some
or all of the basic physics that are attempting to describe.

In this review paper new results will also be presented.
In particular, we will analyze the processes of reconnection
during turbulent relaxation, following in time the dynamics
of 2-D MHD turbulence. At different times, we will perform
our analysis characterizing the statistical properties of this
complex dynamical system. MHD theory, however, lacks
important plasma length-scales. The first step-forward in this
regard is to use models such as Hall magnetoydrodynamics
(Hall MHD). Dispersive Hall MHD models can, in fact, cap-
ture some of the physics of the ion skin depth and therefore
describe phenomena that are commonly observed in plasmas
(Roberts and Taylor, 1962; Matthaeus et al., 2008). In this
work, a preliminary comparison between results of MHD and
Hall MHD will be presented.

The outline of the paper is as follows: in Sect.2, an
overview on the main features of 2-D MHD turbulence will
be presented. The methodology and the statistical analysis
of reconnection in turbulence will be reviewed in Sect.3,
establishing a link between length-scales in turbulence and
in reconnection, and presenting a generalized Sweet-Parker
theory. In Sect.4 the time dynamics of reconnection in turbu-
lence will presented, while preliminary results of Hall MHD
will be shown in Sect.5. The importance of numerical ac-
curacy will be emphasized in Sect.6. Possible applications
of all the above ideas to the turbulent solar wind will be re-
viewed in Sect.7 while, in the last Section, conclusions will
be discussed.

2 Overview on 2-D MHD turbulence

The 2-D incompressible MHD equations can be written in
terms of the magnetic potentiala(x,y) and the stream func-
tionψ(x,y). By choosing a uniform mass densityρ= 1, the
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Fig. 1. (Color online) The current density〈j2〉 as a function of
time. The peak is reached aroundt∗ =0.3 (vertical red dashed line).
Results are shown for Run 4, and other runs show similar time-
behavior (see Table 1 for more details).

equations read (Biskamp, 1993):

∂ω

∂t
=−(v ·∇)ω+(b ·∇)j+Rν

−1
∇

2ω, (1)

∂a

∂t
=−(v ·∇)a+Rµ

−1
∇

2a, (2)

where the magnetic field isb= ∇a× ẑ, the velocityv =
∇ψ× ẑ, the current densityj=−∇

2a, and the vorticityω=
−∇

2ψ. Eqs. (1)-(2) are written in Alfvén units (Matthaeus
and Montgomery, 1980) with lengths scaled toL0. The lat-
ter is a typical large scale length such that the box size is set
to 2πL0. Velocities and magnetic fields are normalized to
the root mean square Alfvén speedVA and time is scaled to
L0/VA. Rµ andRν are the magnetic and kinetic Reynolds
numbers, respectively (at scaleL0.) The latter coefficients
are reciprocals of kinematic viscosity and resistivity.

Eqs. (1)-(2) are solved in a periodic Cartesian geometry
(x,y), using a well tested dealiased (2/3 rule) pseudo-spectral
code (Ghosh et al., 1993). We employ a standard Laplacian
dissipation term with constant dissipation coefficients. The
latter are chosen to achieve both high Reynolds numbers and
to ensure adequate spatial resolution. A detailed discussion
of these issues has been given by Wan et al. (2010), and will
be reviewed here in Sec. 6. We report on runs with resolu-
tion from40962 up to163842 grid points, reaching Reynolds
numbersRν =Rµ ∼ 10000. Time integration is second order
Runge-Kutta and double precision is employed. A descrip-
tion of all the runs is reported in Table 1.

Considering a representation of the fields in the Fourier
space, for a particular run (in this case Run 4, c.f. Table I),
the energy is initially concentrated in the shell5 ≤ k ≤ 30

Fig. 2. (Color online) Power spectra of magnetic field for two dif-
ferent simulations: Run 4 (81922, thin-black) and Run 6 (163842 ,
thick-red). As expected, higher resolution simulations have wider
inertial range.

(wavenumberk in units of 1/L0), with mean valueE =
1

2
〈|v|2 + |b|2〉 ≃ 1, 〈...〉 denoting a spatial average. Random

uncorrelated phases are employed for the initial Fourier co-
efficients. The latter implies that the cross helicity, defined as
Hc = 1/2〈v ·b〉, is negligible. The kinetic and the magnetic
energy at the beginning of the simulation are chosen to be
equal.

To compare different runs, we consider for the statistical
analysis the state of the system at which the mean square cur-
rent density〈j2〉 is very near to its peak value (see Fig. 1). At
this instant of time the peak of small scale turbulent activity
is achieved. Since the system is homogeneous and isotropic,
it is useful to compute the omnidirectional power spectra, re-
ported in Fig. 2. In this figure, a comparison between Run 4
(moderate resolution) and Run 6 (high resolution) is shown.
The power spectrum manifests a broad inertial range, typical
of turbulence.

When turbulence is fully developed, coherent structures
appear. They can be identified as magnetic islands (or vor-
tices). A typical complex pattern of 2D MHD turbulence is
shown in Fig. 3, at high Reynolds numbers (Run 6). In the
figure is represented a contour plot of the currentj, together
with the in-plane magnetic field (line contour ofa). The cur-
rent densityj becomes very high in narrow layers between
islands.

In Fig. 4-(a), a zoom into the turbulent field is represented,
showing that the current is bursty in space. This behavior of
the current is related to the intermittent nature of the mag-
netic field (Sorriso-Valvo et al., 1999; Mininni and Pouquet,
2009) and can be interpreted as a consequence of fast and lo-
cal relaxation processes (Servidio et al., 2008; Greco et al.,
2008). As reported in Fig. 4-(b), the out of plane component
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equations read (Biskamp, 1993):

∂ω

∂t
= −(v ·∇)ω+(b ·∇)j+Rν

−1
∇

2ω, (1)

∂a

∂t
= −(v ·∇)a+Rµ

−1
∇

2a, (2)

where the magnetic field isb = ∇a× ẑ, the velocityv =

∇ψ × ẑ, the current densityj =−∇2a, and the vorticity
ω=−∇2ψ . Equations (1)–(2) are written in Alfv́en units
(Matthaeus and Montgomery, 1980) with lengths scaled to
L0. The latter is a typical large scale length such that the
box size is set to 2πL0. Velocities and magnetic fields are
normalized to the root mean square Alfvén speedVA and
time is scaled toL0/VA . Rµ andRν are the magnetic and
kinetic Reynolds numbers, respectively (at scaleL0.) The
latter coefficients are reciprocals of kinematic viscosity and
resistivity.

Equations (1)–(2) are solved in a periodic Cartesian geom-
etry (x,y), using a well tested dealiased (2/3 rule) pseudo-
spectral code (Ghosh et al., 1993). We employ a standard
Laplacian dissipation term with constant dissipation coeffi-
cients. The latter are chosen to achieve both high Reynolds
numbers and to ensure adequate spatial resolution. A de-
tailed discussion of these issues has been given byWan et al.
(2010), and will be reviewed here in Sect.6. We report on
runs with resolution from 40962 up to 16 3842 grid points,
reaching Reynolds numbersRν =Rµ ∼ 10000. Time inte-
gration is second order Runge-Kutta and double precision is
employed. A description of all the runs is reported in Table1.

Considering a representation of the fields in the Fourier
space, for a particular run (in this case Run 4, cf. Table 1),
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this instant of time the peak of small scale turbulent activity
is achieved. Since the system is homogeneous and isotropic,
it is useful to compute the omnidirectional power spectra, re-
ported in Fig. 2. In this figure, a comparison between Run 4
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When turbulence is fully developed, coherent structures
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shown in Fig. 3, at high Reynolds numbers (Run 6). In the
figure is represented a contour plot of the currentj, together
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2〈|v|

2
+|b|

2
〉 ' 1, 〈...〉 denoting a spatial average. Random

uncorrelated phases are employed for the initial Fourier co-
efficients. The latter implies that the cross helicity, defined as
Hc = 1/2〈v ·b〉, is negligible. The kinetic and the magnetic
energy at the beginning of the simulation are chosen to be
equal.

To compare different runs, we consider for the statistical
analysis the state of the system at which the mean square cur-
rent density〈j2

〉 is very near to its peak value (see Fig.1). At
this instant of time the peak of small scale turbulent activity
is achieved. Since the system is homogeneous and isotropic,
it is useful to compute the omnidirectional power spectra, re-
ported in Fig.2. In this figure, a comparison between Run 4
(moderate resolution) and Run 6 (high resolution) is shown.
The power spectrum manifests a broad inertial range, typical
of turbulence.

When turbulence is fully developed, coherent structures
appear. They can be identified as magnetic islands (or vor-
tices). A typical complex pattern of 2-D MHD turbulence is
shown in Fig.3, at high Reynolds numbers (Run 6). In the
figure is represented a contour plot of the currentj , together
with the in-plane magnetic field (line contour ofa). The cur-
rent densityj becomes very high in narrow layers between
islands.

In Fig. 4a, a zoom into the turbulent field is represented,
showing that the current is bursty in space. This behavior of
the current is related to the intermittent nature of the mag-
netic field (Sorriso-Valvo et al., 1999; Mininni and Pouquet,
2009) and can be interpreted as a consequence of fast and lo-
cal relaxation processes (Servidio et al., 2008; Greco et al.,
2008). As reported in Fig.4b, the out of plane component of
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Fig. 3. (Color online) Shaded contour of the current densityj to-
gether with the line contours of the magnetic potentiala (Run 6, at
t∗ =0.3 ).

of the magnetic potentiala shows a complex pattern of multi-
scale islands, having a wide distribution of sizes. In between
these structures the current can be very high. The probabil-
ity distribution function (PDF) of the current density strongly
departs from a Gaussian, as shown in Fig. 4-(c). These coher-
ent structures interact non-linearly, merge, stretch, connect,
attract and repulse each other. Reconnection is a major ele-
ment of this complex interaction.

3 Local reconnection events in turbulence

The reconnection rate of two islands is given by the elec-
tric field at theX-point. This is related to the fact that the
magnetic flux in a closed 2D island is computed as the in-
tegrated magnetic field normal to any contour connecting
the central O-point (maximum or minimum ofa) with any
other specified point. Choosing that point to be an X-point
bounding the island, we find that the flux in the island is just
a(O−point)−a(X−point) (Smith et al., 2004). Flux is al-
ways lost at the O-point in a dissipative system, so the time
rate of change of the flux due to activity at the X-point is

∂a

∂t
=−E× = (R−1

µ j)×, (3)

whereE× is an abbreviation for the electric field measured at
the X-point (analogously for the currentj×). Eq. (3) follows

Fig. 4. (Color online) (a) Shaded-contour of the current densityj in
a sub-region of the simulation box, showing that, in betweenmag-
netic islands,j is high; (b) Line-contour of the in-plane magnetic
field (iso-lines of the magnetic potentiala); (c) PDF of the current
density, normalized to its variance, for high Reynolds number tur-
bulence (black bullets). The Gaussian distribution is reported for
comparison (red-dashed line).

from the Ohm’s law

E =−v×b+R−1

µ j, (4)

which in 2D involves only the out of plane componentEz =
−(v×b)z +R−1

µ j. Therefore, in order to describe the local
processes of reconnection that spontaneously develop in tur-
bulence we examine the topology of the magnetic potential
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Fig. 4. (Color online)(a) Shaded-contour of the current densityj in
a sub-region of the simulation box, showing that, in between mag-
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E = −v×b+R−1
µ j , (4)

which in 2-D involves only the out of plane component
Ez = −(v ×b)z+R

−1
µ j . Therefore, in order to describe the

local processes of reconnection that spontaneously develop
in turbulence we examine the topology of the magnetic po-
tential studying theHessian matrixof a (Rana, 2004), de-
fined as

H a
i,j (x)=

∂2a

∂xi∂xj
, (5)
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Fig. 5. (Color online) Contour plot of the magnetic potentiala
with the position of all the critical points:O-points (blue stars for
the maxima and red open-diamonds for the minima) andX-points
(black×).

studying theHessian matrix of a (Rana, 2004), defined as

Ha
i,j(x)=

∂2a

∂xi∂xj
, (5)

which we evaluate at the neutral points of the magnetic field.
Further details on the methodology are provided in Servidio
et al. (2010a). Here we briefly summarize the main steps of
the analysis:

1. Identify critical points atx∗, where∇a= 0

2. Compute the Hessian matrix, given by Eq. (5), atx∗

3. Compute eigenvaluesλ1 andλ2 ofHa
i,j(x

∗), with λ1>
λ2

4. Classify the critical point as maximum (bothλi < 0),
minimum (bothλi > 0) and saddle points (or X-points)
(λ1λ2< 0).

5. Compute eigenvectors at each X-point. The associated
unit eigenvectors arêes and êl, where coordinates is
associated with the minimum thicknessδ of the current
sheet, whilel is associated with the elongationℓ. Note
that the local geometry of the diffusion region near each
X-point is related to the Hessian eigenvaluesλ1 = ∂2a

∂s2

andλ2 = ∂2a
∂l2 .

6. According to Eq. (3), the reconnection rates are given
by the electric field at the X-points. These rates are then

Fig. 6. (Color online) Probability distribution function of reconnec-
tion rates in turbulence (lin-log scale). Vertical dotted line repre-
sents the mean value of the distribution.

normalized to the mean square fluctuationδb2rms, ap-
propriate for Alfvènic turbulence.

In Fig. 5 we show the magnetic potential with the critical
point locations, obtained with the above procedure. In this
complex picture theX-points link islands with different size
and energy.

The distribution of reconnection rates PDF(|E×|) is re-
ported in Fig. 6 for Run 4. Different simulations give quali-
tatively same results. The PDF of the electric field at theX-
points is broad and peaked around zero value. For this partic-
ular simulation (Run 4), the mean value of the reconnection
rate is≃ 0.04, with strong variations from the average, that
is values are found in the range|E×| ∈ [10−6,0.3]. In terms
of the global parameters, this observed range of reconnection
rates varies from very slow to fast. In this sense the typical
reconnection rate in turbulence is found to be far higher than
what is expected based on a simple global application of the
Sweet-Parker rateE× ∼R

−1/2

µ . We now examine more de-
tails of how these rates arise.

From a scaling analysis

ℓ
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whereλR =
∣

∣

∣

λ1

λ2

∣

∣

∣
. In the case in which the reconnection is in

a stationary state, the rate depends on the above aspect ratio
λR, satisfying the scaling

E× ∼ ℓ

δ
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√

λR. (7)

In Fig. 7, a scatter plot of the reconnection rates against the
aspect ratioλR is shown. There is a clear trend in this figure,

Fig. 5. (Color online) Contour plot of the magnetic potentiala
with the position of all the critical points:O-points (blue stars for
the maxima and red open-diamonds for the minima) andX-points
(black×).

which we evaluate at the neutral points of the magnetic field.
Further details on the methodology are provided inServidio
et al.(2010a). Here we briefly summarize the main steps of
the analysis:

1. Identify critical points atx∗, where∇a= 0.

2. Compute the Hessian matrix, given by Eq. (5), atx∗.

3. Compute eigenvaluesλ1 andλ2 of H a
i,j (x

∗), with λ1>

λ2.

4. Classify the critical point as maximum (bothλi < 0),
minimum (bothλi > 0) and saddle points (orX-points)
(λ1λ2<0).

5. Compute eigenvectors at eachX-point. The associated
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complex picture theX-points link islands with different size
and energy.

The distribution of reconnection rates PDF(|E×|) is re-
ported in Fig.6 for Run 4. Different simulations give quali-
tatively same results. The PDF of the electric field at theX-
points is broad and peaked around zero value. For this partic-
ular simulation (Run 4), the mean value of the reconnection
rate is' 0.04, with strong variations from the average, that
is values are found in the range|E×| ∈ [10−6,0.3]. In terms
of the global parameters, this observed range of reconnection
rates varies from very slow to fast. In this sense the typical
reconnection rate in turbulence is found to be far higher than
what is expected based on a simple global application of the
Sweet-Parker rateE× ∼R

−1/2
µ . We now examine more de-

tails of how these rates arise.
From a scaling analysis

`

δ
'

√
λR, (6)

whereλR =

∣∣∣λ1
λ2

∣∣∣. In the case in which the reconnection is in

a stationary state, the rate depends on the above aspect ratio
λR, satisfying the scaling

E× ∼
`

δ
∼

√
λR. (7)

In Fig. 7, a scatter plot of the reconnection rates against the
aspect ratioλR is shown. There is a clear trend in this figure,
showing that Eq. (7) is satisfied. This suggests that locally
the reconnection processes depend on the geometry and that
they therefore are in a quasi steady-state regime.

The approximate power-law scaling seen in Fig.7 at larger
values ofλR suggests that Eq. (7) holds for the fastest recon-
nection events. The weaker reconnection events evidently
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Fig. 7. (Color online) Scatter plot (black full squares) of the re-
connection ratesvs. the geometry of the reconnection region (ratio
of the eigenvaluesλR). The presence of a power-law fit (red line)
demonstrates that there is a relation between the reconnection rate
and the geometry of the diffusion region. The relative “randomized”
reconnection rate is reported with (gray) crosses.

showing that Eq. (7) is satisfied. This suggests that locally
the reconnection processes depend on the geometry and that
they therefore are in a quasi steady-state regime.

The approximate power-law scaling seen in Fig. 7 at larger
values ofλR suggests that Eq. (7) holds for the fastest recon-
nection events. The weaker reconnection events evidently
follow a different scaling. We now show that the collec-
tion of slowly reconnecting (or even non-reconnecting) X-
point regions is associated with a distribution of magnetic
fields that is Gaussian. As described by Servidio et al. (2009,
2010a), we now employ aphase-randomizing procedure: the
original turbulent field is compared with a hybrid field that
has the same spectrum but random phases. The coherency
of a turbulent pattern is, in fact, hidden in the phases of the
Fourier expansion. Using this technique, one can distinguish
between slow (Gaussian) and fast (non-Gaussian) reconnec-
tion events (Servidio et al., 2010a). As it can be seen from
Fig. 7, the reconnection rates of the incoherent randomized
magnetic field are on average much weaker than for the orig-
inal case and they do not manifest any dependence on the
aspect ratio of the eigenvalues. In fact the part of the distri-
bution where we found the strongest reconnection sites and
the scaling relation with aspect ratio is completely absentin
the Gaussianized case. We would like to stress that phase-
coherency analysis are widely used in the literature, and they
are generally adopted to identify coherent structures (Hada et
al., 2003; Koga and Hada, 2003; Koga et al., 2007; Sahraoui
and Goldstein, 2010).

Fig. 8. (Color online) Profiles of the current density (a) in the vicin-
ity of an X-point (blue bullets). TheX-point is located ats = 0.
In panel (b) the tangential (bt, black) and the normal (bn, red) com-
ponents of the magnetic field are shown. Horizontal dashed (green)
lines represent zero values.

We remark on our procedures for verification, as we have
found that the stable and accurate determination of the distri-
bution of reconnection rates requires considerable care, espe-
cially with regard to spatial resolution. Numerous test cases
were examined in this regard. The numerical results shown
were verified in a number of ways: We compared runs with
different time steps and spatial resolutions, checked thatthe
dissipation scale is resolved, and examined field lines at the
grid scale for adequate microscopic smoothness. In Sec. 6,
we will further evidence how important is the numerical ac-
curacy in studying the problem of reconnection in turbulence.

3.1 The link between magnetic reconnection and turbu-
lence

Now we will take a closer look at the reconnection sites, try-
ing to link them to the characteristic scales of MHD turbu-
lence. Because of the complexity of the geometry we will
focus only on the X-lines with higher reconnection rates,
identified as described above. We need at this point to find a
methodology to quantitatively characterize every reconnec-

Fig. 7. (Color online) Scatter plot (black full squares) of the re-
connection rates vs. the geometry of the reconnection region (ratio
of the eigenvaluesλR). The presence of a power-law fit (red line)
demonstrates that there is a relation between the reconnection rate
and the geometry of the diffusion region. The relative “randomized”
reconnection rate is reported with (gray) crosses.
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cially with regard to spatial resolution. Numerous test cases
were examined in this regard. The numerical results shown
were verified in a number of ways: We compared runs with
different time steps and spatial resolutions, checked thatthe
dissipation scale is resolved, and examined field lines at the
grid scale for adequate microscopic smoothness. In Sec. 6,
we will further evidence how important is the numerical ac-
curacy in studying the problem of reconnection in turbulence.

3.1 The link between magnetic reconnection and turbu-
lence

Now we will take a closer look at the reconnection sites, try-
ing to link them to the characteristic scales of MHD turbu-
lence. Because of the complexity of the geometry we will
focus only on the X-lines with higher reconnection rates,
identified as described above. We need at this point to find a
methodology to quantitatively characterize every reconnec-

Fig. 8. (Color online) Profiles of the current density(a) in the vicin-
ity of anX-point (blue bullets). TheX-point is located ats= 0. In
panel(b) the tangential (bt, black) and the normal (bn, red) com-
ponents of the magnetic field are shown. Horizontal dashed (green)
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dissipation scale is resolved, and examined field lines at the
grid scale for adequate microscopic smoothness. In Sect.6,
we will further evidence how important is the numerical ac-
curacy in studying the problem of reconnection in turbulence.

3.1 The link between magnetic reconnection and
turbulence

Now we will take a closer look at the reconnection sites, try-
ing to link them to the characteristic scales of MHD turbu-
lence. Because of the complexity of the geometry we will
focus only on theX-lines with higher reconnection rates,
identified as described above. We need at this point to find a
methodology to quantitatively characterize every reconnec-
tion region and extrapolate important information such as
δ and `. Since we know the ratio of the eigenvalues ob-
tained from the Hessian matrix analysis, using Eq. (6), the
problem reduces to find just one of these lengths, sayδ. In
Fig. 8a an example of the current density profile along thes-
direction is shown. A consequence of the asymmetric nature
of turbulent reconnection implies that in most of the cases
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Fig. 9. (Color online) (a) histograms of thicknesses (δ, gray bars)
and elongations (ℓ, blue bars). Vertical lines are average values
〈δ〉 (dashed gray) and〈ℓ〉 (full blue). (b) the magnetic field auto-
correlation function (solid black line) is represented. The arrows
(left to right) represent respectively: dissipation scaleλdiss, Tay-
lor micro-scaleλT and correlation lengthλC . These characteristic
scales are defined in Eq. (9) and text below.

tion region and extrapolate important information such asδ
andℓ. Since we know the ratio of the eigenvalues obtained
from the Hessian matrix analysis, using Eq. (6), the problem
reduces to find just one of these lengths, sayδ. In Fig. 8-
(a) an example of the current density profile along thes-
direction is shown. A consequence of the asymmetric nature
of turbulent reconnection implies that in most of the cases
the current density has a peak not centered precisely on the
X-point (Cassak and Shay, 2007).

We callbt(s) andbn(s) the normal and the tangential com-
ponent of the magnetic field, respectively. These components
are obtained by projecting the in-plane magnetic field into the
system of reference given by{êl,ês}, that is:

bt = êl ·b, bn = ês ·b. (8)

Table 2. Table of characteristic lengths (see text for details).

λc λT λdiss 〈ℓ〉 〈δ〉
`

×10−1
´ `

×10−2
´ `

×10−3
´ `

×10−1
´ `

×10−2
´

Run 1 2.27 4.80 5.10 2.80 1.44
Run 2 0.97 2.10 2.90 1.26 0.77
Run 3 2.36 4.40 4.10 2.32 1.20
Run 4 0.97 1.71 1.85 1.00 0.53
Run 5 1.18 2.15 2.00 1.13 0.62
Run 6 0.95 1.28 1.11 0.90 0.36

In Fig. 8-(b) an example of the projected fields is reported.
Note that a pile up of the magnetic field, in the upstream
region of the reconnection event, is observed (Dorelli and
Birn, 2003; Craig and Watson, 1999; Bodgan, 1984; Zweibel,
1995). Flux pile-up reconnection has been observed re-
cently in an experiment on colliding flux ropes (Intrator et
al., 2009). Using the eigensystem of the Hessian matrix (λi

andêi), together with local fit-functions, the up-stream mag-
netic field can be estimated, locally, for each reconnection
region. Note that, the process of reconnection in turbulence
is often asymmetric (Cassak and Shay, 2007), so we define
two upstream magnetic fieldsb1 andb2 (we suppressed sub-
scriptt).

The PDFs ofδ andℓ are reported in Fig. 9-(a), showing
that they are well separated. We computed the mean values
for these two lengths and we have found, for Run 4,〈δ〉 ≃
5×10−3 and〈ℓ〉 ≃ 0.1. These averages are reported, for all
runs, in Table 2.

The present goal is to look for possible links between the
reconnection geometry and the statistical properties of tur-
bulence. In order to get more information about these as-
sociations we computed the auto-correlation function of the
magnetic field. The correlation length is defined as

λC =

∫ ∗

0

C(r)dr, (9)

where

C(r)=
〈b(x+r) ·b(x)〉

〈b2〉 , (10)

where the direction of displacementr is arbitrary for
isotropic turbulence in the plane, and the upper limit is unim-
portant if the distant eddies are uncorrelated. The correlation
lengthλC is a measure of the size of the energy contain-
ing islands. The auto-correlation function is illustratedin
Fig. 9-(b). In the same figure〈δ〉, 〈ℓ〉 are reported as verti-
cal lines for comparison. The dissipation length, at which
the turbulence is critically damped, is defined asλdiss =

R
− 1

2

µ 〈ω2+j2〉− 1

4 , while the Taylor micro-scale, a measure of

mean-square gradients, isλT =
√

〈|b|2〉
〈j2〉 . The above lengths

are represented in Fig. 9-(b).
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correlation function (solid black line) is represented. The arrows
(left to right) represent respectively: dissipation scaleλdiss, Tay-
lor micro-scaleλT and correlation lengthλC . These characteristic
scales are defined in Eq. (9) and text below.

the current density has a peak not centered precisely on the
X-point (Cassak and Shay, 2007).

We callbt(s) andbn(s) the normal and the tangential com-
ponent of the magnetic field, respectively. These components
are obtained by projecting the in-plane magnetic field into the
system of reference given by{êl,ês}, that is:

bt = êl ·b, bn = ês ·b. (8)

In Fig. 8b an example of the projected fields is reported.
Note that a pile up of the magnetic field, in the upstream
region of the reconnection event, is observed (Dorelli and
Birn, 2003; Craig and Watson, 1999; Bodgan, 1984; Zweibel,
1995). Flux pile-up reconnection has been observed re-
cently in an experiment on colliding flux ropes (Intrator et
al., 2009). Using the eigensystem of the Hessian matrix (λi
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Run 1 2.27 4.80 5.10 2.80 1.44
Run 2 0.97 2.10 2.90 1.26 0.77
Run 3 2.36 4.40 4.10 2.32 1.20
Run 4 0.97 1.71 1.85 1.00 0.53
Run 5 1.18 2.15 2.00 1.13 0.62
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andêi), together with local fit-functions, the up-stream mag-
netic field can be estimated, locally, for each reconnection
region. Note that, the process of reconnection in turbulence
is often asymmetric (Cassak and Shay, 2007), so we define
two upstream magnetic fieldsb1 andb2 (we suppressed sub-
scriptt).

The PDFs ofδ and` are reported in Fig.9a, showing that
they are well separated. We computed the mean values for
these two lengths and we have found, for Run 4,〈δ〉 ' 5×

10−3 and〈`〉 ' 0.1. These averages are reported, for all runs,
in Table2.

The present goal is to look for possible links between the
reconnection geometry and the statistical properties of tur-
bulence. In order to get more information about these as-
sociations we computed the auto-correlation function of the
magnetic field. The correlation length is defined as

λC =

∫
∗

0
C(r)dr, (9)

where

C(r)=
〈b(x + r) ·b(x)〉

〈b2〉
, (10)

where the direction of displacementr is arbitrary for
isotropic turbulence in the plane, and the upper limit is unim-
portant if the distant eddies are uncorrelated. The correlation
lengthλC is a measure of the size of the energy containing is-
lands. The auto-correlation function is illustrated in Fig.9b.
In the same figure〈δ〉, 〈`〉 are reported as vertical lines for
comparison. The dissipation length, at which the turbulence

is critically damped, is defined asλdiss=R
−

1
2

µ 〈ω2
+ j2

〉
−

1
4 ,

while the Taylor micro-scale, a measure of mean-square gra-

dients, isλT =

√
〈|b|2〉

〈j2〉
. The above lengths are represented in

Fig. 9-(b).
It appears that the average elongation` is strongly related

to the correlation length whereC(r)→ 0. As reported in
Table2, for all simulations, we found that the values of dif-
fusion layer thicknessδ is distributed in the range between
the Taylor scale and the dissipation scale, while the length
`, though broadly scattered, scales withλC (cf. Fig. 9). The
main features of this ensemble of reconnecting events, in-
cluding the key length scales, are evidently controlled by the

www.nonlin-processes-geophys.net/18/675/2011/ Nonlin. Processes Geophys., 18, 675–695, 2011



682 S. Servidio et al.: Reconnection and turbulence
8 Servidio et al.: Reconnection and Turbulence

Fig. 10. (Color online) Computed reconnection ratesvs. expecta-
tion from Eq. (11) (Cassak and Shay, 2007). The good agreement
indicates that the system is reconnecting in a asymmetric Sweet-
Parker scenario.

It appears that the average elongationℓ is strongly related
to the correlation length whereC(r) → 0. As reported in
Table 2, for all simulations, we found that the values of dif-
fusion layer thicknessδ is distributed in the range between
the Taylor scale and the dissipation scale, while the lengthℓ,
though broadly scattered, scales withλC (c.f. Fig. 9). The
main features of this ensemble of reconnecting events, in-
cluding the key length scales, are evidently controlled by the
statistical properties of turbulence, setting the range ofvalues
of length and thickness of the diffusion regions according to
the correlation length and the dissipation scale. Note thata
correlation between diffusion width and dissipation was dis-
cussed experimentally by Sundkvist et al. (2007).

3.2 Generalized Sweet-Parker theory for reconnection
in turbulence

The turbulent reconnection activity identified above takes
place in an environment in which the symmetric local con-
ditions envisioned in standard laminar models are unlikely.
It is therefore appropriate to employ the extension of the
standard picture to asymmetric configurations. The Sweet-
Parker-type analysis for asymmetric anti-parallel reconnec-
tion has been studied in an earlier work by Cassak and Shay
(2007). In particular, this analysis allows the reconnecting
magnetic field strengths and plasma densities to be differ-
ent on opposite sides of the dissipation region. Here we
will summarize some of their main results. Asymmetric re-
connection has also received recent attention in observations
(Mozer and Pritchett, 2009; Mozer and Hull, 2010) and ki-

netic simulations (Pritchett and Mozer, 2009).
In the incompressible case and in our notation, the Cassak-

Shay (Cassak and Shay, 2007) asymmetric reconnection rate
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Here we examined whether the observed ensemble of tur-
bulent reconnection events scales as asymmetric “Sweet-
Parker” in this sense, with resistivity causing the dissipa-
tion. To acquire a broader picture of the scaling, we eval-
uated Eq. (11) using several runs (listed in Fig. 10). Fig. 10
shows that in all the simulations the reconnection rates are
consistent with the prediction given by Eq. (11). In this sce-
nario turbulence plays a crucial role, determining locallythe
parameters that control the Sweet-Parker reconnection rate,
namely, the lengths and local magnetic field strengths. Ap-
parently, reconnection is an integral part of the turbulentcas-
cade.

4 Time behavior of reconnection in turbulence

In the previous sections we examined the statistics of mag-
netic reconnection in turbulence, at a given timet∗. The latter
coincides with the peak of turbulent nonlinear activity, when
the average current reaches its maximum (see Fig. 1). One
may ask how the complex pattern of reconnection evolves in
time, during the decaying evolution of 2D MHD turbulence.
In this brief section, we will answer the above question, sim-
ulating turbulence for longer times.

A moderate resolution of40962 mesh points will be cho-
sen in order to reduce numerical costs. In analogy with sim-
ulations in Table 1, we impose random (Gaussian) fluctu-
ations, for both velocity and magnetic fields, in the range
4≤ k≤ 10. The final time of the simulation ist= 3.0, while
the peak of the nonlinear activity is in this case reached at
t∗ ∼ 0.5. At this time, as expected, all the features described
in Sec. 3 are observed.

During the relaxation process, magnetic islands reconnect,
merge, repel, and the system changes its magnetic topol-
ogy. In Fig. 11 the current density is shown for two different
times. The line-contours of the potential and the position of
theX-points are superposed on the same figure. As it can be
immediately noticed, the current sheets reduce both in num-
ber and intensity att= 3.0, where the turbulent pattern is
characterized essentially by bigger islands. As an example,
the number of reconnection sites att= 0.5 is 133, reducing
to 114 at the end of the simulation. This process will even-
tually continue in time until only few X-points survive to the
turbulent evolution. Note that is difficult to explore this final
stage of the relaxation, since it may occur after thousands
of nonlinear times [see the long time behavior of the the
MHD selective decay process in Matthaeus and Montgomery

Fig. 10. (Color online) Computed reconnection rates vs. expecta-
tion from Eq. (11) (Cassak and Shay, 2007). The good agreement
indicates that the system is reconnecting in a asymmetric Sweet-
Parker scenario.
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Fig. 11. (Color online) Shaded contour of the current densityj
at different times of the simulations, namelyt =0.5 (a) andt =3.0
(b). Iso-lines of the potentiala and the positions of the reconnection
events (black crosses) are reported as well.

(1980) and the 2D Navier Stokes analogy in Montgomery et
al. (1992).]

In Fig. 12 we compare the reconnection rates at different
instants of the simulation, namely at the beginning (t= 0),
at the peak of nonlinear activity (t= 0.5), and at the end of
the run (t= 3.0). Note that the reconnection rates have been
properly normalized toδbrms(t)

2 (see Sec. 3), at each time.
In analogy with the time-behavior of the total current (see
Fig. 1), the reconnection rates are higher when the turbulent
activity is at the peak. This further provides evidence that
fully developed turbulence and fast reconnection events may
strongly be related in plasma dynamics.

Previously, we found that the strongest reconnection rates
depend on the local geometry of the diffusion region. In
particular, as shown in Fig. 7, the reconnection rate scales

Fig. 12. (Color online) Time evolution of the PDF of|E×|, namely
att =0.0 (black stars),0.5 (red open diamonds), andt= 3.0 (green
open triangles).

with the aspect ratioℓ/δ [see Eq. (7) and discussion]. In
Fig. 13-(a) we show the same scatter plot at different times.
At the beginning of the simulation, since initial conditions
are Gaussian, there is no clear scaling. This is related to the
absence of coherency in the magnetic field [see Fig. 7 and
Wan et al. (2009)]. After the peak of the activity is reached,
for t> 0.4, the expectation given by Eq. (7) is recovered. At
later times, the fastest reconnection events, with geometries
characterized by large aspect ratios, vanish.

In Fig. 13-(b), the reconnection rates are compared, at dif-
ferent times, with the asymmetric Sweet-Parker prediction
given by Eq. (11). It is evident that the model nicely de-
scribes the process of reconnection in 2D MHD turbulence:
during the time relaxation of turbulence, the reconnection
events still obey the theory proposed by Cassak and Shay
(2007).

5 Preliminary results with the Hall effect

Besides turbulence, an ingredient that may accelerate the
process of reconnection is the Hall effect. The latter becomes
crucial when the ion skin depth, defined asdi = c/ωpi (being
ωpi the ion plasma frequency andc the speed of light), is a
non-negligible fraction of the system sizeL0, namely when
di/L0 6= 0 (Roberts and Taylor, 1962). Generally, the Hall
effect is thought to be crucial in plasmas, since it cause small
scale turbulent activity, producing a departure from power
spectra predictions of the MHD theory (Servidio et al., 2007;
Galtier and Buchlin, 2007; Dmitruk and Matthaeus, 2006;
Mininni et al., 2007; Matthaeus et al., 2008; Alexandrova et
al., 2007), and, whendi/L0 is large enough, changes in the

Fig. 11. (Color online) Shaded contour of the current density
j at different times of the simulations, namelyt = 0.5 (a) and
t = 3.0 (b). Iso-lines of the potentiala and the positions of the
reconnection events (black crosses) are reported as well.

Here we examined whether the observed ensemble of tur-
bulent reconnection events scales as asymmetric “Sweet-
Parker” in this sense, with resistivity causing the dissipa-
tion. To acquire a broader picture of the scaling, we eval-
uated Eq. (11) using several runs (listed in Fig.10). Fig. 10
shows that in all the simulations the reconnection rates are
consistent with the prediction given by Eq. (11). In this sce-
nario turbulence plays a crucial role, determining locally the
parameters that control the Sweet-Parker reconnection rate,
namely, the lengths and local magnetic field strengths. Ap-
parently, reconnection is an integral part of the turbulent cas-
cade.
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4 Time behavior of reconnection in turbulence

In the previous sections we examined the statistics of mag-
netic reconnection in turbulence, at a given timet∗. The latter
coincides with the peak of turbulent nonlinear activity, when
the average current reaches its maximum (see Fig.1). One
may ask how the complex pattern of reconnection evolves in
time, during the decaying evolution of 2-D MHD turbulence.
In this brief section, we will answer the above question, sim-
ulating turbulence for longer times.

A moderate resolution of 40962 mesh points will be cho-
sen in order to reduce numerical costs. In analogy with sim-
ulations in Table1, we impose random (Gaussian) fluctu-
ations, for both velocity and magnetic fields, in the range
4≤ k≤ 10. The final time of the simulation ist = 3.0, while
the peak of the nonlinear activity is in this case reached at
t∗ ∼ 0.5. At this time, as expected, all the features described
in Sect.3 are observed.

During the relaxation process, magnetic islands reconnect,
merge, repel, and the system changes its magnetic topol-
ogy. In Fig.11 the current density is shown for two different
times. The line-contours of the potential and the position of
theX-points are superposed on the same figure. As it can be
immediately noticed, the current sheets reduce both in num-
ber and intensity att = 3.0, where the turbulent pattern is
characterized essentially by bigger islands. As an example,
the number of reconnection sites att = 0.5 is 133, reducing
to 114 at the end of the simulation. This process will even-
tually continue in time until only fewX-points survive to
the turbulent evolution. Note that is difficult to explore this
final stage of the relaxation, since it may occur after thou-
sands of nonlinear times [see the long time behavior of the
the MHD selective decay process inMatthaeus and Mont-
gomery(1980) and the 2-D Navier Stokes analogy inMont-
gomery et al.(1992).]

In Fig. 12 we compare the reconnection rates at different
instants of the simulation, namely at the beginning (t = 0),
at the peak of nonlinear activity (t = 0.5), and at the end of
the run (t = 3.0). Note that the reconnection rates have been
properly normalized toδbs(t)

2 (see Sect.3), at each time.
In analogy with the time-behavior of the total current (see
Fig. 1), the reconnection rates are higher when the turbulent
activity is at the peak. This further provides evidence that
fully developed turbulence and fast reconnection events may
strongly be related in plasma dynamics.

Previously, we found that the strongest reconnection rates
depend on the local geometry of the diffusion region. In par-
ticular, as shown in Fig.7, the reconnection rate scales with
the aspect ratiò/δ (see Eq. (7 and discussion). In Fig.13a
we show the same scatter plot at different times. At the be-
ginning of the simulation, since initial conditions are Gaus-
sian, there is no clear scaling. This is related to the absence
of coherency in the magnetic field (see Fig.7 andWan et al.,
2009). After the peak of the activity is reached, fort > 0.4,
the expectation given by Eq. (7) is recovered. At later times,
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In Fig. 12 we compare the reconnection rates at different
instants of the simulation, namely at the beginning (t= 0),
at the peak of nonlinear activity (t= 0.5), and at the end of
the run (t= 3.0). Note that the reconnection rates have been
properly normalized toδbrms(t)

2 (see Sec. 3), at each time.
In analogy with the time-behavior of the total current (see
Fig. 1), the reconnection rates are higher when the turbulent
activity is at the peak. This further provides evidence that
fully developed turbulence and fast reconnection events may
strongly be related in plasma dynamics.

Previously, we found that the strongest reconnection rates
depend on the local geometry of the diffusion region. In
particular, as shown in Fig. 7, the reconnection rate scales
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open triangles).

with the aspect ratioℓ/δ [see Eq. (7) and discussion]. In
Fig. 13-(a) we show the same scatter plot at different times.
At the beginning of the simulation, since initial conditions
are Gaussian, there is no clear scaling. This is related to the
absence of coherency in the magnetic field [see Fig. 7 and
Wan et al. (2009)]. After the peak of the activity is reached,
for t> 0.4, the expectation given by Eq. (7) is recovered. At
later times, the fastest reconnection events, with geometries
characterized by large aspect ratios, vanish.

In Fig. 13-(b), the reconnection rates are compared, at dif-
ferent times, with the asymmetric Sweet-Parker prediction
given by Eq. (11). It is evident that the model nicely de-
scribes the process of reconnection in 2D MHD turbulence:
during the time relaxation of turbulence, the reconnection
events still obey the theory proposed by Cassak and Shay
(2007).

5 Preliminary results with the Hall effect

Besides turbulence, an ingredient that may accelerate the
process of reconnection is the Hall effect. The latter becomes
crucial when the ion skin depth, defined asdi = c/ωpi (being
ωpi the ion plasma frequency andc the speed of light), is a
non-negligible fraction of the system sizeL0, namely when
di/L0 6= 0 (Roberts and Taylor, 1962). Generally, the Hall
effect is thought to be crucial in plasmas, since it cause small
scale turbulent activity, producing a departure from power
spectra predictions of the MHD theory (Servidio et al., 2007;
Galtier and Buchlin, 2007; Dmitruk and Matthaeus, 2006;
Mininni et al., 2007; Matthaeus et al., 2008; Alexandrova et
al., 2007), and, whendi/L0 is large enough, changes in the

Fig. 12. (Color online) Time evolution of the PDF of|E×|, namely
at t = 0.0 (black stars), 0.5 (red open diamonds), andt = 3.0 (green
open triangles).

the fastest reconnection events, with geometries character-
ized by large aspect ratios, vanish.

In Fig. 13b, the reconnection rates are compared, at dif-
ferent times, with the asymmetric Sweet-Parker prediction
given by Eq. (11). It is evident that the model nicely de-
scribes the process of reconnection in 2-D MHD turbulence:
during the time relaxation of turbulence, the reconnection
events still obey the theory proposed byCassak and Shay
(2007).

5 Preliminary results with the Hall effect

Besides turbulence, an ingredient that may accelerate the
process of reconnection is the Hall effect. The latter becomes
crucial when the ion skin depth, defined asdi = c/ωpi (being
ωpi the ion plasma frequency andc the speed of light), is a
non-negligible fraction of the system sizeL0, namely when
di/L0 6= 0 (Roberts and Taylor, 1962). Generally, the Hall
effect is thought to be crucial in plasmas, since it cause small
scale turbulent activity, producing a departure from power
spectra predictions of the MHD theory (Servidio et al., 2007;
Galtier and Buchlin, 2007; Dmitruk and Matthaeus, 2006;
Mininni et al., 2007; Matthaeus et al., 2008; Alexandrova et
al., 2007), and, whendi/L0 is large enough, changes in the
decay rate of the turbulence at moderate Reynolds number
(Matthaeus et al., 2003). In the past years, the role of the ion
skin depth on reconnection has been matter of several numer-
ical investigations (Ma and Bhattacharjee, 2001; Smith et al.,
2004; Lu et al., 2010). In particular, it has been proposed that
the Hall effect in reconnection cause a catastrophic release of
magnetic energy, leading to fast magnetic reconnection on-
set (Cassak et al., 2005, 2007), with reconnection rates faster
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Fig. 13. (a) Relation between the reconnection rates|E×| and the
geometry of the reconnection regionλR, for different times of the
simulation. After the peak of the nonlinear activity, the scalingλ

1/2

R

(green solid line) appears. (b) Asymmetric Sweet-Parker prediction
at different times of the simulation. This theory accurately describes
the dynamics of reconnection in 2D MHD turbulence.

decay rate of the turbulence at moderate Reynolds number
(Matthaeus et al., 2003). In the past years, the role of the ion
skin depth on reconnection has been matter of several numer-
ical investigations (Ma and Bhattacharjee, 2001; Smith et al.,
2004; Lu et al., 2010). In particular, it has been proposed that
the Hall effect in reconnection cause a catastrophic release of
magnetic energy, leading to fast magnetic reconnection on-
set (Cassak et al., 2005, 2007), with reconnection rates faster
than the Sweet-Parker expectation. In this short section we
will inspect statistically the role of the Hall effect on thepro-
cess of reconnection in turbulence.

Analogously to MHD, the equations of incompressible

Table 3. Table of runs. The second column is the resolution of
the simulation, third column the Reynolds numbers, fourth column
reports the dissipative scale of the system and the last column shows
the Hall parameter.

Run Eqs. resolution Rµ(Rν) λdiss ǫH(k−1

H )

I MHD 40962 1700 1/200 0
II Hall MHD 40962 1700 1/200 1/100

Fig. 14. Power spectra of the “perpendicular” magnetic energy for
MHD (red) and Hall MHD (black). The vertical dashed line repre-
sent the Hall wavenumberkH = ǫ−1

H .

Hall MHD can be written in dimensionless form. In 2.5D (2
dimensions in the physical space for three-dimensional com-
ponents) the equations read:

∂v

∂t
=−(v ·∇)v−∇P +j×b+R−1

ν ∇2v, (12)

∂b

∂t
= ∇× [(v−ǫHj)×b]+R−1

µ ∇2b. (13)

The fields can be decomposed in perpendicular (in-plane)
and parallel (out-of-plane, alongz) components, namely
b = (b⊥,bz) andv = (v⊥,vz). For the magnetic fieldb⊥ =
∇a× ẑ, wherea is the magnetic potential. The coefficient
ǫH = di/L0 is the Hall parameter and is proportional to the
amount of dispersive effects present in the system. Note that,
for ǫH → 0, Eqs. (12)-(13) reduce to MHD [see Eqs. (1) -
(2)]. The above equations are solved with the same algo-
rithm used for the MHD case. We performed 2 simulations,
MHD and Hall MHD, summarized in Table 3.

In order to quantify the differences between MHD and
Hall MHD turbulence, we compare the power spectra forb⊥

Fig. 13. (a)Relation between the reconnection rates|E×| and the
geometry of the reconnection regionλR , for different times of the

simulation. After the peak of the nonlinear activity, the scalingλ
1/2
R

(green solid line) appears.(b) Asymmetric Sweet-Parker prediction
at different times of the simulation. This theory accurately describes
the dynamics of reconnection in 2-D MHD turbulence.

Table 3. Table of runs. The second column is the resolution of
the simulation, third column the Reynolds numbers, fourth column
reports the dissipative scale of the system and the last column shows
the Hall parameter.

Run Eqs. resolution Rµ(Rν) λdiss εH (k
−1
H
)

I MHD 40962 1700 1/200 0
II Hall MHD 40962 1700 1/200 1/100

than the Sweet-Parker expectation. In this short section we
will inspect statistically the role of the Hall effect on the pro-
cess of reconnection in turbulence.
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at different times of the simulation. This theory accurately describes
the dynamics of reconnection in 2D MHD turbulence.

decay rate of the turbulence at moderate Reynolds number
(Matthaeus et al., 2003). In the past years, the role of the ion
skin depth on reconnection has been matter of several numer-
ical investigations (Ma and Bhattacharjee, 2001; Smith et al.,
2004; Lu et al., 2010). In particular, it has been proposed that
the Hall effect in reconnection cause a catastrophic release of
magnetic energy, leading to fast magnetic reconnection on-
set (Cassak et al., 2005, 2007), with reconnection rates faster
than the Sweet-Parker expectation. In this short section we
will inspect statistically the role of the Hall effect on thepro-
cess of reconnection in turbulence.

Analogously to MHD, the equations of incompressible

Table 3. Table of runs. The second column is the resolution of
the simulation, third column the Reynolds numbers, fourth column
reports the dissipative scale of the system and the last column shows
the Hall parameter.
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MHD (red) and Hall MHD (black). The vertical dashed line repre-
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Hall MHD can be written in dimensionless form. In 2.5D (2
dimensions in the physical space for three-dimensional com-
ponents) the equations read:

∂v

∂t
=−(v ·∇)v−∇P +j×b+R−1

ν ∇2v, (12)

∂b

∂t
= ∇× [(v−ǫHj)×b]+R−1

µ ∇2b. (13)

The fields can be decomposed in perpendicular (in-plane)
and parallel (out-of-plane, alongz) components, namely
b = (b⊥,bz) andv = (v⊥,vz). For the magnetic fieldb⊥ =
∇a× ẑ, wherea is the magnetic potential. The coefficient
ǫH = di/L0 is the Hall parameter and is proportional to the
amount of dispersive effects present in the system. Note that,
for ǫH → 0, Eqs. (12)-(13) reduce to MHD [see Eqs. (1) -
(2)]. The above equations are solved with the same algo-
rithm used for the MHD case. We performed 2 simulations,
MHD and Hall MHD, summarized in Table 3.

In order to quantify the differences between MHD and
Hall MHD turbulence, we compare the power spectra forb⊥

Fig. 14. Power spectra of the “perpendicular” magnetic energy for
MHD (red) and Hall MHD (black). The vertical dashed line repre-
sent the Hall wavenumberkH = ε−1

H
.

Analogously to MHD, the equations of incompressible
Hall MHD can be written in dimensionless form. In 2.5-
D (2 dimensions in the physical space for three-dimensional
components) the equations read:

∂v

∂t
= −(v ·∇)v−∇P +j ×b+R−1

ν ∇
2v, (12)

∂b

∂t
= ∇× [(v−εHj)×b] +R−1

µ ∇
2b. (13)

The fields can be decomposed in perpendicular (in-plane)
and parallel (out-of-plane, alongz) components, namely
b = (b⊥,bz) andv = (v⊥,vz). For the magnetic fieldb⊥ =

∇a× ẑ, wherea is the magnetic potential. The coefficient
εH = di/L0 is the Hall parameter and is proportional to the
amount of dispersive effects present in the system. Note that,
for εH → 0, Eqs. (12)–(13) reduce to MHD (see Eqs.1–2).
The above equations are solved with the same algorithm used
for the MHD case. We performed 2 simulations, MHD and
Hall MHD, summarized in Table3.

In order to quantify the differences between MHD and
Hall MHD turbulence, we compare the power spectra forb⊥

(in-plane components), reported in Fig.14. The main dif-
ference between the two runs can be noticed at small scales,
namely atk > kh. This difference consists of a higher small
scale activity in the Hall case, and is generally attributed to
the presence of dispersive effects (Servidio et al., 2007).

As we said before, the current density is an important
quantity since it captures many of the small scale features
in both turbulence and in reconnection. We show in Fig.15
the PDF ofjz (out of plane component), for the runs in Ta-
ble 3. The core of the distributions is very similar for both

Nonlin. Processes Geophys., 18, 675–695, 2011 www.nonlin-processes-geophys.net/18/675/2011/



S. Servidio et al.: Reconnection and turbulence 685Servidio et al.: Reconnection and Turbulence 11

Fig. 15. PDF of jz , normalized to itsrms value, for MHD (red)
and Hall MHD (black). The longer tails present in the Hall case are
the signature of a more intense small-scale activity.

(in-plane components), reported in Fig. 14. The main dif-
ference between the two runs can be noticed at small scales,
namely atk >kh. This difference consists of a higher small
scale activity in the Hall case, and is generally attributedto
the presence of dispersive effects (Servidio et al., 2007).

As we said before, the current density is an important
quantity since it captures many of the small scale features
in both turbulence and in reconnection. We show in Fig. 15
the PDF ofjz (out of plane component), for the runs in Ta-
ble 3. The core of the distributions is very similar for both
simulations, but in the Hall MHD cases the tails are more
pronounced. This suggests that dispersive effects cause an
enhancement of the small scale activity. We will further in-
vestigate this interesting statistical property of Hall MHD
turbulence in upcoming publications.

The PDF ofE×, for both MHD and Hall MHD, are re-
ported in Fig. 16. As expected, both distributions manifest
strong departures from the averages. Since for these runs we
did not have enough events (X-points), the PDFs have been
constructed using constant weightm per-bin (variable am-
plitude PDF), withm= 6 (Osman et al., 2011; Bruno and
Carbone, 2005). In the Hall case, a higher tail appearing in
the PDF indicates that the Hall term slightly accelerates re-
connection. As an example, for MHD we obtained the mean
value 〈|E×|〉 ≃ 0.05, while for Hall MHD 〈|E×|〉 ≃ 0.06.
This analysis confirms that when the Hall physics is present,
distributions of reconnection rates become broader than the
MHD case, leading to slightly faster rates on average, but
a net increase in the frequency of occurrence of the fastest
rates. Note that in the Hall MHD simulation the maximum

Fig. 16. (Color online) Probability distribution function of recon-
nection rates in MHD (red) and Hall MHD (black) turbulence. In
the Hall case, the population of strong reconnection eventsis higher.
Vertical lines represent averages.

reconnection rate goes up to|E×| ∼ 0.38. We believe, on the
other hand, that further investigation is needed. More simu-
lations, varying for example the strength of the Hall effect,
and more events will clarify how the process of reconnection
in turbulence is affected by dynamical activity at the ion skin
depth. A more detailed study will be presented in a future
work.

6 Warning about the accuracy of simulations

In this section we will briefly review the widely recognized
issue of adequate spatial resolution in numerical simulations
of turbulence, in the context of 2D MHD (Donzis et al., 2008;
Wan et al., 2010). Generally, it is widely thought that a good
criterion for the quality of numerics is given by the spectra: a
nice power spectrum is synonym of a good simulation. Here
we argue that this is not sufficient, since a slightly inadequate
resolution fails for precise determination of higher-order sta-
tistical quantities, and therefore fails to accurately describe
reconnection. In particular, in Wan et al. (2010) it was sug-
gested that oversampling the Kolmogorov dissipation scale
η by a factor of 3 allows accurate computation of the kurto-
sis, the scale-dependent kurtosis, and the reconnection rates
[see Eq. (14) for a definition ofη]. These tests may provide
useful guidance for resolution requirements in many plasma
computations involving turbulence and reconnection.

We begin with the assumption that stable computation of
the fourth-order moments is desirable. A more sensitive test
involving scale-dependent kurtosis is also found to be indica-
tive. To understand the utility of these ideas we examine the
problem in which the quantity of interest is the distribution
of magnetic reconnection rates in MHD turbulence. Since
many reconnection sites occur, we are particularly interested
in the conditions on spatial resolution that must be attained
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Hall MHD (black). The longer tails present in the Hall case are the
signature of a more intense small-scale activity.

simulations, but in the Hall MHD cases the tails are more
pronounced. This suggests that dispersive effects cause an
enhancement of the small scale activity. We will further in-
vestigate this interesting statistical property of Hall MHD
turbulence in upcoming publications.

The PDF ofE×, for both MHD and Hall MHD, are re-
ported in Fig.16. As expected, both distributions manifest
strong departures from the averages. Since for these runs we
did not have enough events (X-points), the PDFs have been
constructed using constant weightm per-bin (variable am-
plitude PDF), withm= 6 (Osman et al., 2011; Bruno and
Carbone, 2005). In the Hall case, a higher tail appearing in
the PDF indicates that the Hall term slightly accelerates re-
connection. As an example, for MHD we obtained the mean
value 〈|E×|〉 ' 0.05, while for Hall MHD 〈|E×|〉 ' 0.06.
This analysis confirms that when the Hall physics is present,
distributions of reconnection rates become broader than the
MHD case, leading to slightly faster rates on average, but
a net increase in the frequency of occurrence of the fastest
rates. Note that in the Hall MHD simulation the maximum
reconnection rate goes up to|E×| ∼ 0.38. We believe, on the
other hand, that further investigation is needed. More simu-
lations, varying for example the strength of the Hall effect,
and more events will clarify how the process of reconnection
in turbulence is affected by dynamical activity at the ion skin
depth. A more detailed study will be presented in a future
work.

6 Warning about the accuracy of simulations

In this section we will briefly review the widely recognized
issue of adequate spatial resolution in numerical simulations
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reconnection rate goes up to|E×| ∼ 0.38. We believe, on the
other hand, that further investigation is needed. More simu-
lations, varying for example the strength of the Hall effect,
and more events will clarify how the process of reconnection
in turbulence is affected by dynamical activity at the ion skin
depth. A more detailed study will be presented in a future
work.

6 Warning about the accuracy of simulations

In this section we will briefly review the widely recognized
issue of adequate spatial resolution in numerical simulations
of turbulence, in the context of 2D MHD (Donzis et al., 2008;
Wan et al., 2010). Generally, it is widely thought that a good
criterion for the quality of numerics is given by the spectra: a
nice power spectrum is synonym of a good simulation. Here
we argue that this is not sufficient, since a slightly inadequate
resolution fails for precise determination of higher-order sta-
tistical quantities, and therefore fails to accurately describe
reconnection. In particular, in Wan et al. (2010) it was sug-
gested that oversampling the Kolmogorov dissipation scale
η by a factor of 3 allows accurate computation of the kurto-
sis, the scale-dependent kurtosis, and the reconnection rates
[see Eq. (14) for a definition ofη]. These tests may provide
useful guidance for resolution requirements in many plasma
computations involving turbulence and reconnection.

We begin with the assumption that stable computation of
the fourth-order moments is desirable. A more sensitive test
involving scale-dependent kurtosis is also found to be indica-
tive. To understand the utility of these ideas we examine the
problem in which the quantity of interest is the distribution
of magnetic reconnection rates in MHD turbulence. Since
many reconnection sites occur, we are particularly interested
in the conditions on spatial resolution that must be attained
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of turbulence, in the context of 2-D MHD (Donzis et al.,
2008; Wan et al., 2010). Generally, it is widely thought
that a good criterion for the quality of numerics is given by
the spectra: a nice power spectrum is synonym of a good
simulation. Here we argue that this is not sufficient, since
a slightly inadequate resolution fails for precise determina-
tion of higher-order statistical quantities, and therefore fails
to accurately describe reconnection. In particular, inWan
et al. (2010) it was suggested that oversampling the Kol-
mogorov dissipation scaleη by a factor of 3 allows accu-
rate computation of the kurtosis, the scale-dependent kurto-
sis, and the reconnection rates (see Eq. (14 for a definition of
η). These tests may provide useful guidance for resolution
requirements in many plasma computations involving turbu-
lence and reconnection.

We begin with the assumption that stable computation of
the fourth-order moments is desirable. A more sensitive test
involving scale-dependent kurtosis is also found to be indica-
tive. To understand the utility of these ideas we examine the
problem in which the quantity of interest is the distribution
of magnetic reconnection rates in MHD turbulence. Since
many reconnection sites occur, we are particularly interested
in the conditions on spatial resolution that must be attained
to accurately compute the tail of this distribution, because
this tail measures the likelihood of the highest rates of recon-
nection. It turns out that the same conditions for accurately
computing the fourth-order moments also give rise to accu-
rate computation of reconnection rates.

Here we provide a numerical example, in which a series
of numerical runs is carried out, beginning with identical ini-
tial data and dissipation coefficients, but with varying spatial
resolution. As described in Sect.2, we make use of spectral
method simulations, withN Fourier modes in each Carte-
sian direction (Ghosh et al., 1993; Canuto et al., 1988). All
runs are performed withν =µ= 1/2000 and are unforced.
The runs are dealiased, using the Orszag-Patterson approach
with kmax =

√
2N/3 and phase-shift dealiasing (Patterson
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Table 4. Parameters for the simulations. The initially excited
Fourier modes have 5< |k|< 30, andkdiss means the maximum
value ofkdiss(t).

Run Grid Re kmax kdiss
kmax
kdiss

1 2562 2000 120 242 0.50
2 5122 2000 241 250 0.96
3 10242 2000 482 251 1.9
4 15362 2000 724 251 2.9
5 20482 2000 965 251 3.9
6 40962 2000 1930 251 7.7
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to accurately compute the tail of this distribution, because
this tail measures the likelihood of the highest rates of recon-
nection. It turns out that the same conditions for accurately
computing the fourth-order moments also give rise to accu-
rate computation of reconnection rates.

Here we provide a numerical example, in which a series of
numerical runs is carried out, beginning with identical initial
data and dissipation coefficients, but with varying spatialres-
olution. As described in Section 2, we make use of spectral
method simulations, withN Fourier modes in each Carte-
sian direction (Ghosh et al., 1993; Canuto et al., 1988). All
runs are performed withν = µ= 1/2000 and are unforced.
The runs are dealiased, using the Orszag-Patterson approach
with kmax =

√
2N/3 and phase-shift dealiasing (Patterson

and Orszag, 1971). We remind that the dissipation wavenum-
ber (reciprocal of the Kolmogorov scaleη) is defined as

kdiss(t)≡ η−1 =
( ǫ

ν3

)1/4

≡
〈

ω2 +j2
〉

√
ν

1/4

, (14)

where〈···〉 denotes spatial averaging andǫ is the average rate
of energy dissipation. The ratiokmax/kdiss(t)≡ kmaxη can be
interpreted as a measure of adequate resolution of the dissi-
pation scale, with larger values indicating better resolution.
Below, we make regular use ofkmax/kdiss as an organizing
parameter for the simulations. All the runs are summarized
in Table 4.

Fig. 17 shows the energy spectra for the runs listed in Ta-
ble 4. For each run, the spectrum is computed at the time
of maximum current kurtosisχj . The results show that all
the spectra agree well. Indeed, although the spectra cut
off at different wavenumbers (because of the different run
resolutions), the curves nearly overlay each other over the
full range of overlappingk, with only small discrepancies
in the lower resolution runs near their maximum retained
wavenumber. The importance of this comparison is that an
examination of the “quality” of an energy spectrum is a fre-
quently encountered approach to heuristically evaluate the
quality of spatial resolution. However, we now show that
spectra can be reasonably accurate even when other quanti-
ties are not.

k

E
(k

)

100 101 102 10310-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

40962

20482

10242

5122

2562

k-5/3

Fig. 17. (Color) Energy spectra at the time of maximum kurtosisχj ,
for all runs. Ak−5/3 powerlaw (dotted) is shown for comparison.
The15362 run is not plotted to avoid clutter.

kmax/kdiss

C
x

0 2 4 6 8 10200

400

600

800

1000

1200

1400

15362

Fig. 18. (Color online) Number of reconnection sitesC× as a func-
tion of kmax/kdiss, for the simulations in Table 4. For this choice of
the viscous terms,ν = µ = 1/2000, the saturation occurs at resolu-
tion of∼ 15362.

Figure 18 displays the number of reconnection sitesC×

as a function ofkmax/kdiss. It is evident that under-resolved
runs include many additional X-points that are not found in
the well-resolved cases. Evidently the phase errors caused
by under-resolution imply a lack of intermittency, and also
a spurious increase in the number of X-points present, due
to Gaussianization of the fluctuations [for more details see
Wan et al. (2009)]. However, a clear saturation inC× occurs
oncekmax/kdiss becomes large enough. In Fig. 19 we show
contour plots of the magnetic potentiala together with the
positions of reconnection sites, for both well-resolved (Run
6) and under-resolved (Run 1) simulations. In the under-
resolved case a higher number of X-points is present. Note
that this excess of X-points, due to small-scale Gaussian-
ization process, can be easily confused with real (physical)
phenomena such as secondary tearing instabilities (Daughton
et al., 2009; Wang et al., 2010), current-sheet disruptionsor
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nection. It turns out that the same conditions for accurately
computing the fourth-order moments also give rise to accu-
rate computation of reconnection rates.

Here we provide a numerical example, in which a series of
numerical runs is carried out, beginning with identical initial
data and dissipation coefficients, but with varying spatialres-
olution. As described in Section 2, we make use of spectral
method simulations, withN Fourier modes in each Carte-
sian direction (Ghosh et al., 1993; Canuto et al., 1988). All
runs are performed withν = µ= 1/2000 and are unforced.
The runs are dealiased, using the Orszag-Patterson approach
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Figure 18 displays the number of reconnection sitesC×

as a function ofkmax/kdiss. It is evident that under-resolved
runs include many additional X-points that are not found in
the well-resolved cases. Evidently the phase errors caused
by under-resolution imply a lack of intermittency, and also
a spurious increase in the number of X-points present, due
to Gaussianization of the fluctuations [for more details see
Wan et al. (2009)]. However, a clear saturation inC× occurs
oncekmax/kdiss becomes large enough. In Fig. 19 we show
contour plots of the magnetic potentiala together with the
positions of reconnection sites, for both well-resolved (Run
6) and under-resolved (Run 1) simulations. In the under-
resolved case a higher number of X-points is present. Note
that this excess of X-points, due to small-scale Gaussian-
ization process, can be easily confused with real (physical)
phenomena such as secondary tearing instabilities (Daughton
et al., 2009; Wang et al., 2010), current-sheet disruptionsor
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quality of spatial resolution. However, we now show that
spectra can be reasonably accurate even when other quanti-
ties are not.

Figure 18 displays the number of reconnection sitesC×

as a function ofkmax/kdiss. It is evident that under-resolved
runs include many additionalX-points that are not found in
the well-resolved cases. Evidently the phase errors caused
by under-resolution imply a lack of intermittency, and also a
spurious increase in the number ofX-points present, due to
Gaussianization of the fluctuations (for more details seeWan
et al., 2009). However, a clear saturation inC× occurs once
kmax/kdiss becomes large enough. In Fig.19 we show con-
tour plots of the magnetic potentiala together with the posi-
tions of reconnection sites, for both well-resolved (Run 6)
and under-resolved (Run 1) simulations. In the under-
resolved case a higher number ofX-points is present. Note
that this excess ofX-points, due to small-scale Gaussian-
ization process, can be easily confused with real (physical)
phenomena such as secondary tearing instabilities (Daughton
et al., 2009; Wang et al., 2010), current-sheet disruptions or
chain of plasmoids formation.

Another important feature is the dependency of the recon-
nection rates on the accuracy of the simulations. In Fig.20
the PDFs of|E×| are shown. Comparing results from differ-
ent runs, one observes that the PDFs for the under-resolved
runs manifest much shorter tails. As the resolution increases,
the tails become broader until saturation occurs, at∼ 20482.
These results further confirm our statements: if the resolution
is insufficient, then the reconnection is not properly treated in
the simulations.

7 Applications to the turbulent solar wind

The statistical properties of reconnection have been investi-
gated in the previous sections, leading to the conclusion that
strong reconnection events can locally occur in 2-D MHD
turbulence. In this section we will review some of the main
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Fig. 19. (Color online) Contour plots of the magnetic potentiala
with the positions of reconnection sites (X-points) in black × from
a well-resolved run (Run 6, top) and a under-resolved run (Run 1,
bottom).

chain of plasmoids formation.
Another important feature is the dependency of the recon-

nection rates on the accuracy of the simulations. In Fig. 20
the PDFs of|E×| are shown. Comparing results from differ-
ent runs, one observes that the PDFs for the under-resolved
runs manifest much shorter tails. As the resolution increases,
the tails become broader until saturation occurs, at∼ 20482.
These results further confirm our statements: if the resolution
is insufficient, then the reconnection is not properly treated in
the simulations.

7 Applications to the turbulent solar wind

The statistical properties of reconnection have been investi-
gated in the previous sections, leading to the conclusion that
strong reconnection events can locally occur in 2D MHD tur-
bulence. In this section we will review some of the main re-
sults about the link between solar wind discontinuities and
local magnetic reconnection processes. A well-known fea-
ture of solar wind observations is, in fact, the appearance of
sudden changes in the magnetic field vector, defined as direc-
tional discontinuities (DDs), which are detected throughout
the heliosphere (Burlaga, 1968; Tsurutani and Smith, 1979;
Ness and Burlaga, 2001; Neugebauer, 2006; Bruno et al.,
2001; Sorriso-Valvo et al., 1999). These changes are often
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Fig. 20. (Color online) PDFs of the reconnection rate|E×| for all
the runs. In the case of unresolved simulations, the reconnection
rates dramatically reduce.

seen at time-scales of3 to 5 minutes, although similar dis-
continuities are seen at smaller time scales (Vasquez et al.,
2007). In addition to identification based on characterization
of discontinuities, coherent structures have also been iden-
tified using other approaches, such as wavelets (Veltri and
Mangeney, 1999; Bruno et al., 2001), phase coherency anal-
ysis (Hada et al., 2003; Koga and Hada, 2003; Koga et al.,
2007) and “surrogate data” analysis (Sahraoui and Goldstein,
2010; Sahraoui, 2008).

One interpretation of magnetic discontinuities is that they
are the walls between filamentary structures of a discontin-
uous solar wind plasma (Burlaga, 1969; Borovsky, 2006;
Borovsky and Denton, 2010; Bruno et al., 2001), while an-
other is that some strong discontinuities are fossils from the
birth of the solar wind (Burlaga, 1968; Borovsky, 2008). An
alternative possibility is that the observed discontinuities are
the current sheets that form as a consequence of the MHD
turbulent cascade (Matthaeus and Montgomery, 1980; Vel-
tri, 1999). Recent studies on magnetic discontinuities show
that their statistical properties are very similar to distribu-
tions obtained from simulations of MHD turbulence (Greco
et al., 2008, 2009). This line of reasoning argues that thin
current sheets are characteristic coherent structures expected
in active intermittent MHD turbulence (Mininni and Pouquet,
2009), and which are therefore integral to the dynamical cou-
plings across scales. Therefore, solar wind discontinuities
are one of the best applications of our theory of reconnection-
in-turbulence.

In this perspective, one is led naturally to suspect that at
least some of the current sheets that are a common feature of
the solar wind at 1 AU may be participating in small-scale
magnetic reconnection (Sundkvist et al., 2007; Gosling and
Szabo, 2008; Phan et al., 2010), as well as inhomogeneous
interplanetary plasma dissipation and heating (Leamon et al.,
2000; Osman et al., 2011). To further establish the relation-

Fig. 19. (Color online) Contour plots of the magnetic potentiala

with the positions of reconnection sites (X-points) in black× from
a well-resolved run (Run 6, top) and a under-resolved run (Run 1,
bottom).Servidio et al.: Reconnection and Turbulence 13

X

X

X
XX

X

X X

3 3.2 3.4 3.6 3.8 4
3.2

3.3

3.4

3.5

3.6

3.7

3.8

0.3
0.24
0.18
0.12
0.06
0

-0.06
-0.12
-0.18
-0.24
-0.3

X

X

X
X

X

X

3 3.2 3.4 3.6 3.8 4
3.2

3.3

3.4

3.5

3.6

3.7

3.8

0.3
0.24
0.18
0.12
0.06
0

-0.06
-0.12
-0.18
-0.24
-0.3

Fig. 19. (Color online) Contour plots of the magnetic potentiala
with the positions of reconnection sites (X-points) in black × from
a well-resolved run (Run 6, top) and a under-resolved run (Run 1,
bottom).

chain of plasmoids formation.
Another important feature is the dependency of the recon-

nection rates on the accuracy of the simulations. In Fig. 20
the PDFs of|E×| are shown. Comparing results from differ-
ent runs, one observes that the PDFs for the under-resolved
runs manifest much shorter tails. As the resolution increases,
the tails become broader until saturation occurs, at∼ 20482.
These results further confirm our statements: if the resolution
is insufficient, then the reconnection is not properly treated in
the simulations.

7 Applications to the turbulent solar wind

The statistical properties of reconnection have been investi-
gated in the previous sections, leading to the conclusion that
strong reconnection events can locally occur in 2D MHD tur-
bulence. In this section we will review some of the main re-
sults about the link between solar wind discontinuities and
local magnetic reconnection processes. A well-known fea-
ture of solar wind observations is, in fact, the appearance of
sudden changes in the magnetic field vector, defined as direc-
tional discontinuities (DDs), which are detected throughout
the heliosphere (Burlaga, 1968; Tsurutani and Smith, 1979;
Ness and Burlaga, 2001; Neugebauer, 2006; Bruno et al.,
2001; Sorriso-Valvo et al., 1999). These changes are often
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seen at time-scales of3 to 5 minutes, although similar dis-
continuities are seen at smaller time scales (Vasquez et al.,
2007). In addition to identification based on characterization
of discontinuities, coherent structures have also been iden-
tified using other approaches, such as wavelets (Veltri and
Mangeney, 1999; Bruno et al., 2001), phase coherency anal-
ysis (Hada et al., 2003; Koga and Hada, 2003; Koga et al.,
2007) and “surrogate data” analysis (Sahraoui and Goldstein,
2010; Sahraoui, 2008).

One interpretation of magnetic discontinuities is that they
are the walls between filamentary structures of a discontin-
uous solar wind plasma (Burlaga, 1969; Borovsky, 2006;
Borovsky and Denton, 2010; Bruno et al., 2001), while an-
other is that some strong discontinuities are fossils from the
birth of the solar wind (Burlaga, 1968; Borovsky, 2008). An
alternative possibility is that the observed discontinuities are
the current sheets that form as a consequence of the MHD
turbulent cascade (Matthaeus and Montgomery, 1980; Vel-
tri, 1999). Recent studies on magnetic discontinuities show
that their statistical properties are very similar to distribu-
tions obtained from simulations of MHD turbulence (Greco
et al., 2008, 2009). This line of reasoning argues that thin
current sheets are characteristic coherent structures expected
in active intermittent MHD turbulence (Mininni and Pouquet,
2009), and which are therefore integral to the dynamical cou-
plings across scales. Therefore, solar wind discontinuities
are one of the best applications of our theory of reconnection-
in-turbulence.

In this perspective, one is led naturally to suspect that at
least some of the current sheets that are a common feature of
the solar wind at 1 AU may be participating in small-scale
magnetic reconnection (Sundkvist et al., 2007; Gosling and
Szabo, 2008; Phan et al., 2010), as well as inhomogeneous
interplanetary plasma dissipation and heating (Leamon et al.,
2000; Osman et al., 2011). To further establish the relation-

Fig. 20. (Color online) PDFs of the reconnection rate|E×| for all
the runs. In the case of unresolved simulations, the reconnection
rates dramatically reduce.

results about the link between solar wind discontinuities and
local magnetic reconnection processes. A well-known fea-
ture of solar wind observations is, in fact, the appearance of
sudden changes in the magnetic field vector, defined as direc-
tional discontinuities (DDs), which are detected throughout
the heliosphere (Burlaga, 1968; Tsurutani and Smith, 1979;
Ness and Burlaga, 2001; Neugebauer, 2006; Bruno et al.,
2001; Sorriso-Valvo et al., 1999). These changes are often
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Fig. 21. Contour lines of the magnetic field (or line contour ofa)
together with the diffusion regions (blue shaded map), and with the
one-dimensional paths (green solid line). On the same plot, the
discontinuities identified by PVI technique with a threshold θ = 5
in Eq. (16) (open magenta squares) are represented. Bullets(black)
are discontinuities which correspond to reconnection sites.

ship between current sheets and small scale reconnection in
turbulence, some quantitative connection is needed. We have
in mind the particular question: If one identifies a current
sheet in turbulence, how likely is it to be also an active recon-
nection site? Here we show, using MHD simulation data, that
methods for identifying intermittent current sheet-like struc-
tures, when quantified properly, can identify sets of struc-
tures that are likely to be active reconnection regions.

For the present statistical analysis we will consider Run
1 described in Table 1. Anticipating possible applications
to spacecraft data, we focus on properties of discontinuities
that are recorded by magnetic field measurements at a single
spacecraft in interplanetary space. We adopt a spacecraft-
like sampling through the simulation domain [see Fig. 21
and Greco et al. (2008)], and we calls this trajectory. In
particular, we can define a set whose elements consist of the
segments of a trajectory that passes through any reconnection
zone, identified by thecellular automaton method (Servidio
et al., 2010a,b). In this way we can build a set of strong re-
connection site encountersRS associated with a trajectory.
Figure 21 shows an example of reconnection sites together
with the one-dimensional paths.

Interpolating the magnetic field data along the one-
dimensional paths Greco et al. (2008), we can identify dis-

Fig. 22. Top: Spatial signalℑ(∆s,ℓ,s) (PVI) obtained from the
simulation by sampling along the trajectorys in the simulation box,
with ∆s ≃ 0.67λd and ℓ ≃ 535λC . Bottom: Same quantity ob-
tained from solar wind data, with∆s =20 s andℓ≃ 500λC .

continuities (TDs) with the following procedure:

1. First, to describe rapid changes in the magnetic field, we
look at the increments

∆b(s,∆s)= b(s+∆s)−b(s), (15)

where∆s the spatial separation or lag. For this simula-
tion we choose a small scale lag,∆s≃ 0.67λdiss, which
is comparable to the turbulence dissipation scales (see
previous sections).

2. Second, employing only the sequence of magnetic in-
crements, we compute the normalized magnitude

ℑ(∆s,ℓ,s)=
|∆b(s,∆s)|

√

〈|∆b(s,∆s)|2〉
ℓ

, (16)

where〈•〉ℓ = (1/ℓ)
∫

ℓ•ds denotes a spatial average over
an interval of lengthℓ, and ∆s is the spatial lag in
Eq. (15). The square of the above quantity has been
called thePartial Variance of Increments (PVI) (Greco

Fig. 21. Contour lines of the magnetic field (or line contour ofa)
together with the diffusion regions (blue shaded map), and with the
one-dimensional paths (green solid line). On the same plot, the
discontinuities identified by PVI technique with a thresholdθ = 5
in Eq. (16) (open magenta squares) are represented. Bullets (black)
are discontinuities which correspond to reconnection sites.

seen at time-scales of 3 to 5 minutes, although similar dis-
continuities are seen at smaller time scales (Vasquez et al.,
2007). In addition to identification based on characterization
of discontinuities, coherent structures have also been iden-
tified using other approaches, such as wavelets (Veltri and
Mangeney, 1999; Bruno et al., 2001), phase coherency anal-
ysis (Hada et al., 2003; Koga and Hada, 2003; Koga et al.,
2007) and “surrogate data” analysis (Sahraoui and Goldstein,
2010; Sahraoui, 2008).

One interpretation of magnetic discontinuities is that they
are the walls between filamentary structures of a discontin-
uous solar wind plasma (Burlaga, 1969; Borovsky, 2006;
Borovsky and Denton, 2010; Bruno et al., 2001), while an-
other is that some strong discontinuities are fossils from the
birth of the solar wind (Burlaga, 1968; Borovsky, 2008). An
alternative possibility is that the observed discontinuities are
the current sheets that form as a consequence of the MHD
turbulent cascade (Matthaeus and Montgomery, 1980; Vel-
tri, 1999). Recent studies on magnetic discontinuities show
that their statistical properties are very similar to distribu-
tions obtained from simulations of MHD turbulence (Greco
et al., 2008, 2009). This line of reasoning argues that thin
current sheets are characteristic coherent structures expected
in active intermittent MHD turbulence (Mininni and Pouquet,
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Fig. 21. Contour lines of the magnetic field (or line contour ofa)
together with the diffusion regions (blue shaded map), and with the
one-dimensional paths (green solid line). On the same plot, the
discontinuities identified by PVI technique with a threshold θ = 5
in Eq. (16) (open magenta squares) are represented. Bullets(black)
are discontinuities which correspond to reconnection sites.

ship between current sheets and small scale reconnection in
turbulence, some quantitative connection is needed. We have
in mind the particular question: If one identifies a current
sheet in turbulence, how likely is it to be also an active recon-
nection site? Here we show, using MHD simulation data, that
methods for identifying intermittent current sheet-like struc-
tures, when quantified properly, can identify sets of struc-
tures that are likely to be active reconnection regions.

For the present statistical analysis we will consider Run
1 described in Table 1. Anticipating possible applications
to spacecraft data, we focus on properties of discontinuities
that are recorded by magnetic field measurements at a single
spacecraft in interplanetary space. We adopt a spacecraft-
like sampling through the simulation domain [see Fig. 21
and Greco et al. (2008)], and we calls this trajectory. In
particular, we can define a set whose elements consist of the
segments of a trajectory that passes through any reconnection
zone, identified by thecellular automaton method (Servidio
et al., 2010a,b). In this way we can build a set of strong re-
connection site encountersRS associated with a trajectory.
Figure 21 shows an example of reconnection sites together
with the one-dimensional paths.

Interpolating the magnetic field data along the one-
dimensional paths Greco et al. (2008), we can identify dis-

Fig. 22. Top: Spatial signalℑ(∆s,ℓ,s) (PVI) obtained from the
simulation by sampling along the trajectorys in the simulation box,
with ∆s ≃ 0.67λd and ℓ ≃ 535λC . Bottom: Same quantity ob-
tained from solar wind data, with∆s =20 s andℓ≃ 500λC .

continuities (TDs) with the following procedure:

1. First, to describe rapid changes in the magnetic field, we
look at the increments

∆b(s,∆s)= b(s+∆s)−b(s), (15)

where∆s the spatial separation or lag. For this simula-
tion we choose a small scale lag,∆s≃ 0.67λdiss, which
is comparable to the turbulence dissipation scales (see
previous sections).

2. Second, employing only the sequence of magnetic in-
crements, we compute the normalized magnitude

ℑ(∆s,ℓ,s)=
|∆b(s,∆s)|

√

〈|∆b(s,∆s)|2〉
ℓ

, (16)

where〈•〉ℓ = (1/ℓ)
∫

ℓ•ds denotes a spatial average over
an interval of lengthℓ, and ∆s is the spatial lag in
Eq. (15). The square of the above quantity has been
called thePartial Variance of Increments (PVI) (Greco

Fig. 22. Top: spatial signal=(1s,`,s) (PVI) obtained from the
simulation by sampling along the trajectorys in the simulation box,
with1s' 0.67λd and`' 535λC . Bottom: same quantity obtained
from solar wind data, with1s= 20 s and̀ ' 500λC .

2009), and which are therefore integral to the dynamical cou-
plings across scales. Therefore, solar wind discontinuities
are one of the best applications of our theory of reconnection-
in-turbulence.

In this perspective, one is led naturally to suspect that at
least some of the current sheets that are a common feature of
the solar wind at 1 AU may be participating in small-scale
magnetic reconnection (Sundkvist et al., 2007; Gosling and
Szabo, 2008; Phan et al., 2010), as well as inhomogeneous
interplanetary plasma dissipation and heating (Leamon et al.,
2000; Osman et al., 2011). To further establish the relation-
ship between current sheets and small scale reconnection in
turbulence, some quantitative connection is needed. We have
in mind the particular question: if one identifies a current
sheet in turbulence, how likely is it to be also an active recon-
nection site? Here we show, using MHD simulation data, that
methods for identifying intermittent current sheet-like struc-
tures, when quantified properly, can identify sets of struc-
tures that are likely to be active reconnection regions.

For the present statistical analysis we will consider Run 1
described in Table1. Anticipating possible applications to
spacecraft data, we focus on properties of discontinuities
that are recorded by magnetic field measurements at a single
spacecraft in interplanetary space. We adopt a spacecraft-
like sampling through the simulation domain (see Fig.21and
Greco et al., 2008), and we calls this trajectory. In partic-
ular, we can define a set whose elements consist of the seg-
ments of a trajectory that passes through any reconnection
zone, identified by thecellular automaton method(Servidio
et al., 2010a,b). In this way we can build a set of strong re-
connection site encounters RS associated with a trajectory.
Figure21 shows an example of reconnection sites together
with the one-dimensional paths.

Interpolating the magnetic field data along the one-
dimensional paths Greco et al.(2008), we can identify dis-
continuities (TDs) with the following procedure:

1. First, to describe rapid changes in the magnetic field, we
look at the increments

1b(s,1s)= b(s+1s)−b(s), (15)

where1s the spatial separation or lag. For this simula-
tion we choose a small scale lag,1s' 0.67λdiss, which
is comparable to the turbulence dissipation scales (see
previous sections).

2. Second, employing only the sequence of magnetic in-
crements, we compute the normalized magnitude

=(1s,`,s)=
|1b(s,1s)|√〈
|1b(s,1s)|2

〉
`

, (16)

where〈•〉`= (1/`)
∫
`
•ds denotes a spatial average over

an interval of length̀ , and1s is the spatial lag in
Eq. (15). The square of the above quantity has been
called thePartial Variance of Increments(PVI) (Greco
et al., 2008) and the method abbreviated as the PVI
method. For the numerical analysis performed here
`' 535λC , whereλC = 0.18 is the turbulence correla-
tion length – a natural scale for computing averages.

The PVI time series, evaluated using Eqs. (15)–(16) is re-
ported in Fig.22. The illustration spans more than 500 cor-
relation lengths. This spatial signal has been compared to a
time signal measured by a ACE solar wind spacecraft, near
1 AU, over a period of about 20 days (lower panel of the
figure). In order to facilitate the comparison, we converted
the time signal to a spatial signal, using the average velocity
of the flow, and then normalized to a solar wind magnetic
correlation length of 1.2×106 km.

The PVI (actually “square-root PVI”, hereafter just PVI)
increment time series is bursty, suggesting the presence of
sharp gradients and localized coherent structures in the mag-
netic field, that represent the spatial intermittency of turbu-
lence. These events may correspond to what are qualitatively
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Table 5. First column: label of the method=θ . Second column:
thresholdθ imposed on PVI, cf. Eq. (17). Third column: #ITD,
number of discontinuities identified by the method. Fourth column:
#IRS, number of reconnection sites found by the method. Fifth col-
umn: #IRS/#RS, the relative efficiency of the method, identified
reconnection sites as percent of all the reconnection sites present
along the path. Last column: #IRS/#ITD, the relative goodness of
the method, percent of identified reconnection events in set of iden-
tified discontinuities.

Method θ # ITD # IRS efficiency (%) goodness (%)

=1 1 378 37 100 9.8
=5 5 40 23 62.2 57.5
=8 8 13 13 35.1 100

called “tangential discontinuities” and, possibly, to reconnec-
tion events.

Imposing a thresholdθ on Eq. (16), a collection of stronger
discontinuities along the paths can be identified. That is, we
select portions of the trajectory in which the condition

=(1s,`,s)> θ (17)

is satisfied, and we will employ this condition to identify can-
didate reconnection sites. In Fig.21, an example of the lo-
cation of discontinuities alongs, selected by the PVI method
with a particular thresholdθ , is shown. One can immediately
see in Fig.21 that there is an association, but not an identity,
between the set of “events” identified using Eq. (17), and the
encounters of the trajectory with reconnection regions. We
will now study this association quantitatively using different
values of thresholdθ . To understand the physical meaning
of the thresholdθ , we recallGreco et al.(2008, 2009) that
the probability distribution of the PVI statistic derived from a
nonGaussian turbulent signal is empirically found to strongly
deviate from the pdf of PVI computed from a Gaussian sig-
nal, for values of PVI greater than about 3. As PVI increases
to values of 4 or more, the recorded “events” are extremely
likely to be associated with coherent structures and therefore
inconsistent with a signal having random phases. Thus, as
θ is increased, stronger and more rare events are identified,
associated with highly nonGaussian coherent structures.

We now adopt a procedure to count how many of the iden-
tified TDs (from Eq.17) are also reconnection sites (i.e., ele-
ments of the set RS), as follows: every discontinuity is char-
acterized by a starting and an ending point along the synthetic
trajectorys. A set of discontinuities is identified, and a cer-
tain number of these discontinuities intersect reconnection
regions. To automate the determination of the reconnection
regions, we make use of a map (Servidio et al., 2010b) that is
generated using the cellular automaton procedure. The latter,
in summary, is a 2-D matrix that has 0 values in all cells out-
side of the diffusion regions, or values of 1 inside the diffu-
sion regions. For this simulation, and for the selected trajec-
tory (see Fig.21), there are 37 reconnection sites along the
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Fig. 23. Zoom into the tangential discontinuity : two-dimensional
crossing of the reconnection site (blue region, same as Fig.21),
together with the trajectory (green bullets), the TD captured by
the PVI technique (red dots) and the minimum variance reference
(MVA) frame (n̂, t̂) (black arrows).

Other information such as the direction or orientation of
each TD can be estimated. Using the assumption that the
structures are one dimensional, in fact, there is a way to de-
termine the normal vector to the discontinuity surface if sin-
gle point measurements are used, namely the minimum vari-
ance analysis (MVA) technique (Sonnerup et al., 1967; Perri
et al., 2009). We will now test this technique, making use of
the fact that we have a fully 2D picture of each RS from the
simulation (see Fig. 21). In each TD detected with the PVI
and expanded using theW -field, we compute the matrix

Sij = 〈bibj〉−〈bi〉〈bj〉, (18)

where here〈...〉 denotes an average on the trajectory within
the TD. Then we compute the eigenvalues(λ1,λ2) and the
normalized eigenvectors(n̂,t̂), whereλ1 is the maximum
eigenvalue and̂n (t̂) is the normal (tangential) eigenvector.
The system of eigenvectors is shown in Fig. 23. The values
of the ratioλ1/λ2 is very large for all the discontinuities se-
lected byℑ8, that is100<λ1/λ2< 107. Another feature is
that the normal componentbn is almost null and constant,
while bt is strongly changing sign [note the analogy with
Eq. (8)].

We have computed the PVI time series using ACE 1 sec-
ond resolution magnetic field data from the interval 2004
May 1 to 18 (Osman et al., 2011). The increment (∆s) is
20 seconds and the averaging interval in the denominator in
Eq. (16) is the entire data period. The average velocity was

Fig. 24. Examples of discontinuities selected by the PVI method.
Panel a: the three components of the magnetic field vector in solar
wind data in the RTN reference frame; Panel b: magnitude of the
magnetic field vector in solar wind data. The discontinuity,centered
around zero, lasts few tens seconds. Panel c: the two components
of the magnetic field vector in simulation data; Panel d: magnitude
of the magnetic field vector in simulation data.∆ is the resolution
data.

around400 km/s. In Fig. 22, the PVI time series is shown.
In order to facilitate the comparison, we converted the time
signal to a spatial signal, using the average velocity of the
flow, and then normalized to a solar wind magnetic correla-
tion length of1.2×106 km. Imposing a thresholdθ > 8 on
Eq. (16),704 events are identified. One of these TDs is illus-
trated in Fig. 24 along with an example of TD from the 2D
MHD simulation. Finally, in Fig. 25, we show the probabil-
ity distribution functions of the PVI signal for both the ob-
servational and simulation data. The comparison tells us that
there is a great similarity within the errors. In general, we
suggest that the methods developed here may have many ap-

Fig. 23. Zoom into the tangential discontinuity: two-dimensional
crossing of the reconnection site (blue region, same as Fig.21),
together with the trajectory (green bullets), the TD captured by
the PVI technique (red dots) and the minimum variance reference
(MVA) frame (n̂, t̂) (black arrows).

path s. When at least one point of the identified candidate
discontinuity overlaps with one point of the identified recon-
nection region, the event is counted as a “success”. Other-
wise the TD is not identified as an RS, and is a “failure”. In
the latter case the method is detecting a non-reconnecting,
high-stress, magnetic field structure. However, such points
are not associated with a region of strong reconnection, and
therefore are not of interest in this analysis.

As an example, usingθ = 5 in Eq. (17), 40 discontinu-
ities have been identified and 23 overlap a reconnection site
and correspond to successful identification of a reconnection
region. The goodness (quality) of this method can be de-
fined as the number of the successes over the total number of
identified discontinuities. For this example, the goodness is
' 57.5 %. An example of discontinuities, together with the
reconnecting regions, is shown in Fig.21.

Following the above procedure summarized by Eq. (17),
we impose different thresholdθ for the PVI signal. Each
threshold characterizes a different set of discontinuities or
“events”, and we can label each algorithm as=θ . The param-
eters of different PVI-based algorithms are listed in Table5,
all of which use=(1s = 0.76λd ,`= 535λC). It can be seen
that for higher values ofθ an increasing fraction of the iden-
tified TDs corresponds to a reconnection site. That is, the
goodness increases as the thresholdθ is increased (Servidio
et al., 2011).
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Fig. 23. Zoom into the tangential discontinuity : two-dimensional
crossing of the reconnection site (blue region, same as Fig.21),
together with the trajectory (green bullets), the TD captured by
the PVI technique (red dots) and the minimum variance reference
(MVA) frame (n̂, t̂) (black arrows).

Other information such as the direction or orientation of
each TD can be estimated. Using the assumption that the
structures are one dimensional, in fact, there is a way to de-
termine the normal vector to the discontinuity surface if sin-
gle point measurements are used, namely the minimum vari-
ance analysis (MVA) technique (Sonnerup et al., 1967; Perri
et al., 2009). We will now test this technique, making use of
the fact that we have a fully 2D picture of each RS from the
simulation (see Fig. 21). In each TD detected with the PVI
and expanded using theW -field, we compute the matrix

Sij = 〈bibj〉−〈bi〉〈bj〉, (18)

where here〈...〉 denotes an average on the trajectory within
the TD. Then we compute the eigenvalues(λ1,λ2) and the
normalized eigenvectors(n̂,t̂), whereλ1 is the maximum
eigenvalue and̂n (t̂) is the normal (tangential) eigenvector.
The system of eigenvectors is shown in Fig. 23. The values
of the ratioλ1/λ2 is very large for all the discontinuities se-
lected byℑ8, that is100<λ1/λ2< 107. Another feature is
that the normal componentbn is almost null and constant,
while bt is strongly changing sign [note the analogy with
Eq. (8)].

We have computed the PVI time series using ACE 1 sec-
ond resolution magnetic field data from the interval 2004
May 1 to 18 (Osman et al., 2011). The increment (∆s) is
20 seconds and the averaging interval in the denominator in
Eq. (16) is the entire data period. The average velocity was

Fig. 24. Examples of discontinuities selected by the PVI method.
Panel a: the three components of the magnetic field vector in solar
wind data in the RTN reference frame; Panel b: magnitude of the
magnetic field vector in solar wind data. The discontinuity,centered
around zero, lasts few tens seconds. Panel c: the two components
of the magnetic field vector in simulation data; Panel d: magnitude
of the magnetic field vector in simulation data.∆ is the resolution
data.

around400 km/s. In Fig. 22, the PVI time series is shown.
In order to facilitate the comparison, we converted the time
signal to a spatial signal, using the average velocity of the
flow, and then normalized to a solar wind magnetic correla-
tion length of1.2×106 km. Imposing a thresholdθ > 8 on
Eq. (16),704 events are identified. One of these TDs is illus-
trated in Fig. 24 along with an example of TD from the 2D
MHD simulation. Finally, in Fig. 25, we show the probabil-
ity distribution functions of the PVI signal for both the ob-
servational and simulation data. The comparison tells us that
there is a great similarity within the errors. In general, we
suggest that the methods developed here may have many ap-

Fig. 24. Examples of discontinuities selected by the PVI method.
(a): the three components of the magnetic field vector in solar wind
data in the RTN reference frame;(b): magnitude of the magnetic
field vector in solar wind data. The discontinuity, centered around
zero, lasts few tens seconds.(c): the two components of the mag-
netic field vector in simulation data;(d): magnitude of the magnetic
field vector in simulation data.1 is the resolution data.

For highθ , all the TDs correspond to reconnection sites.
Once each reconnection site has been identified, the charac-
teristic widthδ′ can be measured, as described byServidio
et al.(2011). For each TD captured by=, we measured each
δ′, and taking the average we obtained〈δ′〉 = 1.45× 10−2.
From the 2-D simulation, as reported in Table2, the average
diffusion region thickness is〈δ〉 = 1.44×10−2. The estima-
tion 〈δ′〉 is therefore in very good agreement with the average
size of the diffusion region〈δ〉.

Other information such as the direction or orientation of
each TD can be estimated. Using the assumption that the
structures are one dimensional, in fact, there is a way to de-
termine the normal vector to the discontinuity surface if sin-
gle point measurements are used, namely the minimum vari-
ance analysis (MVA) technique (Sonnerup et al., 1967; Perri
et al., 2009). We will now test this technique, making use of
the fact that we have a fully 2-D picture of each RS from the
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Fig. 25. Probability density function of the spatial signalℑ (PVI)
obtained from ACE measurements (blue line) and simulation (red
line). The error bar±σ is displayed in the legend and the value ofσ
is the expected fractional error in the PDF due to counting statistics.

plications to the the solar wind data, where the coexistenceof
turbulence and magnetic reconnection cannot be discarded.

8 Conclusions

In this paper we have assembled a digest of recent work that
has examined magnetic reconnection, not as an isolated pro-
cess that occurs in idealized, controlled conditions, but as
a necessary ingredient in the complex nonlinear dynamical
process that we call turbulence. Most, but not all, recent
progress in this areas has been in the context of reduced di-
mensionality models that have an ignorable coordinate (i.e.,
2D or 2.5D models.) Much of the progress in three dimen-
sional (3D) non-steady or turbulent reconnection has been ei-
ther experimental (e.g., Ren et al., 2005; Brown et al., 2006)
or in a 3D numerical setup that is in effect nearly 2D (Kowal
et al., 2009; Daughton et al., 2011). It is noteworthy that
the fully 3D case is substantial more complex and less un-
derstood, both theoretically (Schindler et al., 1988; Priest
and Pontin, 2009), and in numerics (Dmitruk and Matthaeus,
2006; Borgogno et al., 2005). However, for weakly 3D se-
tups, it has been amply confirmed that turbulence effects
(Matthaeus and Lamkin, 1986; Servidio et al., 2009) persist
(Rappazzo et al., 2007; Daughton et al., 2011). While im-
portant aspects of the physics of reconnection revealed in the
2D paradigm can carry over to 3D, it is likely also that there
are essential physical effects that occur only in a strongly
3D system or with kinetic effects at the small scales. These
challenging problems have not been included in the present
discussion. Here we have concentrated on the progress in un-
derstanding reconnection in a turbulent environment that has

been enabled by remaining in the relatively simple context of
strong 2D turbulence.

Most of the progress reviewed here has been in the con-
text of nonlinear dynamics of magnetic reconnection in tur-
bulence, investigated through direct numerical simulations of
decaying 2D MHD. In the high resolution simulations con-
sidered here, many reconnection events are seen, involving
simultaneously many magnetic islands of various size. The
reconnection is spontaneous but locally driven by the fields
and boundary conditions provided by the turbulence. Match-
ing classical turbulence analysis with the Sweet-Parker the-
ory, the statistical features of these multi-scale reconnection
events have been identified. Because of the complex mag-
netic topology, turbulence leads to different kinds of recon-
necting patches that experience widely varying influences
from surrounding fluctuations. This induces a great deal of
variation in the observed reconnection events.

The turbulent cascade produces a distribution of recon-
necting islands. Computing the electric field at theX-points,
we see that turbulence produces a broad range of reconnec-
tion rates, with values in excess of0.1 to0.3 in dimensionless
global Alfvén units. In addition, the strongest reconnection
rates vary in proportion toℓ/δ, the aspect ratio of the re-
connection sites. This scaling appears superficially to differ
greatly from classical laminar theories (Sweet, 1958; Parker,
1957), but taking into account the nearby magnetic field pro-
duced by the turbulence, a generalized form of Sweet-Parker
scaling (Cassak and Shay, 2007) is restored. These results
explain how rapid reconnection occurs in MHD turbulence in
association with the most intermittent non-Gaussian current
structures, and also how turbulence generates a very large
number of reconnection sites that have very small rates. Re-
connection, like other transport processes, is greatly affected
by turbulence (Orszag, 1977) and reconnection rates, like
other turbulence parameters, have a broad distribution of val-
ues.

In contrast to laminar reconnection models that provide a
single predicted reconnection rate for the system, turbulent
resistive MHD gives rise to a broad range of reconnection
rates that depend on local turbulence parameters. Many po-
tential reconnection sites are present, but only a few are se-
lected by the turbulence, at a given time, to display robust
reconnection electric fields. In this way, the present problem
differs greatly from studies of reconnection that assume that
it occurs in isolation or as a spontaneous process. In those
cases, the total electric field is due to reconnection, and in
steady-state, the electric field far from the diffusion region
takes on the value of the reconnection electric field. Here
the inductive electric fields at points removed from the X-
points are typically larger than the reconnection rates (Ser-
vidio et al., 2010a). It seems to be appropriate therefore to
view reconnection in turbulence as driven by the convective
electric fields in the turbulent medium. It is this driving by
the turbulent electric field that is responsible for the local
flux pile-up that drives the reconnection discussed here. Flux

Fig. 25. Probability density function of the spatial signal= (PVI)
obtained from ACE measurements (blue line) and simulation (red
line). The error bar±σ is displayed in the legend and the value
of σ is the expected fractional error in the PDF due to counting
statistics.

simulation (see Fig.21). In each TD detected with the PVI
and expanded using theW -field, we compute the matrix

Sij = 〈bibj 〉−〈bi〉〈bj 〉, (18)

where here〈...〉 denotes an average on the trajectory within
the TD. Then we compute the eigenvalues(λ1,λ2) and the
normalized eigenvectors(n̂, t̂), whereλ1 is the maximum
eigenvalue and̂n (t̂) is the normal (tangential) eigenvector.
The system of eigenvectors is shown in Fig.23. The values
of the ratioλ1/λ2 is very large for all the discontinuities se-
lected by=8, that is 100<λ1/λ2< 107. Another feature is
that the normal componentbn is almost null and constant,
while bt is strongly changing sign (note the analogy with
Eq. (8).

We have computed the PVI time series using ACE 1 sec-
ond resolution magnetic field data from the interval 1 to
18 May 2004 (Osman et al., 2011). The increment (1s) is
20 seconds and the averaging interval in the denominator in
Eq. (16) is the entire data period. The average velocity was
around 400 km s−1. In Fig. 22, the PVI time series is shown.
In order to facilitate the comparison, we converted the time
signal to a spatial signal, using the average velocity of the
flow, and then normalized to a solar wind magnetic correla-
tion length of 1.2×106 km. Imposing a thresholdθ > 8 on
Eq. (16), 704 events are identified. One of these TDs is illus-
trated in Fig.24 along with an example of TD from the 2-D
MHD simulation. Finally, in Fig.25, we show the probabil-
ity distribution functions of the PVI signal for both the ob-
servational and simulation data. The comparison tells us that
there is a great similarity within the errors. In general, we
suggest that the methods developed here may have many ap-
plications to the the solar wind data, where the coexistence of
turbulence and magnetic reconnection cannot be discarded.
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8 Conclusions

In this paper we have assembled a digest of recent work that
has examined magnetic reconnection, not as an isolated pro-
cess that occurs in idealized, controlled conditions, but as
a necessary ingredient in the complex nonlinear dynamical
process that we call turbulence. Most, but not all, recent
progress in this areas has been in the context of reduced di-
mensionality models that have an ignorable coordinate (i.e.,
2-D or 2.5-D models.) Much of the progress in three di-
mensional (3-D) non-steady or turbulent reconnection has
been either experimental (e.g.,Ren et al., 2005; Brown et al.,
2006) or in a 3-D numerical setup that is in effect nearly 2-D
(Kowal et al., 2009; Daughton et al., 2011). It is noteworthy
that the fully 3-D case is substantial more complex and less
understood, both theoretically (Schindler et al., 1988; Priest
and Pontin, 2009), and in numerics (Dmitruk and Matthaeus,
2006; Borgogno et al., 2005). However, for weakly 3-D
setups, it has been amply confirmed that turbulence effects
(Matthaeus and Lamkin, 1986; Servidio et al., 2009) persist
(Rappazzo et al., 2007; Daughton et al., 2011). While im-
portant aspects of the physics of reconnection revealed in the
2-D paradigm can carry over to 3-D, it is likely also that there
are essential physical effects that occur only in a strongly 3-
D system or with kinetic effects at the small scales. These
challenging problems have not been included in the present
discussion. Here we have concentrated on the progress in un-
derstanding reconnection in a turbulent environment that has
been enabled by remaining in the relatively simple context of
strong 2-D turbulence.

Most of the progress reviewed here has been in the con-
text of nonlinear dynamics of magnetic reconnection in tur-
bulence, investigated through direct numerical simulations
of decaying 2-D MHD. In the high resolution simulations
considered here, many reconnection events are seen, involv-
ing simultaneously many magnetic islands of various size.
The reconnection is spontaneous but locally driven by the
fields and boundary conditions provided by the turbulence.
Matching classical turbulence analysis with the Sweet-Parker
theory, the statistical features of these multi-scale reconnec-
tion events have been identified. Because of the complex
magnetic topology, turbulence leads to different kinds of re-
connecting patches that experience widely varying influences
from surrounding fluctuations. This induces a great deal of
variation in the observed reconnection events.

The turbulent cascade produces a distribution of recon-
necting islands. Computing the electric field at theX-points,
we see that turbulence produces a broad range of reconnec-
tion rates, with values in excess of 0.1 to 0.3 in dimensionless
global Alfvén units. In addition, the strongest reconnection
rates vary in proportion tò/δ, the aspect ratio of the re-
connection sites. This scaling appears superficially to differ
greatly from classical laminar theories (Sweet, 1958; Parker,
1957), but taking into account the nearby magnetic field pro-
duced by the turbulence, a generalized form of Sweet-Parker

scaling (Cassak and Shay, 2007) is restored. These results
explain how rapid reconnection occurs in MHD turbulence in
association with the most intermittent non-Gaussian current
structures, and also how turbulence generates a very large
number of reconnection sites that have very small rates. Re-
connection, like other transport processes, is greatly affected
by turbulence (Orszag, 1977) and reconnection rates, like
other turbulence parameters, have a broad distribution of val-
ues.

In contrast to laminar reconnection models that provide a
single predicted reconnection rate for the system, turbulent
resistive MHD gives rise to a broad range of reconnection
rates that depend on local turbulence parameters. Many po-
tential reconnection sites are present, but only a few are se-
lected by the turbulence, at a given time, to display robust
reconnection electric fields. In this way, the present problem
differs greatly from studies of reconnection that assume that
it occurs in isolation or as a spontaneous process. In those
cases, the total electric field is due to reconnection, and in
steady-state, the electric field far from the diffusion region
takes on the value of the reconnection electric field. Here
the inductive electric fields at points removed from theX-
points are typically larger than the reconnection rates (Ser-
vidio et al., 2010a). It seems to be appropriate therefore to
view reconnection in turbulence as driven by the convective
electric fields in the turbulent medium. It is this driving by
the turbulent electric field that is responsible for the local
flux pile-up that drives the reconnection discussed here. Flux
pile-up would normally be viewed as occurring when the rate
of approach of the islands is greater than the rate that can
be supported by the reconnection process. This can cause
buildup of repulsive forces and eventual bouncing (Intrator
et al., 2009). This will be an interesting feature to study in
the turbulence context but such a time-dependent correlation
analysis is beyond the scope of the present work and deferred
to future study.

We have seen that reconnection becomes an integral part
of turbulence, as suggested previously (Matthaeus and Mont-
gomery, 1980; Carbone et al., 1990). In fact, results of the
present type may shed light on possible scalings as Reynolds
numbers are increased, even though direct computational
scalings remain greatly challenging. In particular, we ex-
pect that the distribution of reconnection rates can be related
to the issue of maintaining finite energy dissipation in the
infinite Reynolds numbers. A detailed examination of this
connection remains for future study.

Very recent results in this line of study, involving recon-
nection rates for turbulence at varying times, and the first
look at how Hall effect influences reconnection in turbulence,
have also been highlighted here. From the freely decaying
turbulence, time dependent study, we have found that the
reconnection rate distribution evolves rapidly from a state
that has essentially no fast reconnection sites, and develops a
“hard” distribution that has a highly enhanced tail of strong
rates, in a time of the order of the peak turbulence dissipation
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time scale. Subsequently, as the turbulence ages and begins
to slow down, so also does the reconnection rate distribution
soften, with the tail of strong rates diminishing in just a few
nonlinear times.

The preliminary results on the influence of the Hall effect
in Ohm’s law on the distribution of reconnection rates in tur-
bulence appear to be very intriguing. We find that as the
Hall parameter (ratio of ion inertial length to energy contain-
ing length) is increased from zero to 1/100, the distribution
of reconnection rates develops a more pronounced tail at the
highest values. Meanwhile the median rate is increased by
only a few tens of percent. This is consistent with the idea
that Hall effect can influence the fastest rates of reconnec-
tion most effectively. However many “slow” reconnection
rates sites are found both with and without Hall effect. Fur-
ther study will be required to confirm and complete an under-
standing of how Hall effect influences reconnection rates in
turbulence, but the present results provide some tantalizing
motivation for this future study.

The new perspective on reconnection in turbulence that
we have reviewed here seems to be potentially very relevant
to space and astrophysical applications such as the turbulent
magnetosheath (Retiǹo et al., 2007), the solar wind (Gosling
and Szabo, 2008; Sundkvist et al., 2007) and the solar corona
(Parker, 1983). On the basis of the current results, we would
expect to find in the turbulent corona and solar wind a broad
distribution of size of interacting islands, with a concomi-
tantly broad distribution of reconnection rates. The rates can,
in principle, be determined statistically in terms of measur-
able correlation, Taylor and dissipation scales. In future stud-
ies it may be useful to study additional signatures such as
characteristic reconnection flows (Gosling and Szabo, 2008).
Furthermore a useful extension will be to employ models that
are suited to low collisionality plasmas, where for example
anomalous resistivity, or kinetic effects, may be important.
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