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ABSTRACT

In weakly collisional and collisionless magnetized plasmas, the pressure–strain interaction describes the rate of conversion between bulk flow
and thermal energy density. In this study, we derive an analytical expression for the pressure–strain interaction in a coordinate system with
an axis aligned with the local magnetic field. The result is eight groups of terms corresponding to different physical mechanisms that can
contribute to the pressure–strain interaction. We provide a physical description of each term. The results are immediately of interest to
weakly collisional and collisionless magnetized plasmas and the fundamental processes that happen therein, including magnetic
reconnection, magnetized plasma turbulence, and collisionless shocks. The terms in the field-aligned coordinate decomposition are likely
accessible to measurement with satellite observations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0125252

I. INTRODUCTION
The pressure–strain interaction describes the rate of direct con-

version of energy between bulk flow and thermal (internal) energy
density in neutral fluids or plasmas.1 It is written as !ðP # $Þ # u (with
the minus sign), where P is the pressure tensor and u is the bulk flow
velocity. It was underutilized as a quantity of merit in plasma physics
until recently.2–5 Since then, it has been the subject of intense scrutiny,
primarily because it can be reliably measured using Magnetospheric
Multiscale (MMS) mission6 satellites. This has made the observational
study of energy conversion into thermal energy in systems out of local
thermodynamic equilibrium accessible.7–12 The pressure–strain inter-
action has also been studied in numerical simulations of magnetic
reconnection (including magnetotail dipolarization fronts) and mag-
netized plasma turbulence.2,5,13–23

This study is the second in a three-part series on the pressure–strain
interaction. In Ref. 24 (“Paper I”), it was shown that while the commonly
used decomposition of the pressure–strain interaction into the pressure
dilatation and the term known as Pi! D separates the compressible and
incompressible energy conversion,1 it does not separate the effects of
converging/diverging flow from flow shear. A different decomposition
was derived that does separate these effects. A kinetic description of the
terms making up the pressure–strain interaction was provided.

In this study, we present a decomposition of the pressure–strain
interaction in a coordinate system with an axis aligned with the local

magnetic field. The motivation is that the magnetic field often organ-
izes the dynamics in magnetized plasmas, and therefore, the magnetic
field-aligned coordinate system can give a more direct indication of
the physics at play (see also Ref. 25). The only other studies we are
aware of that organized pressure–strain interaction relative to the mag-
netic field was a decomposition of the deviatoric pressure into a
“gyrotropic” and “non-gyrotropic” part in MMS observations12 and
studies on energy conversion in a strongly magnetized plasma
(e.g., Refs. 26 and 27). The result of the present study is eight sets of
terms that can contribute to the pressure–strain interaction due to
compression/expansion and flow shear, with the additional result that
they can be caused either by a direct strain of the bulk flow relative to
the magnetic field or by a strain of the bulk flow caused by the geome-
try of the magnetic field. (We emphasize that the contribution to pres-
sure–strain interaction due to the geometry of the magnetic field does
not imply that the magnetic field itself is the direct cause of heating.2)
We discuss the physical causes of each mechanism, which should be
useful for interpreting measurements in simulations and satellite
observations. (In what follows, we refrain from referring to a contribu-
tion to the pressure–strain interaction as “heating” or “cooling”
because there are a number of effects beyond the pressure–strain inter-
action that can cause a change to the thermal energy density.) In Ref.
28 (“Paper III”), we display the terms making up the pressure–strain
interaction in both Cartesian and field-aligned coordinates for a
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particle-in-cell simulation of two-dimensional reconnection. We use
the results to identify the physical causes of the conversion of bulk
flow energy to thermal energy during the reconnection process.

The layout of this manuscript is as follows. A derivation of the
pressure–strain interaction in magnetic field-aligned coordinates is
provided in Sec. II. The physical explanation of each term is provided
in Sec. III. Section IV includes a discussion and conclusions.

II. THEORY
A. Pressure–strain interaction in magnetic field-aligned
coordinates

Consider a magnetized plasma with magnetic field B. If the mag-
netic field is straight everywhere, the coordinate system can be chosen
with a cardinal direction along the field, and the pressure–strain inter-
action can be decomposed in Cartesian coordinates as discussed in
Paper I.24 If the magnetic field is not straight everywhere, we employ a
local magnetic field-aligned orthonormal coordinate system, also used
in Ref. 25.

We define the unit vectors of the field-aligned coordinate system
as the parallel direction b̂, the curvature direction ĵ; and the binormal
direction n̂. (In differential geometry, these vectors are referred to as
the tangent t̂, normal n̂, and binormal b̂ directions, respectively; our
notation facilitates the identification of the magnetic field direction.)
The parallel unit vector b̂ ¼ B=B is along the local magnetic field,
where B ¼ jBj is the magnitude of B. The magnetic field curvature
vector j ¼ ðb̂ # $Þb̂ ¼ rjjb̂ is defined in the standard way,29 where

rjj ¼ b̂ # $ is the gradient in the parallel direction. The unit vector ĵ

in the direction of the curvature is defined as ĵ ¼ j=j, where j ¼ jjj
¼ 1=R, and R is the local radius of curvature of the magnetic field line.
As is known, b̂ # ĵ ¼ 0, which follows because 0 ¼ rjjðb̂ # b̂Þ
¼ 2b̂ #rjjb̂ ¼ 2b̂ # j. The right-handed coordinate system is com-

pleted by defining n̂ ¼ b̂ & ĵ, which is normal to both the magnetic
field and the curvature.

We now calculate the pressure–strain interaction !ðP # $Þ # u in
field-aligned coordinates. We let Greek indices a; b;… refer to the
b;j; n directions, and we let ea be the unit vector in the a direction.
The quantities in the pressure–strain interaction are written in terms
of their elements in field-aligned coordinates as P ¼ Pabeaeb;
$ ¼ eara, and u ¼ ebub. Then, the pressure–strain interaction (using
the Einstein summation convention) is

!ðP # $Þ # u ¼ ! ðPabeaebÞ # ðecrcÞ
! "

# ðedudÞ (1a)

¼ !PabðraubÞ ! Pabud eb # ðraedÞ
! "

; (1b)

since ea # eb ¼ dab, where dab is the Kronecker delta. The first term in
Eq. (1b) includes compression/expansion and shear in the standard
sense of being related to gradients of the bulk flow with respect to the
cardinal directions of the coordinate system, while the second term
represents what we call geometrical compression/expansion and geo-
metrical shear because they are caused by gradients of the bulk flow
due to the geometry of the magnetic field. We discuss each in turn in
what follows, grouping them into eight sets of terms we call !PSj
(with the minus sign) for j ¼ 1;…; 8.

For the first term !PabðraubÞ; a ¼ b and a 6¼ b are treated
separately. There are three terms with a ¼ b, given by

!PS1 ¼ !PjjðrjjujjÞ; (2)

where Pjj ¼ Pbb ¼ b̂ # P # b̂ ¼ Pklbkbl is the diagonal pressure element
in the parallel direction, k and l are indices in Cartesian coordinates
and ujj ¼ ub, and

!PS2 ¼ !PjjðrjujÞ ! PnnðrnunÞ: (3)

!PS1 describes compression/expansion in the parallel direction,
while !PS2 describes compression/expansion in the plane normal
to the parallel direction. For a 6¼ b, we collect two of the six terms
as

!PS3 ¼ !PjbðrjujjÞ ! PnbðrnujjÞ; (4)

and the other four are

!PS4 ¼ !PbjðrjjujÞ ! PbnðrjjunÞ ! PjnðrjunÞ ! PnjðrnujÞ:
(5)

!PS3 describes bulk flow velocity shear of the parallel flow in either
perpendicular direction;!PS4 describes bulk flow velocity shear of the
flow perpendicular to the field that varies in either the parallel (first
two terms) or perpendicular (last two terms) direction.

Finally, we need to simplify the geometric term in Eq. (1b), which
depends on directional derivatives of unit vectors eb # ðraedÞ and is
related to the Christoffel symbol in differential geometry. We first con-
sider parallel gradients of each of the unit vectors. These are given by
the Frenet–Serret formulas from differential geometry,25,30,31 which in
our notation are

rjjb̂ ¼ jĵ; (6a)

rjjĵ ¼ sn̂ ! jb̂; (6b)

rjjn̂ ¼ !sĵ; (6c)

where s ¼ !ĵ #rjjn̂ is the torsion, which is a measure of the degree
to which the magnetic field line is not confined to a plane. While j is
non-negative by definition, s can be positive, negative, or zero. The
first relation follows by definition of j. To get the form of the second,
one notes 0 ¼ rjjðĵ # ĵÞ ¼ 2ĵ #rjjĵ, so rjjĵ can only have compo-
nents in the b̂ and n̂ directions. The third then follows from writing
rjjn̂ ¼ rjjðb̂ & ĵÞ ¼ b̂ &rjjĵ and using Eq. (6b). Finally, taking
rjjĵ ¼ rjjðn̂ & b̂Þ and simplifying gives Eq. (6b). A key point is that
the local geometry of the magnetic field is determined fully from the
curvature j and the torsion s. Using the Frenet–Serret formulas pro-
vides all the directional derivatives in the parallel direction; the four
non-zero ones are

ĵ #rjjb̂ ¼ !b̂ #rjjĵ ¼ j; (7a)

n̂ #rjjĵ ¼ !ĵ #rjjn̂ ¼ s; (7b)

and the other five combinations all vanish.
We also need the directional derivatives in the direction of ĵ and

n̂. To find them, we define the path length along the magnetic field
line as s. Then, the coordinates of the magnetic field line can be param-
etrized by xðsÞ; yðsÞ; and z(s). The derivative of any function f(s) of s
in an arbitrary Cartesian direction is given by the chain rule as
@f ðsÞ=@rj ¼ ð@s=@rjÞðdf =dsÞ. This allows us to calculate the direc-
tional derivatives of f(s) as
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rjj f ðsÞ ¼ b̂ # $f ðsÞ ¼ df ðsÞ
ds

; (8a)

rjf ðsÞ ¼ ĵ # $f ðsÞ ¼ ðĵ # $sÞ df ðsÞ
ds

; (8b)

rnf ðsÞ ¼ n̂ # $f ðsÞ ¼ ðn̂ # $sÞ df ðsÞ
ds

: (8c)

Each is proportional to df ðsÞ=ds, and its coefficient is purely geometri-
cal depending on the trajectory of the magnetic field line. Defining the
vector W with components Wb ¼ b̂ # $s ¼ 1; Wj ¼ ĵ # $s, and
Wn ¼ n̂ # $s, we find the gradients in the curvature and binormal
directions as

rj ¼Wjrjj; (9a)

rn ¼Wnrjj: (9b)

Using these results and the parallel derivatives given in Eqs. (7a) and
(7b), all of the remaining directional derivatives ½eb # ðraedÞ( can
be calculated in terms of the curvature j and torsion s; for
example, ĵ #rjb̂ ¼ ĵ #Wjrjjb̂ ¼Wjj and ĵ #rnn̂ ¼ ĵ #Wnrjjn̂
¼ !Wns. Continuing in this manner for all the directional derivatives
in the geometrical term in Eq. (1b), we group terms with like factors of
the components of u and the geometrical factors j or s to give

!PS5 ¼ uj Pjj þ PjbWj þ PnbWnð Þj ¼ ujPbaWaj; (10a)

!PS6 ¼ !uj Pbn þ PjnWj þ PnnWnð Þs ¼ !ujPnaWas; (10b)

!PS7 ¼ !ujj Pbj þ PjjWj þ PjnWnð Þj ¼ !ujjPjaWaj; (10c)

!PS8 ¼ un Pbj þ PjjWj þ PnjWnð Þs ¼ unPjaWas; (10d)

where we consolidated terms using the vector W ¼ eaðea # $Þs
¼ ðb̂b̂ þ ĵĵ þ n̂n̂Þ # $s. We note that each of these terms depend on
both diagonal and off diagonal pressure tensor elements. We show in
Sec. III that the terms proportional to uj (!PS5 and !PS6) represent
geometrical compression/expansion, while the terms proportional to
ujj and un (!PS7 and !PS8) represent geometrical shear. We empha-
size that the dependence on bulk velocity without a spatial derivative
in these expressions does not imply a velocity gradient is not needed
to have a non-zero pressure–strain interaction; rather, these terms
contribute to the pressure–strain interaction because of the geometry
of the magnetic field.

B. Example of torsion for a helical magnetic field
In preparation for explaining the physical manifestation of

each term in the pressure–strain interaction, we present a simple
example displaying the physical meaning of the torsion s. Consider
a circular helical magnetic field BH given in Cartesian coordinates
by

BH ¼ !B0
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p x̂ þ B0

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ŷ þ Bg ẑ; (11)

where B0 * 0 is the magnitude of the in-plane magnetic field (which
is uniform in this case) and Bg is the magnitude of the constant and
uniform out-of-plane magnetic field. Then, B ¼ jBH j ¼ ðB2

0 þ B2
gÞ

1=2

and straight-forward calculations reveal the unit vectors are

b̂ ¼ !b0
yx̂ ! xŷffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p þ bg ẑ; (12a)

ĵ ¼ !xx̂ ! yŷffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ; (12b)

n̂ ¼ bg
yx̂ ! xŷffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p þ b0ẑ; (12c)

where b0 ¼ B0=B and bg ¼ Bg=B. We note for future reference that
the direction of the curvature is in the xy plane (radially in, !r̂) for
this magnetic field, but the parallel and binormal directions have both
an in-plane (azimuthal ĥ) and out-of-plane (ẑ) component.

A brief derivation reveals that the curvature and torsion for
this magnetic field are j ¼ b20=r? and s ¼ b0bg=r?, where r?
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the perpendicular distance from the z axis. This exem-

plifies that s is positive for a right-handed helix (Bg > 0) and negative
for a left-handed helix (Bg < 0). If Bg¼ 0, then s¼ 0, and the mag-
netic field lines are confined to planes. For this particular magnetic
field, the torsion is proportional to the current helicity density through
B # J ¼ ðcB2=4pÞs (in cgs units), where J ¼ ðc=4pÞ$& B is the cur-
rent density, but this simple relation does not hold for general mag-
netic field profiles.

III. PHYSICAL PICTURE OF THE PRESSURE–STRAIN
INTERACTION IN FIELD-ALIGNED COORDINATES

We now turn to the physical description of the contributions to
the pressure–strain interaction in field-aligned coordinates. The analy-
sis from Sec. IIA showed that there are eight groups of terms. Sketches
of representative examples of the general terms are given for each in
Fig. 1. In each case, the magnetic field B is sketched using black
arrows, while the bulk flow u is represented by red arrows. The curva-
ture and binormal directions are depicted in green and blue, respec-
tively. We treat each term in turn. The fluid description of the
Cartesian analog of the terms that arise in the absence of a heat flux
was treated in Refs. 2 and 5. We emphasize the kinetic description of
each term, which complements the fluid description and makes no
assumptions about the presence or absence of a heat flux. In so doing,
when describing compression/expansion, we phrase it in terms of
compression, and analogous arguments can be used to describe expan-
sion. We stress that the sketches are intended to give the simplest
examples of the terms to illustrate the fundamental mechanism, while
not intending to represent the general case.

A. Parallel flow compression/expansion:
2PS152Pjjð$jjujjÞ

For !PS1 ¼ !PjjðrjjujjÞ, the term describes compression due to
a converging flow in the magnetic field direction b̂. A converging flow
(rjjujj < 0) is associated with a positive contribution to the pressure–
strain interaction, while a diverging flow (rjjujj > 0) is associated
with a negative contribution. It is largely as expected from a fluid treat-
ment, but the departure is that the term only depends on the parallel
pressure Pjj. This is sketched in Fig. 1(a), showing it for a straight mag-
netic field line and oppositely directed converging flows. However, this
mechanism operates even for curved magnetic field lines provided
there are converging/diverging flows in the parallel direction. In addi-
tion, converging/diverging flows can occur without a change of direc-
tion of the flow.

Kinetically, this term describes a fluid or plasma with an arbitrary
phase space density, but only the parallel diagonal pressure element of
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its pressure contributes. The mechanism is analogous to parallel com-
pressional heating in a Cartesian coordinate system, as displayed in
Fig. 1(a) of Paper I.24 Briefly, the phase space density at a point where
there is converging flow elongates in the parallel direction, which is
the kinetic manifestation of heating, due to the offset of the nearby dis-
tributions from the bulk flow at the point of interest.

B. Perpendicular flow compression/expansion:
2PS252Pjjð$jujÞ2Pnnð$nunÞ

For !PS2 ¼ !PjjðrjujÞ ! PnnðrnunÞ, the two terms describe
compression of the bulk flow in the plane perpendicular to the mag-
netic field. This again is as expected from a fluid treatment, but again
shows that only the diagonal component of the pressure tensor parallel

FIG. 1. Representative sketches of the
eight sets of terms in the decomposition of
the pressure–strain interaction in field-
aligned coordinates. Black arrows repre-
sent the magnetic field B. Green and blue
arrows denote the curvature and binormal
directions, respectively. Red arrows denote
the bulk flow u. The eight sketches repre-
sent (a) parallel flow compression !PS1,
(b) perpendicular flow compression !PS2,
(c) shear of parallel flow in the perpendicu-
lar direction !PS3, (d) shear of perpendic-
ular flow in the perpendicular and/or
parallel directions !PS4, (e) perpendicular
geometrical compression !PS5, (f) tor-
sional geometrical compression !PS6, (g)
parallel geometrical shear !PS7, and (h)
torsional geometrical shear !PS8.
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to the converging flow contributes. This is sketched in Fig. 1(b), show-
ing it for a straight magnetic field line. This effect also occurs regard-
less of the shape of the magnetic field line, provided there are
converging flows across it. The flows need not go to zero at the field
line; they only need to converge or diverge. This mechanism is analo-
gous to perpendicular compressional heating in a Cartesian coordinate
system, for which the kinetic interpretation was displayed in Fig. 1(b)
of Paper I.24 As with parallel compression (!PS1), diagonal elements
of P are non-negative, so compression necessarily has a positive con-
tribution to the pressure–strain interaction, and expansion necessarily
has a negative contribution.

C. Parallel flow shear in the perpendicular direction:
2PS352Pbjð$jujjÞ2Pbnð$nujjÞ

For !PS3 ¼ !PbjðrjujjÞ ! PbnðrnujjÞ, these terms describe a
parallel flow that varies in the plane normal to the magnetic field. A
sketch exemplifying this term is given in Fig. 1(c). This mechanism
does not require a curved magnetic field and depends on flow gra-
dients, so it describes a bulk flow shear similar to expectations from a
fluid picture. The key kinetic aspect is that this mechanism is non-
zero only if there is a non-zero off diagonal pressure tensor ele-
ment in the direction of the magnetic field. Kinetically, this effect
is analogous to flow shear in a Cartesian coordinate system, as dis-
played in Fig. 2 of Paper I,24 i.e., it is associated with collisionless
viscosity, so it can be positive or negative and is, in principle,
reversible. This figure explains why the necessary off diagonal pres-
sure tensor elements need a component along the magnetic field.
In a weakly collisional or collisionless plasma, the off diagonal
pressure tensor elements can be positive or negative, which deter-
mines whether a given flow profile has a positive or negative con-
tribution to the pressure–strain interaction.

D. Perpendicular flow shear:
2PS452Pbjð$jjujÞ2Pbnð$jjunÞ2Pjnð$jun1$nujÞ

For !PS4 ¼ !PbjðrjjujÞ ! PbnðrjjunÞ ! Pjnðrjun þrnujÞ,
the mechanisms are of two related varieties. They are similar to the
heating mechanism in Subsection III C in that they do not rely on any
curvature of the magnetic field, and as with!PS3, they require a shear
in the bulk flow velocity. The first two terms describe a bulk flow in
the plane perpendicular to the magnetic field that varies in the parallel
direction. A representative sketch is given in the top of Fig. 1(d). The
second two terms describe a flow perpendicular to the magnetic field
that varies in the orthogonal perpendicular direction, as sketched in
Fig. 1(d) at the bottom.

As with !PS3, these terms correspond to the kinetic notion of
collisionless viscosity, requiring off diagonal pressure tensor elements.
In each case, the off diagonal pressure tensor element must have a
component in the direction of the gradient of the flow. As with !PS3,
whether a given term leads to a positive or negative contribution to the
pressure–strain interaction depends on the flow shear and the sign of
the off diagonal pressure tensor element in question. Kinetically, the
heating mechanism is analogous to the Cartesian coordinate system
result displayed in Fig. 2 of Paper I,24 which explains why the particu-
lar off diagonal pressure tensor elements in the expressions are needed
for this term to be non-zero.

E. Perpendicular geometrical compression/expansion:
2PS5 5 ujPbaWaj

For !PS5 ¼ ujPbaWaj, the contribution to the pressure–strain
interaction requires a curved magnetic field (planar or not) and takes
place in the plane of the curvature and the magnetic field. The bulk
flow is in the direction of the curvature, which is perpendicular to the
magnetic field lines. A simple example is shown in Fig. 1(e), with a
positive uj that need not vary as one traverses along the magnetic field.
This mechanism is a form of geometrical compression, which results
from the red arrows denoting the flow converging in the direction of
the curvature, which is the cause of compression in the fluid sense.
Unlike the four terms discussed in Secs. IIIA-IIID, this mechanism
does not require a gradient in the bulk velocity component in field-
aligned coordinates; instead, the flow shear arises due to the curvature
of the magnetic field.

There is an important aspect of this mechanism: it requires at
least one of the pressure tensor elements in the b̂ direction to be non-
zero since it is proportional to Pba. The reason for this is that if the
plasma were perfectly cold in the b̂ direction, then all motion would
be perpendicular to the magnetic field, so it would be in the direction
of the flow. This would not cause any mixing in the direction normal
to the flow, so there is no contribution to the pressure–strain interac-
tion for such flow. If there is random particle motion in the b̂ direc-
tion, mixing can occur that spreads the phase space density in the b̂
direction, which is therefore associated with a non-zero contribution
to the pressure–strain interaction. More specifically, particles with pos-
itive or negative vjj and positive vj on the outer magnetic field line
move inward to the middle field line in time, providing a population
with non-zero vjj and vj > 0. Particles on the inner magnetic field line
with non-zero vjj and negative vj move outward to the middle field
line, providing a population with non-zero vjj and vj < 0. This
changes the spread in the distribution at the middle field line, which is
the kinetic manifestation of a change to the thermal energy. This
mechanism for geometrical compression can lead to a positive or neg-
ative contribution to the pressure–strain interaction depending on the
phase space density of the plasma, in contrast to bulk flow compres-
sion !PS1 or !PS2 that necessarily makes a positive contribution to
the pressure–strain interaction.

F. Torsional geometrical compression:
2PS652ujPnaWas

For !PS6 ¼ !ujPnaWas, the mechanism is related to perpen-
dicular geometrical compression discussed in Sec. III E, but it requires
a non-planar magnetic field, i.e., a magnetic field with a non-zero tor-
sion. The key is that in the absence of torsion, having a bulk flow in
the curvature direction uj means that the flow converges in the plane
of the curvature and magnetic field, as shown in Fig. 1(e) for !PS5.
Thus, all the plasma that is converging comes from the same plane
initially.

As an example of this mechanism in a magnetic field that has
non-zero torsion, consider the simple case of a helical right-
handed torsional magnetic field of the type discussed in Sec. II B.
The oblique view in Fig. 1(f) shows the magnetic field twisting
out of the plane, with the dashed line representing the xy plane
that contains the curvature vector j. If the flow in the j direction
is converging, the particles in the xy plane that end up in the
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region of converging flow originate from regions of the magnetic
field that are separated in the binormal n̂ direction. If the plasma
is perfectly cold in the n̂ direction, the phase space density in the
region of converging flow does not broaden and, thus, there is no
contribution to the pressure–strain interaction due to shear
[although there can be a contribution due to the b̂ direction from
!PS5, as sketched in Fig. 1(e)]. If, however, there are any particles
with random velocity in the n̂ direction, there is mixing in
that direction and a compressional effect gives a non-zero contri-
bution to the pressure–strain interaction. This mechanism is
purely due to the geometry of the magnetic field, so we call it
torsional geometrical compression. This term is not positive defi-
nite as with the other geometrical terms, so it can be associated
with positive or negative contributions to the pressure–strain
interaction.

G. Parallel geometrical shear: 2PS7 5 2 ujjPjaWaj

For !PS7 ¼ !ujjPjaWaj, the mechanism requires a magnetic
field line with curvature (planar or not) when there is a bulk flow with
a component parallel or anti-parallel to the magnetic field. An example
of this for a circular magnetic field line with ujj > 0 is sketched in Fig.
1(g). In the fluid sense, this mechanism leads to shear because the
inner field lines are shorter than the outer field lines, so a flow profile
with uniform ujj implies that there is a shear due to the plasma travers-
ing the shorter curved field line further in azimuthal angle than along
the longer field lines.

To understand this mechanism in kinetic theory, first suppose
none of the particles have any velocity component in the ĵ direction,
i.e., the plasma is perfectly cold in the ĵ direction. This implies that all
the motion of the particles is confined to the magnetic surfaces. In this
case, in the next small increment in time, the particles remain confined
to the magnetic surfaces. Therefore, there is no mixing of particles
between different magnetic surfaces, and there is no contribution to
pressure–strain interaction. This is why !PS7 is proportional to Pja,
i.e., why randommotion in the ĵ direction is necessary for this mecha-
nism to occur.

Now consider a phase space density such that there is a non-zero
Pjj, which means that particles have some random motion in the
direction perpendicular to the magnetic surfaces. Consider the time
evolution of a phase space density at the middle of the three magnetic
field lines in Fig. 1(g). As the particles go around the curve in the mag-
netic field lines, particles with positive velocity vj on the inner field
line in Fig. 1(g) move outward in the next increment in time, showing
up as a positive vj population at the middle field line. Similarly, par-
ticles with negative vj on the outer field line move inward, showing up
as a negative vj population at the middle field line. This broadens the
phase space density at the middle field line in the ĵ direction, which is
associated with an increase in thermal energy in the kinetic sense. This
is an effective shear due to the geometry of the magnetic field, so we
refer to it as parallel geometric shear. We note as an application that
this mechanism is important for a plasma in a magnetic mirror
configuration.

There are analogous mechanisms for distributions with non-zero
Pbj and Pjn. Since these off diagonal pressure tensor elements can be
positive or negative, shear due to field line geometry can contribute to
a positive or negative contribution to the pressure–strain interaction.

H. Torsional geometrical shear: 2PS8 5 unPjaWas

For !PS8 ¼ unPjaWas, the mechanism relies on the magnetic
field having torsion, but the flow is in the binormal direction. We
again appeal to the simple example of the right-handed circular helical
field discussed in Sec. II B. To isolate the effect of the torsion, we con-
sider a flow with uniform un. (If it were not uniform, there would be a
perpendicular flow shear as in !PS4 in addition to the geometrical
shear.) A sketch of this is in Fig. 1(h). It was pointed out in Sec. II B
that the binormal direction n̂ has components both in the axial ẑ and
azimuthal ĥ directions. This can be seen from the red arrows in the
sketch. The component of the bulk flow in the ẑ direction does not
introduce shear because un is the same on all magnetic field lines in
this configuration. Thus, the axial part is not associated with a contri-
bution to the pressure–strain interaction.

However, the component in the ĥ direction describes the flow in
the azimuthal direction. As with !PS7, the geometry of the curved
magnetic field lines imposes that there is a shear effect on the plasma
because fluid elements with the same uh on different magnetic surfaces
traverse the circular cross-section of the magnetic surface more rapidly
for smaller magnetic surfaces than larger magnetic surfaces. If the
phase space densities are perfectly cold in the ĵ direction, then all par-
ticles are confined to the magnetic surfaces, and therefore, there is no
mixing and no contribution to the pressure–strain interaction. If, how-
ever, there are particles with a random vj, particles on different mag-
netic surfaces mix according to a flow shear-like mechanism in the
kinetic description, so there is a change to the thermal energy density.
This is why !PS8 is proportional to Pja. We refer to this as torsional
geometrical shear. It can be positive or negative depending on the tor-
sion, pressure tensor elements, and the flow direction.

IV. DISCUSSION AND CONCLUSIONS
In this study, we derive an expression for the pressure–strain

interaction, the term describing the rate of conversion of energy
between bulk flow and thermal energy density, in magnetic field-
aligned coordinates for use in magnetized plasmas. As expected, there
are contributions related to compression/expansion and bulk flow
shear. However, in field-aligned coordinates, each effect has contribu-
tions directly from the spatial dependence of the bulk velocity itself as
well as contributions from velocity shear caused by the geometry
imposed by the path of the magnetic field line. It is important to stress
that the magnetic field itself andmagnetic forces do not cause the pres-
sure–strain interaction to be non-zero,2 it is simply the flow pattern
relative to the magnetic fields that contribute. The geometric compres-
sion/expansion and geometric shear are parametrized in terms of the
magnetic field curvature j and torsion s. The former is well-known in
plasma physics; the latter is borrowed from differential geometry and
is much less employed in plasma physics,25 and describes the extent to
which the local magnetic field deviates from lying in a plane.

We provide a picture of the physical effects contributing to the
pressure–strain interaction using the kinetic theory description for
each of the sets of terms!PS1 through!PS8 that arise from the analy-
sis. The fluid description for plasmas in the absence of a heat flux was
previously provided.2,5 We emphasize that the two descriptions com-
plement each other and must agree with each other when the same
approximations are made in both pictures. The kinetic approach dis-
cussed here makes no assumptions about the presence of a heat flux.
The physical mechanism of the parallel and perpendicular
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compression/expansion !PS1 and !PS2 and the shear in the bulk
flow !PS3;!PS4;a, and !PS4;b are analogous to compression/
expansion and bulk velocity shear in Cartesian coordinates.5,24 In
the kinetic description, the physical mechanism for geometric
compression and geometric shear is random motion in the direc-
tion perpendicular to the flow in !PS5 through !PS8, which causes
mixing of particles that gives rise to a pressure–strain interaction
contribution.

We expect these results, especially the simple sketches of the
physical contributions to pressure–strain interaction in Fig. 1, will be
useful in studying energy conversion in weakly collisional and colli-
sionless magnetized plasmas. Physical systems where the pressure–
strain interaction has been used to study energy conversion, and where
the present results may be useful, include plasma turbulence and mag-
netic reconnection. We expect it to also be useful for the study of colli-
sionless shocks. The quantities derived here can be readily calculated
in kinetic simulations (particle-in-cell and Vlasov/Boltzmann in par-
ticular) of these phenomena. Moreover, recent observational stud-
ies32–36 using the MMS satellites have directly measured the magnetic
field curvature j, so this quantity of importance for the present study
is accessible to measurement. We are unaware of any calculations of
the magnetic field line torsion s using satellite data, but it is a simple
extension of calculating the magnetic field and curvature directions, so
it should be able to be calculated.

We make three important points about the present results. First,
the pressure–strain interaction!ðP # $Þ # u is a scalar quantity, mean-
ing it is invariant in different coordinate systems. Thus, whether the
pressure–strain interaction is calculated in Cartesian coordinates
(Paper I)24 or field-aligned coordinates, it remains the same. However,
there is mixing between compression/expansion and flow shear when
changing coordinate systems. Second, the results here rigorously pro-
vide the pressure–strain interaction contributions in field-aligned
coordinates for applications to magnetized plasmas. However, we
stress there are settings in magnetized plasmas where particles become
demagnetized, and the direction of the magnetic field no longer organ-
izes the dynamics.37–39 Thus, caution is necessary to not assume the
magnetic field direction is necessarily the direction that best organizes
a general pressure tensor. Finally, the decomposition in field-aligned
coordinates presented here does not use any properties of the magnetic
field itself. Thus, if an application arises for which there is a different
preferred direction other than the magnetic field, the analysis pre-
sented here remains valid with b̂ simply becoming the preferred direc-
tion. This underscores the key point that the magnetic field and
magnetic forces themselves do not give rise to the pressure–strain
interaction, it is only the bulk flow gradients relative to the geometry
setup by the magnetic field that gives rise to the pressure–strain
interaction.

In Paper III,28 we use the results obtained here and in Paper I24

to analyze the mechanisms by which the pressure–strain interaction
describes the conversion of bulk flow energy density to thermal energy
density during magnetic reconnection using two-dimensional particle-
in-cell simulations. For future work, it would be interesting to employ
the decomposition of the pressure–strain interaction discussed here in
observational data, especially using the MMS satellites. Applications of
the results to plasma turbulence and collisionless shocks, as well as
other manifestations of reconnection including three-dimensional sys-
tems, would also be very interesting.
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