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We demonstrate the existence of a new steady-state magnetic reconnection configuration which lies at
the boundary of the basins of attraction between the Sweet-Parker and Hall reconnection configurations.
The solution is linearly unstable to small perturbations and its identification required a novel iterative
numerical technique. The eigenmodes of the unstable solution are localized near the X line, suggesting
that the onset of fast reconnection in a weakly collisional plasma is initiated locally at the X line as
opposed to remotely at the boundaries.
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Magnetic reconnection is the process which converts
magnetic energy into particle and flow energy in magnetic
explosions in many space, astrophysical, and laboratory
applications. Examples include solar flares, magnetic sub-
storms, and sawtooth crashes in fusion devices. What
causes these events to onset abruptly has long been an
open question.

Much has been learned about why the energy conversion
during magnetic reconnection takes place as fast as is
observed. During (collisional) Sweet-Parker reconnection
[1,2], the dissipation region is macroscopic in length [3–5],
which throttles reconnection and renders it too slow to
explain observed energy release rates [6]. During Hall
reconnection [7,8], dispersive waves open the dissipation
region into the microscopic Petschek open outflow con-
figuration [9], producing reconnection fast enough to ex-
plain observed rates [7,10–12]. Signatures of Hall
reconnection have been observed in the Earth’s magneto-
sphere [13–17] and laboratory experiments [18,19].

A subject of ongoing debate in the literature concerns
the dependence of Hall reconnection on the system size,
which is related to the issue of the onset of Hall reconnec-
tion. Does the trigger of fast reconnection occur near the
boundary and propagate inward to the X line or does it
initiate near the X line and then propagate outward, making
it insensitive to the boundaries? Some numerical results
have found an independence of the steady-state reconnec-
tion rate on system size [11,20,21], suggesting the inside-
out scenario. Others have found a dependence on system
size [22–26], suggesting the outside-in scenario. In this
Letter, we present evidence that the trigger is localized near
the X line, suggesting that local physics rather than global
dynamics controls fast reconnection.

It was recently shown that, in a system including both a
resistivity � and the Hall effect, reconnection is bistable;
i.e., both the Sweet-Parker and Hall reconnection solutions
are independently valid for a wide range of resistivities
[27]. For a system to have two stable steady-state solutions,
there must also exist an unstable steady-state solution at the
interface of the basins of attraction of the two stable
solutions. In this Letter, we demonstrate the existence of
the unstable steady-state reconnection configuration using
numerical simulations of the Hall magnetohydrodynamic
(Hall-MHD) equations. Finding unstable equilibria nu-
merically is difficult because systems typically evolve
away from unstable equilibria. We use a novel numerical
technique recently developed for the onset of turbulence in
fluid systems with shear flow [28,29]. After finding the
unstable solution, we numerically exhibit its most unstable
eigenmode, which is localized near the X line. This sug-
gests that the transition from the macroscopic Sweet-
Parker dissipation region to a Petschek-like open outflow
configuration as fast reconnection onsets is initiated
locally.

The numerical technique to find the unstable solution is
iterative; beginning with two stable configurations  f and
 s (or configurations evolving toward the two stable solu-
tions), one takes weighted averages

  � � � f � �1� �� s; (1)

where � is a constant weighting factor between 0 and 1, and
 corresponds to all relevant dynamical variables, which
for Hall-MHD are the plasma density n, the ion velocity vi,
and the magnetic field B. The subscripts f and s refer to
fast and slow, respectively. By choosing various values of
�, one can bracket the unstable configuration; i.e., for one
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value of � the system returns to one stable state while for
another it returns to the other, implying that the unstable
configuration is between them. The process is repeated by
taking weighted averages of the weighted averaged states,
eventually converging to the unstable equilibrium.

The numerical simulations are performed using the
massively parallel code F3D [21] to advance the equations
of two-dimensional resistive Hall-MHD in a periodic do-
main of size Lx � Ly � 409:6di � 204:8di with a cell size
of 0:1di � 0:1di, where di � c=!pi is the ion skin depth
and !pi is the ion plasma frequency. An electron mass of
me � mi=25 is used. Although this value is unrealistic, the
electron mass only controls the thickness of the electron
dissipation region. The domain is chosen large enough to
be in the bistable regime while still sufficiently resolving
the electron dynamics [27]. The resistivity and tempera-
ture are taken to be constant and uniform. There is no
viscosity, but fourth order diffusion with coefficient 2�
10�5 is used in all of the equations to damp noise at the
grid scale. We normalize magnetic field strengths, den-
sities, lengths, velocities, times, electric fields, and resis-
tivities to characteristic asymptotic values ofB0, n0, the ion
skin depth di � �mic2=4�n0e2�1=2, the Alfvén speed
cA0 � B0=�4�min0�

1=2, the ion cyclotron time ��1
ci �

�eB0=mic�
�1, E0 � cA0B0=c, and �0 � 4�cA0di=c

2, re-
spectively, where e and mi are the ion charge and mass.

Convergence is expedited by constructing  s and  f
using states in the process of making a transition to the
Sweet-Parker and Hall solutions. Since the unstable solu-
tion is unique for a given resistivity, the specific initial
states are of no consequence. We perturb a double Harris
sheet equilibrium of initial width 2di and evolve the system
with a resistivity � � 0:015�0 until steady-state Sweet-
Parker reconnection has been reached. Then, at a time of
t � 1098 ��1

ci , we abruptly lower the resistivity to � �
0:007�0 and the system makes a transition to Hall recon-
nection. In Fig. 1(a), the current sheet thickness � (mea-
sured as the half width at half maximum of the out of plane
current density Jz) during the transition is shown as a
function of time by the solid line. The thickness of the
steady-state Sweet-Parker layer is 1:22di. It is de ’ 0:2di
during Hall reconnection. During the transition (at t �
1278 ��1

ci ), we abruptly return � to 0:015�0. The upper
dashed line indicates that the system begins to revert back
to Sweet-Parker reconnection. However, when � is re-
turned to 0:015�0 later during the transition (at t �
1428 ��1

ci ), the system continues to the Hall configuration,
as shown in the lower dashed line. We take the states
marked by the boxes in Fig. 1(a) as our initial states:  s
at t � 1510:5 ��1

ci on the upper dashed line (with � �
0:78di) and  f at t � 1443 ��1

ci on the lower dashed line
(with � � 0:43di).

Results of the iteration procedure are plotted in Fig. 1(b).
The upper and lower solid lines show � as a function of
time for the first iteration with � � 0:7 and 0.9, respec-
tively. After a transient time where � decreases, it increases

back toward the Sweet-Parker solution for � � 0:7 and
decreases toward the Hall solution for � � 0:9. The second
iteration is initiated using the states on the two solid lines at
t � 1690:5 ��1

ci . The upper and lower dashed lines are a
result of using � � 0:4 and 0.6, respectively, which after an
initial transient, evolve toward the two stable configura-
tions. The third iteration is initiated using the states on the
two dashed lines at t � 1870:5 ��1

ci . The upper and lower
dot-dashed lines are the results of using � � 0:6 and 0.7,
respectively. One can see that the iteration procedure is
converging.

In principle, this iteration procedure could continue
indefinitely. However, since our periodic domain only has
a finite amount of magnetic flux available to be recon-
nected, we finish by taking an intermediate value of � �
0:65 in the third iteration, plotted as the middle dot-dashed
line starting at t � 1870:5 ��1

ci . The system stays at a
nearly constant � for an exceedingly long time (about
200 ��1

ci , or 7 Alfvén wave transit times down the sheet).
During this time, the configuration is essentially in the
unstable equilibrium.

What are the properties of the unstable steady-state
reconnection solution at this �? The out of plane current
density Jz of the unstable solution is shown in Fig. 2(b) at
t � 2055:5 ��1

ci . For comparison, the steady-state Hall
and Sweet-Parker solutions are shown in Figs. 2(a) and
2(c), respectively; only a fraction of the whole domain is
plotted. As expected, the properties of the unstable solution
are intermediate between the Sweet-Parker and Hall solu-
tions, with the downstream current sheet of the unstable
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FIG. 1. (a) Current sheet thickness � as a function of time for
the procedure to create initial states  f and  s. Convergence is
expedited by using the states denoted by the boxes as initial
conditions. (b) Results of the iteration procedure for finding the
unstable equilibrium. The first, second, and third iterations are
shown as the solid, dashed, and dot-dashed lines, respectively.
The vertical lines mark the times which define the initial state for
the following iteration.
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solution opening wider than the Sweet-Parker current
sheet, but not as wide as the Hall sheet.

The half thickness of the dissipation region is � ’
0:51di, clearly distinct from the Sweet-Parker and Hall
values. The length of the current sheet, measured as the
half width at half maximum of the out of plane current
density Jz in the outflow direction, is L ’ 30di, which is
again intermediate between the Sweet-Parker and Hall val-
ues. The steady-state reconnection rate is E ’ 0:017E0. For
comparison, the Sweet-Parker and Hall reconnection rates
are about 0:014E0 and 0:06E0, respectively.

What are the properties of the unstable solution for other
resistivities? In an upcoming paper, we present a model of
reconnection dynamics using saddle-node bifurcations,
which makes predictions about the unstable equilibrium.
In particular, � counterintuitively decreases with increas-
ing �. Further, a scaling analysis predicts that E scales
linearly with �.

The difference between the upper or lower dot-dashed
line of Fig. 1(b) and the equilibrium state (the middle dot-
dashed line) can be treated as a small perturbation to the
equilibrium solution. The difference in � between the
unstable state and the state diverging toward the Hall and
Sweet-Parker solutions (the lower and upper dot-dashed
lines) are plotted as a function of time as the thick solid and
dashed lines in Fig. 3. The fact that the data fall nicely on a
straight line indicates that the system is in a linear regime
with one mode dominating the evolution and that the
eigenvalue is purely real. The slope of the line gives a
growth rate of �� 0:008 �ci (corresponding to a growth
time of � � 1=�� 125 ��1

ci ). For comparison, the Alfvén
wave transit time down the current sheet and the diffusive
time across the current sheet are �Tr � 30 ��1

ci . The dif-
fusive time along the sheet is �r � 6� 104 ��1

ci .
The physical structure of the most unstable eigenmode is

calculated by taking the difference of the relevant dynami-
cal variables (n, vi, and B) between the system diverging
toward the Hall solution and the equilibrium solution [the
lower and middle dot-dashed lines of Fig. 1(b), respec-
tively]. Figure 4 shows the eigenmodes of the derived
quantities Jz � �c=4��ẑ � r �B, the out of plane current
density, and !z � ẑ � r � vi, the out of plane component

of the ion vorticity, zoomed in around the X line at t �
2045:5 ��1

ci .
The eigenmodes are seen to initiate the transition from

the unstable to the Hall solution. Specifically, the Jz eigen-
mode is consistent with the opening out of the magnetic
field in the downstream region as the Petschek open out-
flow configuration is set up. Further, the !z eigenmode is
such that the ion inflow speed increases, thereby increasing
the reconnection rate as the transition to Hall reconnection
begins.

Both eigenmodes have their magnitudes peaked in a
localized region near the X line of the unstable equilibrium
configuration. The localization of the vorticity again re-
veals that the dissipation region is opening out into the
Petschek geometry. The !z structure is consistent with
vertical flow away from the neutral line about 15 di down-
stream of the X line. This flow serves to open the outflow
region.

Since the structure of the eigenmodes grows exponen-
tially with time in the linear growth phase, the first signal of
fast reconnection will occur locally near the X line where
the eigenmodes are peaked. This strongly supports the
hypothesis that the onset of Hall reconnection is initiated
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FIG. 3. Natural logarithm of the difference in � between the
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(growth rate) for the most unstable eigenmode to the unstable
equilibrium.
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FIG. 4 (color online). The structure of the (a) out of plane
current density Jz and (b) the out of plane ion vorticity !z of the
most unstable eigenmode of the unstable equilibrium.
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FIG. 2 (color online). Profile of the out of plane current density
Jz for the three steady-state magnetic reconnection solutions:
(a) Hall, (b) the unstable solution, (c) Sweet-Parker.
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at the X line due to local physics as opposed to being
initiated due to physics at the boundaries.

The local structure in Jz and !z has a length scale in the
outflow direction of about 10–15di, which is the same as
the intrinsic length scale of the ion dissipation region
during (fully nonlinear) Hall reconnection. In particular,
the structure of the ion vorticity eigenmode is quite similar
to the ion vorticity during fully nonlinear Hall reconnec-
tion. This suggests that the eigenmode of the unstable
equilibrium contains the salient physics which determines
the structure of the ion dissipation region during Hall
reconnection.

We emphasize that the microscopic (�10di) structure
seen in the eigenmode evolves from the unstable equilib-
rium which is mesoscopic, with structure on scales of
�30di. No numerical techniques are used to introduce
microscopic structure into the unstable equilibrium: the
microscopic structure is generated self-consistently.

The present results are consistent with the interpretation
of Hall reconnection being mediated by whistler physics
[30]. In this model, onset occurs when the dissipation
region becomes thinner than di. At this length scale, the
standing waves generating the outflow jets change from
Alfvén waves to whistler waves [30]. The electron outflow
speed associated with whistler waves increases, but only
close to the X line where the length scales are the smallest.
The increased electron outflow diverges transverse to the
outflow direction as shown in Fig. 4, opening up the out-
flow jet into the Petschek configuration characteristic of
fast reconnection [8].

The model presented here is limited by being only two-
dimensional with a constant and uniform resistivity and
temperature. Also, these simulations do not contain an
initial out of plane (guide) magnetic field. It was recently
shown [31] that reconnection with a strong guide field is
also bistable, so results similar to those presented here
should be obtainable for reconnection with a guide field.

Lastly, it should be emphasized that the collisionality of
the system is playing a key role in the present result. In a
purely collisionless plasma, the present result would only
be expected to carry over if there were an effective turbu-
lent resistivity which supported a Sweet-Parker type dis-
sipation region thicker then di.
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