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ABSTRACT

A Study of Magnetic Reconnection:
From 2D Energy Release to

3D Spreading and Localization

Lucas Seth Shepherd

Magnetic reconnection is a plasma process in which stored magnetic energy is
converted into thermal and kinetic energies of the surrounding plasma. Oppositely
directed magnetic field lines break and cross connect due to a dissipative mecha-
nism. The now bent, reconnected field lines retreat from the X-line (the location of
reconnection) at the Alfven speed due to the magnetic tension in the reconnected
magnetic field, therefore generating outflows. This dissertation addresses three fun-
damental properties of magnetic reconnection.

Solar flares are explosive events in the solar corona in which magnetic recon-
nection mediates the rapid release (on the order of minutes) of energy stored in
magnetic fields into the surrounding plasma. The Sweet-Parker (collisional) model
was the first self-consistent theory to explain magnetic reconnection, but is far too
slow to explain observations. The formation of secondary islands make Sweet-Parker
reconnection faster, but is it fast enough to explain energy release rates? Colli-
sionless (Hall) reconnection leads to energy release rates fast enough to explain
observations. Large-scale resistive Hall-Magnetohydrodynamics simulations of the
transition from Sweet-Parker to Hall reconnection are presented; the first to sepa-
rate secondary islands from collisionless e↵ects. Three main results are described.
There exists a regime with secondary islands but without collisionless e↵ects enter-
ing, and the reconnection rate is faster than Sweet-Parker, but significantly slower
than Hall reconnection. This implies that secondary islands do not cause the fastest
reconnection rates. The onset of Hall reconnection ejects secondary islands from
the vicinity of the X-line, implying that energy is released more rapidly during Hall
reconnection.

Early models of magnetic reconnection have treated reconnection as two-
dimensional. However, naturally occurring magnetic reconnection often begins in a
localized region and spreads in the direction perpendicular to the plane of recon-
nection. Theoretical arguments and large-scale two fluid simulations are used to
study the spreading of reconnection X-lines localized in the direction of the current
as a function of the strength of the out-of-plane (guide) magnetic field. It is found
that the mechanism causing the spreading is di↵erent for weak and strong guide
fields. In the weak guide field limit, spreading is due to the motion of the current
carriers. However, spreading for strong guide fields is bidirectional and is due to



the excitation of Alfvén waves along the guide field. In general, we suggest that the
X-line spreads bidirectionally with a speed governed by the faster of the two mech-
anisms for each direction. A prediction of the strength of the guide field at which
the spreading mechanism changes is formulated and verified with three-dimensional
simulations.

In the solar wind, magnetic reconnection exhausts measuring 600 [Gosling
et al. (2007)] and 390 [Phan et al. (2006)] Earth radii in length have been observed.
The authors assumed that the extended exhaust was caused by an extended X-line.
If this is the case, what mechanism is responsible for these large scale structures? It
has been suggested these structures are formed by a small X-line forming near the
sun and spreading as the X-line convects away from the sun. Another possibility
is the X-line is localized in a small region and the exhaust expands into the out-
of-plane direction. Theoretical arguments and large-scale simulations are used to
study localized (not spreading) magnetic reconnection, and its three-dimensional
structure. Localized reconnection may also be vital to the formation of supra-
arcade downflows (SADs) in the corona. Both solar wind and coronal applications
are discussed.
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Chapter 1

Introduction

1.1 Magnetic Reconnection: A Brief History

Solar flares are large explosive events that release a huge amount of radiation

and solar material into interplanetary space that were first observed by Carrington

and Hodgson in 1859 [Carrington (1859); Hodgson (1859)]. A solar flare is shown

in Fig. 1.1(a) in the ultraviolet light range and corresponds to a temperature of 1.5

million Kelvin (195 Å). The flare is located just above the center of the image as

the very bright spot. Solar flares release a large amount of energetic particles into

interplanetary space. This can be seen in Fig. 1.1(b) as the “snow” that appears

in the images, which is caused by energetic particles impacting the observation

tool. Solar flares within a time scale on the order of a few minutes to a few hours,

and release up to 1032 ergs of energy. What accounts for this rapid energy release?

Because the dynamics in the solar corona are controlled by magnetic fields, a possible

mechanism is magnetic di↵usion given by

@B

@t
⇠ ⌘c2

4⇡
r2B, (1.1)

which comes from electron-ion collisions as described by the induction equation,

which is discussed in Sec. 1.2. Equation 1.1 states the rate of change of the magnetic

1
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Figure 1.1: a.) Image of solar flare taken on July 14, 2000, known as the Bastille
Day Flare. The very bright spot in the center of the image is the location of flare and
is caused by energization of particles. b.) Image of the solar corona (with the main
body of the sun blocked out). A stream of energetic particles hits the coronagraph
quickly after the flare. The snow in the image is energetic particles impacting the
coronagraph. Image Credit: NASA/SOHO

field (B) is equal to the di↵usion of magnetic fields due to resistivity (⌘). A scaling

analysis (r ! 1/L and @/@t ! 1/tD) of Eq.1.1 reveals the time it takes for a

coronal loop of size L to di↵use away due to resistivity is tD ⇠ 4⇡L2/⌘c2. The

radius of coronal flux ropes are on the order L ⇠ 109 cm and assuming a resistivity

of ⌘ ⇠ 1⇥ 10�16 s, yields a time scale roughly tD ⇠ 1.4⇥ 1014 s or about 4 million

years! It is quite evident that magnetic di↵usion is not the mechanism responsible

for energy release in solar flares.

A more likely mechanism is magnetic reconnection. Magnetic reconnection is a

plasma process which converts stored magnetic energy into thermal and kinetic en-

ergies of the surrounding plasma. Reconnection was first described by graduate stu-

dent James Dungey. Dungey found magnetic field lines that are anti-parallel would

break and cross connect due to a di↵usive mechanism (e.g., resistivity) [Dungey

2
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Figure 1.2: A simple sketch of magnetic reconnection. Oppositely directed magnetic
fields in red and blue are convected towards each other by vy and proceed to break
and reconnect, which generates outflows vx. The oppositely directed magnetic fields
generate an out-of-page current Jz.

(1953, 1958)]. A thin current sheet forms between the regions of oppositely directed

field lines. A general sketch of the reconnection process can be seen in Fig. 1.2.

Peter Sweet presented the first self-consistent model of magnetic reconnection

[Sweet (1958)]. Sweet modeled a solar flare as two regions of bipolar magnetic field

that come together. In this process, two regions of oppositely directed magnetic field

lines are driven together and magnetic reconnection occurs where magnetic energy is

released and is converted into plasma flows towards the end of the current sheet. A

scaling analysis performed by Eugene Parker of Sweet’s reconnection model [Parker

(1957)] using resistive magnetohydrodynamics predicted a sizeable energy release

time of about t ⇠ 107 s or about 4 months. This energy release process is much

faster than di↵usion, but still not fast enough to account for energy release times

on the order of minutes.

3
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Figure 1.3: A sketch of Petschek magnetic reconnection. Oppositely directed mag-
netic fields in red and blue are convected towards each other by vy and proceed
to break and reconnect at the X-point. The current sheet is much shorter than
Sweet-Parker and opens up into a X-type configuration.

The Sweet-Parker model does not solve the problem of very fast energy release

rates. A modification of the Sweet-Parker model involved replacing the long, thin

current sheet with a much smaller, thin current sheet [Petschek (1964)], as seen in

Fig. 1.3. The energy release times are fast enough because the current layer has an

open (X-type) configuration, where only a small amount of the plasma is required

to pass through the much smaller current sheet. The energy release is mediated by

standing slow shocks that are created by bent field lines. It was believed that the

energy release problem had a proper solution, but Biskamp (1986) discovered that a

smaller, thin current sheet cannot maintain an open configuration without a spatially

non-uniform resistivity[Biskamp (1986)], also known as anomalous resistivity.

The X-type configuration allows for energy release times consistent with the

observations of solar flare release times. The question remains, what mechanism is

4



responsible for the X-type configuration? Let us consider non-MHD e↵ects. It was

found that when the Hall term is activated the X-type reconnection layer is realized

with energy release rates that are fast enough, as shown by the GEM Challenge [Birn

et al. (2001)]! Instead of augmenting the local resistivity, the Hall e↵ect employs

dispersive waves that create the open X-type geometry [Mandt et al. (1994); Rogers

et al. (2001)], and is entirely self-consistent. It should be noted that the idea that

dispersive waves cause the open X-type geometry is not universally accepted. For

example, it has been proposed that the X-type geometry is created by secondary

islands continously generated in the current sheet which maintains a small length-

scale current sheet [Daughton et al. (2006)].

1.2 Magnetic Reconnection Physics in Four Regimes

Much can be learned about reconnection using the magnetohydrodynamics

(MHD) model. The governing equations for ideal-MHD are as follows. Faraday’s

law is given by

@B

@t
= �cr⇥E. (1.2)

The continuity equation, which describes mass conservation, is

@n

@t
+r · (nv) = 0. (1.3)

5



The momentum equation of the bulk of the plasma is described by

min

✓
@v

@t
+ (v · r)v

◆
= �rP +

J ⇥B

c
. (1.4)

Only the ion mass is considered because the bulk of the mass is held by the ions.

Ampere’s Law is

r⇥B =
4⇡

c
J . (1.5)

Ohm’s Law is

E +
v ⇥B

c
= 0. (1.6)

Adding or removing terms from Ohm’s Law (e.g., resistivity and the Hall term)

alters the reconnection dramatically, as we will demonstrate later. Gauss’ Law of

magnetism is

r · B = 0. (1.7)

In the previous equations, B is the magnetic field, c is the speed of light, E is the

electric field, n is the plasma density, v is the plasma bulk flow velocity, mi is the

ion mass, P is the pressure, and J is the current density.

With the six equations from ideal-MHD, we can derive general scaling laws

for magnetic reconnection outside of the current layer. Inside the current layer,

the ideal-MHD model breaks down, so additional terms in Ohm’s law are needed to

describe reconnection, as is discussed in Sections 1.2.1 and 1.2.3. For this exercise, we

assume the plasma is incompressible (meaning the density n does not change in the

frame of the plasma), and the system is in the steady state (meaning @/@t terms are

6



equal to zero). We define � to be the characteristic half-width of the reconnection

current sheet, and L as the characteristic half-length of the current sheet. The

reconnection inflow velocities and outflow velocities are given as vy (� direction)

and vx (L direction), respectively. We should note, the following scaling arguments

are only valid for 2D magnetic reconnection. Three-dimensional reconnection will

be discussed in Chapters 3 and 4.

Consider the continuity equation (Eq. 1.3) in the steady state which gives

r · v = 0. A scaling analysis yields vx/L ⇠ vy/�, or

vy ⇠ vx

�

L
. (1.8)

This equation gives us the scaling of the inflow velocity in terms of the parameters of

the system. We perform a similar scaling analysis on Eq. 1.7, yielding Bx/L ⇠ By/�

or

By ⇠ Bx

�

L
. (1.9)

From the right-hand side of the momentum equation, Eq. 1.5 can be substituted

into the (J ⇥B)/c term can be re-written as

J ⇥B =
c

4⇡


�rB2

2
+ (B · r)B

�
, (1.10)

where rB2/2 is the magnetic pressure and (B · r)B is the tension (or curvature)

force of the magnetic field. Plasma flows in the outflow are generated by the retreat

of bent, reconnected magnetic fields from the X-line. If we balance the convection

7



of the outflow (⇠ (v · r)vx) with magnetic curvature we find that minv2
x
/L =

ByBx/4⇡�. Using equations 1.8 and 1.9, we find

vx ⇠ CAx, (1.11)

where CAx = Bx/(4⇡min)1/2 is the Alfvén speed due to the reconnecting (Bx)

magnetic field. Therefore, the plasma outflows due to magnetic reconnection are on

the order of the Alfvén speed due to the reconnecting magnetic field Bx, which is

expected if magnetic fields are controlling the dynamics.

Magnetic reconnection is often described in terms of its “reconnection rate”,

which is a measure of the amount of magnetic flux that is reconnected per unit

time. In 2D, Faraday’s law (Eq. 1.2) requires that the electric field be uniform in

the steady state. The reconnection rate is proportional to the out-of-plane electric

field Ez, which is shown by manipulating the integral form of Faraday’s Law,

d�

dt
= �c

I

C

E · dl = �cEzLZ , (1.12)

where � is the magnetic flux through the xz plane that passes through the X-line

(the location of reconnection) and extends to infinity, Ez is the out-of-plane electric

field driving the out-of-plane current Jz, and LZ length in the out-of-plane direction.

Upstream of the dissipation layer the electric field is given by Eq. 1.6, where ideal-

8



MHD is valid. A scaling analysis reveals

Ez ⇠
vyBx

c
=

vinBx

c
. (1.13)

Therefore, vin is a measure of the reconnection rate. Generally the reconnection

rate E 0 is presented as a unitless quantity. This is achieved by normalizing Ez with

the upstream magnetic field strength Bx and the outflow speed vout = vx = CAx,

therefore

E 0 =
cEz

voutBx

⇠ vin

vout

⇠ �

L
. (1.14)

1.2.1 Sweet-Parker Reconnection

We have developed general scaling laws for 2D steady magnetic reconnection.

We can modify the ideal-MHD equations to consider a plasma system with finite

resistivity ⌘ (e.g., due to collisions between ions and electrons). Resistivity is in-

troduced into ideal-MHD through Ohm’s Law. We employ a uniform and constant

resistivity, thus Ohm’s Law becomes

E +
v ⇥B

c
= ⌘J , (1.15)

Equation 1.15 replaces Eq. 1.6. Ideal-MHD with the resistive Ohm’s Law is called

resistive-MHD. If we substitute Eq. 1.15 into Eq. 1.2, we find

@B

@t
= r⇥ (v ⇥B) +

⌘c2

4⇡
r2B. (1.16)

9



The r2B term is the rate of magnetic field di↵usion within the dissipation region.

The r⇥ (v ⇥B) term breaks down into three terms,

r⇥ (v ⇥B) = (B · r)v � (v · r)B �B(r · v). (1.17)

The first term on the right hand side of the equation describes the bending of

magnetic field lines. The second term describes the magnetic field lines convection

in the direction of the bulk flow. The third term describes the compression of the

magnetic fields, we assume the plasma is incompressible so r · v = 0.

We can now re-write Eq. 1.16 as

@B

@t
= (B · r)v � (v · r) +

⌘c2

4⇡
r2B, (1.18)

which describes the time evolution of the magnetic fields due to the bending, convec-

tion, and di↵usion of the magnetic fields, respectively. If we consider the evolution

of the reconnecting magnetic field Bx in the steady state, upstream of the dissipa-

tion region, the plasma flow is purely in the inflow direction, so vx ⇠ 0, therefore,

Eq. 1.18 becomes

0 = �vy

@Bx

@y
+
⌘c2

4⇡
r2Bx ! vy

@Bx

@y
=
⌘c2

4⇡
r2Bx. (1.19)

Physically, this equation states that in the steady-state, the rate of the di↵usion of

magnetic fields in the dissipation region is equal to the rate at which magnetic field

10



lines are convected into the dissipation region. A scaling analysis of Eq. 1.19 reveals

vy

�
⇠ ⌘c2

4⇡�2
. (1.20)

We can solve for the Sweet-Parker reconnection rate using Eq. 1.14 and 1.11. We

can define the Sweet-Parker reconnection rate E 0
sp

as

E 0
sp
⇠ vy

vx

⇠ �

L
⇠

✓
⌘c2

4⇡cAxL

◆1/2

⇠ S�1/2, (1.21)

where S = 4⇡cAxL/⌘c2 is the Lundquist number and the ratio of the Alfvén speed

crossing time scale to the magnetic di↵usion time scale. The Lundquist number is a

dimensionless parameter and is characteristic of specific plasmas (i.e., S ⇠ 1014 for

plasmas in the solar corona). As stated earlier, the Sweet-Parker reconnection rate

is not nearly fast enough (t ⇠ 4 months) to explain observed reconnection rates.

Eq. 1.21 shows that for systems where L is particularly large (e.g., the corona) and

the resistivity is particularly small (e.g., the corona), then the predicted reconnection

rate due to Sweet-Parker reconnection is very slow.

1.2.2 Sweet-Parker Enhanced by Secondary Islands

A secondary tearing instability exists for systems of su�cient Lundquist num-

ber (Scrit � 104 [Biskamp (1986)]). The secondary tearing instability spontaneously

generates small magnetic islands, referred to as secondary islands, within the cur-

rent sheet. Secondary islands enhance the Sweet-Parker reconnection rate because
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Figure 1.4: Sketch of secondary islands in a Sweet-Parker current sheet. The length
of the current sheet decreases as secondary islands are generated, as the length of
the current sheet decreases the half-width of the current sheet also decreases.

they allow for larger amounts of reconnected plasma to leave the current sheet in a

shorter amount of time. Figure 1.4 details a Sweet-Parker current sheet broken up

into multiple current sheets because multiple secondary islands (purple ovals) have

formed.

How much faster is Sweet-Parker with secondary islands than the Sweet-Parker

reconnection? Consider a current sheet of length L, where N secondary islands spon-

taneously form. When N secondary islands are formed, the current sheet fragments

into N individual current sheets with length LSI = LSP /N . If Sweet-Parker scaling

holds for the new current sheets then

ESI =

✓
⌘c2

4⇡CAxLSI

◆1/2

= N1/2S�1/2 ) �SI =
�SP

N1/2
. (1.22)

The current sheets in secondary island reconnection are thinner than the current

12



sheet during Sweet-Parker by a factor of N�1/2 [Daughton et al. (2009b)]. Therefore,

the Sweet-Parker reconnection rate due to the enhancement of secondary islands ESI

is

ESI =
�

L
= ESP N1/2. (1.23)

The reconnection rate due to the secondary island instability is faster than Sweet-

Parker reconnection. It is believed that secondary islands will be generated in each

new current sheet until the local Lundquist number of an individual current sheet

is less than the critical Lundquist number (Slocal  Scrit). Therefore, the number of

islands generated for any current sheet scales like N ⇠ S/Scrit [Cassak et al. (2009)].

The reconnection rate due to secondary islands then scales like

ESI =

✓
S

Scrit

◆1/2

S�1/2 = S�1/2
crit

. (1.24)

This argument predicts the reconnection rate due to secondary islands is weakly

dependent on the Lundquist number [Cassak et al. (2009); Huang & Bhattacharjee

(2010); Uzdensky et al. (2010)] with a normalized characteristic reconnection rate

ESI ⇠ 0.01.

1.2.3 Hall Reconnection

In the quest to determine how energy is released so quickly during solar erup-

tions, it was discovered that the Hall e↵ect allows for much faster reconnection

rates fast enough to explain observations! The Hall e↵ect appears in Ohm’s law

13



as J ⇥ B/nec. Again the only change required to introduce new physics into the

ideal-MHD equations enters through Ohm’s Law. Using the electron equation of

motion, the modified Ohm’s law can be derived as

E +
v ⇥B

c
= ⌘J +

J ⇥B

nec
� r · Pe

ne
+

me

e2

dJ/n

dt
. (1.25)

This is called generalized Ohm’s law [Rossi & Olbert (1970)], where the three addi-

tional terms added to resistive-MHD are the Hall term, electron pressure gradient

term, and electron inertia term, respectively. The resistivity and o↵-diagonal elec-

tron pressure terms can break the frozen-in condition, which allows for a change in

the magnetic topology because they are dissipative. In this thesis, the o↵ diagonal

terms are equal to zero because the contribution is only important at electron scales

and the o↵ diagonal terms only serve to change the magnetic topology. The pressure

gradient term becomes rpe/ne. We assume pe = nTe with a uniform and constant

electron temperature.

However, the Hall term does not allow the magnetic topology to change, but

it does have a significant e↵ect on the reconnection rate. The Hall term only con-

tributes to magnetic reconnection if the current sheet is on the order of the ion

inertial scale di, also known as the ion skin depth. We define the ion gyroradius to

be di = cA/⌦ci = c/!pi = (mic2/4⇡ne2)1/2, where ⌦ci is the ion cyclotron frequency

and !pi is the plasma frequency, c is the speed of light, and cA = B2/(4⇡min)1/2 is

the Alfvén speed. The Hall term allows ions to decouple from magnetic field lines

and de-magnetize. According to the frozen-in law, electrons and ions orbit around

14



the same magnetic field line, indefinitely, but if an ion (or electron) gyrating around

a field line encounters a magnetic field line that points in the opposite direction

within a gyro-orbit then the ion begins to orbit in the opposite direction, losing its

connection with the first field line [Speiser (1970)]. This motion is called meander-

ing. Electrons can also exhibit meandering. This occurs at the electron gyro radius

(or electron skin depth) de = c/!pe = (mec2/4⇡ne2)1/2, where !pe is the electron

plasma frequency and me is the electron mass. The ion skin depth is much larger

than the electron skin depth because mi >> me.

The Hall term introduces new physics into the magnetic reconnection picture

and exhibits a unique reconnection signature when the current layer is below the

ion gyro-radius. At length scales smaller than the ion gyroradius the ion bulk flow

is near zero, therefore the current is carried primarily by the electron flow [from

J = ne(�ve + vi)]. This current, created by the electron flow, is called the Hall

current and flows the opposite direction of the electron current in the downstream

direction. The Hall current is visualized in Fig. 1.5 by the dashed blue line. From

the right hand rule, this current creates a quadrupole magnetic field (Bz) in the out-

of-plane direction. The quadrupole structure has been shown in Sonnerup (1979).

The Hall term was shown to be related to the physics of whistler waves [Mandt

et al. (1994)]. Hall reconnection has been observed in the magnetosphere [Øieroset

et al. (2001); Mozer et al. (2002); Scudder et al. (2002); Runov et al. (2003)] and

laboratory experiments [Ren et al. (2005); Cothran et al. (2005)].

How does the Hall term allow for fast reconnection rates? The Hall term is

responsible for the opening of the current layer into an open Petschek-like config-
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Figure 2.5: Quadrupolar out of plane magnetic field during Hall recon-
nection. Adapted from Ref. [Sonnerup, 1979].

Just how fast is Hall reconnection in the steady-state? Unfortunately, no first

principles theory (or even scaling argument!) can successfully answer this question.

However, much has been learned using large scale numerical simulations. We now

summarize results of theory and simulations of Hall reconnection, concentrating

on the steady-state reconnection rate E and important length and velocity scales

specifying the geometry. Because there are important di↵erences, we treat anti-

parallel and component reconnection separately.

2.3.1 Anti-parallel Hall Reconnection

First and foremost, Hall reconnection is not subject to the two downfalls of

the Sweet-Parker model, namely strong dependence of the reconnection rate E 0

on the dissipation mechanism and global length scales. In the GEM Challenge

study (Ref. [Birn et al., 2001] and references therein), it was found that the Hall

reconnection rate E 0
H

is insensitive to the dissipation mechanism. Identical simula-

40

Figure 1.5: The quadropolar out-of-plane magnetic field structure during Hall re-
connection. The Hall current (blue-dashed lines) flows along the inflow direction
opposite the electron bulk flow from the still magnetized electrons. This current gen-
erates an out-of-plane magnetic field. Reprinted with permission from Ref. [Cassak
(2006)].

uration by introducing the physics of whistler waves, or kinetic Alfvén waves in

the presence of a guide field (the Bz component of the magnetic field). The role

of whistler waves and kinetic Alfvén waves in the appearance of fast magnetic re-

connection is somewhat controversial. In Sweet-Parker reconnection the outflow is

controlled by the curvature of magnetic field, i.e., Alfvén wave physics with wave

speed !/k = cA. The Alfvén wave is non-dispersive (wave speed does not depend

on k), so the outflow is constant regardless of length scales. The whistler wave is

a dispersive wave, because the wave speed !/k ⇠ kcAdi depends on k, so the flow

speed depends on the distance from the center of the reconnection exhaust.

Why is the dispersive nature of the wave important? For non-dispersive waves

the outflow speed does not change along the inflow direction. The reconnection

exhaust remains collapsed due to the continuity equation Eq. 1.3. In the steady
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state, we find

@⇢vx

@x
⇠ �@⇢vy

@y
. (1.26)

If the exhaust opens even slightly the mass flux along the outflow direction increases,

i.e., @(⇢vx)/@x > 0. To preserve the mass flux an inflow towards the center of the

exhaust (vy < 0) is required that will pull the magnetic field towards the center

of the exhaust, closing the exhaust into a long, thin current sheet reminiscent of

Sweet-Parker reconnection. With dispersive waves, the wave speed decreases along

the inflow direction away from the center of the exhaust, i.e., @(⇢vx)/@x < 0. To

preserve continuity, a vertical flow away from the center of the exhaust is required

(vy > 0). This flow drags the magnetic field away from the center of the exhaust

into the open X-type configuration.

In Sweet-Parker reconnection, we develop scaling arguments from resistive-

MHD and determine reconnection rates, current sheet parameters, and so on. Un-

fortunately, Hall reconnection has no such scaling arguments! Then how fast is Hall

reconnection? Large scale numerical simulations show that the reconnection rate

EHall ⇠ 0.1 and is independent of system size [Shay et al. (1999); Birn et al. (2001);

Huba & Rudakov (2004)]. Hall reconnection has been observed experimentally [Ren

et al. (2005); Cothran et al. (2005)] with reconnection rates faster than Sweet-Parker

reconnection rates.

17



1.2.4 Anomalous Resistivity

Anomalous resistivity also leads to reconnection rates on the order of Hall re-

connection [Sato & Hayashi (1979); Biskamp (1986); Scholer (1989)]. Sweet-Parker

reconnection employs a constant and uniform resistivity. Anomalous resistivity can

be constant over time, but not spatially uniform. What does this mean for recon-

nection dynamics? In panel (a) of Fig. 1.6, we consider magnetic reconnection with

a constant and uniform resistivity. The magnetic fields convect towards the neutral

line and annihilate due to the resistivity. Due to uniform resistivity, the magnetic

fields move uniformly and create a long, thin Sweet-Parker current sheet. In panel

(b), the resistivity is localized in the region of the out-of-plane current Jz and falls

o↵ quickly to zero as we move horizontally from the X-line. Since the resistivity is

not uniform, the magnetic fields will not uniformly move towards the neutral line.

Therefore, only a small section of the magnetic fields are actually annihilated and an

open reconnection outflow is formed with a short, thin current sheet. Simulations

have shown that the reconnection rate is also fast Eanom ⇠ 0.1. It has been shown

that instabilities that onset on small length scales can locally enhance the resistivity.

The lower hybrid drift instability [Huba et al. (1977)] and the Buneman instability

[Drake et al. (2003)] may cause anomalous resistivity in the earth’s magnetotail.

1.3 MHD Discontinuities

MHD discontinuities play a significant role in magnetic reconnection. Analysis

of discontinuities is important to explain observations and the physics of reconnec-
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Figure 1.6: (a) Diagram of the evolution of the magnetic fields for a constant and
uniform resistivity. The magnetic fields annihilate evenly and pull large sections
of the magnetic field towards the middle of the current sheet. (b) Diagram of the
evolution of the magnetic fields for an anomalous resistivity. The magnetic fields
annihilate only a small section of the incoming magnetic fields creating an open
X-type configuration. Adapted from Ref. [Kulsrud (2001)].
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tion. An MHD discontinuity is a thin layer between two populations of plasma

through which the pressure, flow velocity, magnetic field, and plasma density may

change significantly. Discontinuities form in the reconnection outflows [Petschek

(1964); Levy et al. (1964); Vasyliunas (1975); Shi & Lee (1990); Lin & Lee (1993)]

as a by-product of the reconnection process. As we cross between boundary layers,

physical quantities can vary greatly. In MHD four types of discontinuities exist:

contact discontinuity, tangential discontinuity, rotational discontinuity, and MHD

shocks [Landau & Lifshitz (1960)]. We analyze MHD discontinuities using the con-

servative form of the ideal-MHD equations:

@⇢

@t
+r · (v⇢) = 0 (1.27)

@(⇢v)

@t
+ r ·


⇢vv +

✓
P +

B2

8⇡

◆
I � BB

4⇡

�
= 0 (1.28)

@

@t


1

2
⇢v2 +

P

� � 1
+

B2

8⇡

�
+ r ·

✓
1

2
⇢v2 +

P

� � 1
+

B2

8⇡

◆
v � 1

4⇡
(v · B)B

�
= 0

(1.29)

@B

@t
= �cr⇥E (1.30)

r · B = 0 (1.31)

where � is the ratio of specific heats. Assuming a steady state and integrating

each equation over a Gaussian pillbox across a discontinuity, we find the Rankine-

Hugoniot (RH) jump conditions:

[⇢vn] = 0 (1.32)
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◆
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�
= 0 (1.33)


⇢vnvt �

BnBt

4⇡

�
= 0 (1.34)

✓
1

2
⇢v2 +

P

� � 1
+

B2

4⇡

◆
vn �

v · B

4⇡
Bn

�
= 0 (1.35)

[Bnvt � vnBt] = 0 (1.36)

[Bn] = 0, (1.37)

where the n and t subscripts represent the normal and tangential component of

the quantity, respectively. The square brackets represent the di↵erence between

the quantities on either side of the discontinuity. For example, [L] = L2 � L1

where the subscript ‘1’ represents the values upstream of the discontinuity and

‘2’ denotes the values downstream of the discontinuity. The RH jump conditions

describe the conservation of mass, momentum, energy, normal magnetic field (Bn),

and tangential electric field (Et). The RH jump relations for each MHD discontinuity

are discussed below.

1.3.1 Contact Discontinuity (CD)

A CD occurs when vn = 0, then from Eq. 1.34 we find that [Bt] = 0. Equa-

tion 1.36 shows that [vt] = 0. Eq. 1.33 shows the plasma pressure is the same on

either side ([P ] = 0). However, the temperature and density need not be conserved

across the CD. Therefore, a CD is the discontinuity between two plasma populations

with di↵erent temperatures and densities. The CD jump conditions are summarized
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Figure 1.7: (a) Diagram of a contact discontinuity (CD). (b) Diagram of a tangential
discontinuity (TD).

in Fig. 1.7(a).

1.3.2 Tangential Discontinuity (TD)

We now consider when vn = 0 and Bn = 0. From Eq. 1.33, the jump condition

becomes [P + B2/8⇡] = 0. The TD separates two plasmas with di↵erent magnetic

fields and plasma pressures. Also, [Bt] 6= 0 because the normal components of the

magnetic field and flow velocity are equal to zero. The TD jump conditions are

summarized in Fig. 1.7(b). The current layer before magnetic reconnection begins

is a tangential discontinuity.

1.3.3 Rotational Discontinuity (RD)

We consider a system where the jump conditions [P ] = 0 and [⇢] = 0. Using

Eq. 1.34 and Eq. 1.36, we find that vn = Bn/(4⇡⇢)1/2 = CAn. The flow normal to
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the discontinuity is equal to the Alfvén velocity due to the normal component of

the magnetic field. Substituting vn into Eq. 1.36 yields the jump condition for the

tangential velocity [vt] = [Bt]/(4⇡⇢)1/2. This is called the Walen relation for the RD,

which is useful for identifying rotational discontinuities in observations. The jump

conditions for RDs are summarized in Fig. 1.8(a) and (b), where the blue arrow

represents the magnetic field and the red arrow represents the plasma flow normal

to the discontinuity. RDs in essence “rotate” the plasma flow and magnetic field

away from their original orientation.

1.3.4 MHD Shocks

MHD shocks are related to propagating wave modes and are formed when

non-linear waves steepen. We find the properties for MHD shocks, assuming that

the plasma flow v1 = v1n is such that the tangential velocity is zero (vt1 = 0). The

magnetic field B1 makes an angle of ✓ with the direction normal to the discontinuity.

This configuration is shown in Fig. 1.8(a). The jump conditions Eq. 1.32, 1.36, and

1.34 then become:

v2n

v1n

=
⇢1

⇢2
(1.38)

Bnv2t = v2nB2t � v1nB1t (1.39)

⇢1vn1v2t =
Bn

4⇡
(B2t �B1t). (1.40)
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Solving equations 1.38, 1.39 and 1.40 for the shocked tangential magnetic field B2t

and and the shocked tangential plasma flow v2t, we find

B2t =
M2

A1 � cos2 ✓

MA1 � r cos2 ✓
rB1t (1.41)

v2t =
v1n

Bn

✓
(r � 1) cos2 ✓

M2
A1 � r cos2 ✓

◆
B1t, (1.42)

where r = ⇢2/⇢1 is the compression ratio and MA1 = vn1/cA1 is the Alfvén Mach

number. Substituting these two equations into Eq.1.40, we find

✓
aM2

a1

r
� b

◆ ✓
M2

A1

r
� cos2 ✓

◆2

� M2
A1

r
sin2 ✓


M2

A1

r

✓
a

r
� 1� r

2

◆
� a cos2 ✓

�
= 0,

(1.43)

where a = [(�+1)�(��1)r]/2 and b = �1/2. The term � is the ratio of specific heats

and is typically valued � = 5/3. The ratio of gas pressure and magnetic pressure is

defined as the plasma beta (�1 = P1/(B2
1/4⇡)).

In the MA1 ! 1 limit, the only solution to Eq.1.43 is when a ⇠ 1/M2
A1.

Substituting in the value for a, we find that r = (� + 1)/(� � 1) = 4, given that

� = 5/3. Then by substituting into Eq. 1.41, we find the shocked tangential magnetic

field B2t = 4B1t, and the normal velocity of the plasma flow v2n = v1n/4. The

density of the plasma ⇢2 = 4⇢1 also increases significantly. This result indicates that

kinetic energy is converted to gas and magnetic pressure. The magnetic field and gas

pressure increase in parallel and is attributed to the physics of a fast magnetosonic

wave. This result is displayed in a sketch of the shock in Fig. 1.8(c). This type

of shock is called a fast shock or “switch-on” shock, because the magnetic field’s
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Figure 1.8: (a) Initial magnetic field and plasma flow parameters. (b) Diagram of a
rotational discontinuity (RD). (c) Diagram of a slow (“switch-o↵”) and fast shock
(“switch-on”).

tangential component is bent away from the normal direction.

In the MA1 ! 0 limit, Eq. 1.43 becomes M2
A1 ' rb cos2(✓)/a. Substituting

into Eq. 1.41, we find that B1t > B2t, the tangential magnetic field is decreased

across the shock. The compression ratio r > 1 for this shock so v2n decreases and

⇢2 increases. Therefore, the kinetic and magnetic energy are converted into thermal

energy. This type of shock is called a slow shock or “switch-o↵” shock, because the

magnetic field is bent towards the the normal. This result is summarized in Fig. 1.8.

1.4 Summary of Research

In this thesis, we present three studies of magnetic reconnection by employing

two-dimensional and three-dimensional large-scale numerical simulations. Chap-

ter 2 addresses the role of secondary islands in the release of energy in solar flare
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events. Secondary islands make Sweet-Parker faster [Matthaeus & Lamkin (1985);

Kliem (1995); Lazarian & Vishniac (1999); Lapenta (2008); Huang & Bhattachar-

jee (2010)]. Can secondary islands make Sweet-Parker reconnection fast enough?

It is believed by some that Sweet-Parker with secondary islands can increase the

reconnection rate su�ciently to explain observations. In this study, we present

the first simulation to separate the three regimes of reconnection, Sweet-Parker,

Sweet-Parker with secondary islands, and Hall reconnection, where each form of re-

connection occurs in its own distinct phase, without e↵ects from the other regimes

of reconnection playing a role in the dynamics. This study had three results that

contribute to the energy release picture: 1) there exists a regime in which secondary

islands occur without collisionless (Hall) e↵ects playing a significant role; (2) the

reconnection rate due to secondary islands is faster than Sweet-Parker but still sig-

nificantly slower than Hall reconnection, which shows secondary islands are not the

cause of the highest reconnection rates; and (3) the onset of Hall reconnection ejects

secondary islands in the vicinity of the X-line. Results 2 and 3 imply that energy

release is the most e�cient during Hall reconnection [Shepherd & Cassak (2010)].

Chapter 2 addresses magnetic reconnection in 2D. This is an idealized case, as

most instances in nature, magnetic reconnection is inherently a three-dimensional

process. Naturally occurring magnetic reconnection often begins in a localized region

and spreads in the out-of-plane direction (perpendicular to the plane of reconnec-

tion). As reconnection spreads, new regions of reconnection are triggered because

the reconnection signal propagates in the out-of-plane direction by two possible

mechanisms. When the guide field is small compared to the reconnecting field, re-
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connection spreads in the out-of-plane direction by the current carriers (electrons).

Current carrying spreading has been studied with large scale computer simulations

with a focus on magnetotail applications [Huba & Rudakov (2002, 2003); Shay et al.

(2003); Karimabadi et al. (2004); Lapenta et al. (2006); Lukin & Linton (2011);

Nakamura et al. (2012)] that favor a weak guide field. Systems with large guide

fields exhibit much di↵erent spreading behavior. It was observed in experiments

performed at the Versatile Toroidal Facility (VTF) that magnetic reconnection be-

gins in a localized region and spreads bi-directionally in the out-of-plane direction

with speeds consistent with the Alfvén speed due to the guide field. Bi-directional

spreading was also observed in two-ribbon flares [Qiu (2009); Qiu et al. (2010)],

where the guide field was expected to be sizeable compared to the reconnecting

magnetic field. The spreading mechanism appears strongly dependent on the guide

field. In this study, we confirm this is the case with numerical simulations and pre-

dict the critical guide field at which the spreading mechanism changes from current

carrying spreading to Alfvén wave spreading. The prediction is tested with a series

of simulations varying the guide magnetic field. It was found that magnetic recon-

nection spreads due to current carriers for Bg  2.0, and Alfvén wave spreading

occurs when Bg > 2.0 [Shepherd & Cassak (2012)].

In the solar wind, magnetic reconnection exhausts with widths approximately

390 Earth radii (RE) have been observed [Phan et al. (2006)]. What is the cause of

the large scale reconnection structure? Phan et al., 2006 hypothesized the reconnec-

tion begins in a small region near the sun and gets larger over time as it convects with

the solar wind. Another possibility is that the reconnection is localized (fixed) in
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the out-of-plane direction, where the reconnection exhaust can expand into the out-

of-plane direction, thus accounting for the observed reconnection site. We address

this problem in Chapter 4. We discuss the structure of the three-dimensional recon-

nection exhaust when reconnection remains localized in the out-of-plane direction.

Magnetic reconnection remains localized by employing anomalous resistivity that is

localized in the out-of-plane direction. It was found that in the presence of a guide

field, the reconnection exhaust (therefore, the reconnection signatures) propagate

out beyond the region of localized reconnection, where the exhaust forms a ribbon

structure and the extent to which the reconnection expands was strongly dependent

on the guide field strength. It was also found that the exhaust is bounded by four

MHD discontinuities. Two of the boundaries of the exhaust were rotational discon-

tinuities, where plasma flows across the discontinuity. The other two boundaries

were tangential discontinuities, where there is no flow normal to the discontinuity.

This result is then used to assess the large exhaust events in the solar wind, and an

application to observations of solar flares is discussed.
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Chapter 2

The transition between Sweet-Parker with secondary islands to Hall

reconnection

As discussed in Chapter 1, magnetic reconnection is a mechanism that re-

leases stored energy in magnetic fields. In the corona, solar flares release massive

amounts of energy into interplanetary space. Solar flare events have been observed

and studied for over 150 years, but there is still debate on the role of magnetic recon-

nection in flare dynamics. Particularly, debate surrounds how energy is released so

fast. Two phases of reconnection discussed in the previous chapter may explain this

rapid energy release. Sweet-Parker reconnection enhanced by secondary islands and

Hall reconnection both exhibit faster reconnection rates than the slow Sweet-Parker

reconnection prediction, but are they fast enough to explain energy release rates and

can the parameter regimes they require be met in the solar corona? This poses an

important question: when both phases of reconnection can be realized which phase

of reconnection mediates the energy release?

This chapter will shed light on the transition of reconnection from slow to

fast reconnection with a focus on coronal applications. In Section 2.1, we briefly

discuss previous work on the e↵ect of secondary islands and the Hall e↵ect on the

reconnection process. In Section 2.2, the first simulation to separate the e↵ects of

secondary islands and the Hall e↵ect is discussed, along with the simulation nu-
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merics, relevant scaling analysis, and predictions. In Section 2.3, the results of the

study are discussed, where there are three main results: (1) there is a regime in

which secondary islands occur without collisionless e↵ects playing a role; (2) the

reconnection rate due to secondary islands is faster than Sweet-Parker reconnection

but significantly slower than Hall reconnection, which shows that secondary islands

are not the cause of the highest reconnection rates; and (3) the onset of Hall recon-

nection ejects secondary islands in the vicinity of the X-line. The implications of

these results are then discussed in Section 2.4. All of the results presented in this

chapter were published in Physical Review Letters in July 2010 [Shepherd & Cassak

(2010)].

2.1 Introduction

The first self-consistent theory to explain energy release in the solar flares

was the Sweet-Parker model [Sweet (1958); Parker (1957)], but is far too slow to

explain observations. Much has been invested in faster reconnection scenarios, such

as collisionless (Hall) reconnection [Birn et al. (2001)] in which the Hall term plays

a key role [Mandt et al. (1994); Rogers et al. (2001); Malakit et al. (2009); Cassak

et al. (2010)]. Hall reconnection seems fast enough to explain observed energy

release rates [Shay et al. (1999)]. Lately, the role of secondary islands (plasmoids) on

Sweet-Parker reconnection has generated much interest. While they were discussed

some time ago [Matthaeus & Lamkin (1985, 1986); Biskamp (1986)], systematic

studies were not carried out until recently. It has been argued in various contexts
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that secondary islands make reconnection faster than Sweet-Parker reconnection

[Matthaeus & Lamkin (1985); Kliem (1995); Lazarian & Vishniac (1999); Lapenta

(2008); Huang & Bhattacharjee (2010)]. (Note, we are discussing secondary islands

occurring during collisional reconnection, not those that occur after collisionless

reconnection has begun [Daughton et al. (2006); Fermo et al. (2012)].)

Understanding secondary islands in Sweet-Parker reconnection is important for

explaining coronal evolution. On the theoretical side, the reconnection rate places

constraints on the dynamics. For example, if secondary islands make Sweet-Parker

reconnection much faster or hasten the transition to fast reconnection, it cannot

take place during pre-flare energy storage. If it remains slow, then it can occur while

energy accumulates [Cassak et al. (2005); Uzdensky (2007); Cassak et al. (2008)]. On

the observational side, it was hypothesized that high density blobs in current sheets

during solar eruptions are secondary islands [Ciaravella & Raymond (2008); Lin

et al. (2009)]. Also, numerous observations of reconnection processes display a slow

phase preceding an eruptive event with an abrupt transition. Examples include non-

eruptive flux emergence [Longcope et al. (2005)] and flows during coronal implosions

as a result of an impulsive flare [Liu et al. (2009); Liu & Wang (2010)].

Past theoretical work on secondary islands showed they appear spontaneously

due to a secondary tearing instability when the Lundquist number S = 4⇡cALSP /⌘c2

exceeds ⇠ 104 [Biskamp (1986)], where LSP is the half-length of the Sweet-Parker

dissipation region, ⌘ is the resistivity, and cA is the Alfvén speed based on the

reconnecting magnetic field. Equivalently, this can be written as �/LSP < 0.01,

where � is the thickness of the dissipation region. A study of the linear phase of the
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instability [Loureiro et al. (2007)] found a growth rate faster than the Alfvén transit

time along the sheet. Recent simulations addressed the nonlinear reconnection rate

E for high S, showing it is considerably faster than the Sweet-Parker rate and its

dependence on S becomes weak [Bhattacharjee et al. (2009); Cassak et al. (2009);

Loureiro et al. (2012)]. However, the simulations only go up to S ⇠ 107, so E is

only one order of magnitude faster than the Sweet-Parker rate and it is not clear

whether it will be fast or slow at larger S. Other relevant studies showed that E

increases with the square root of the number of islands [Daughton et al. (2009b);

Cassak et al. (2009)] and secondary islands are suppressed when reconnection is

embedded, meaning the upstream field is smaller than the asymptotic field [Cassak &

Drake (2009)]. Many studies consider secondary islands caused by external random

magnetic perturbations [Smith et al. (2004); Kowal et al. (2009); Loureiro et al.

(2009); Skender & Lapenta (2010)]. Other studies include the interaction of multiple

islands [Nakamura et al. (2010)] and a statistical model of multiple island interaction

[Fermo et al. (2010)]. A recent study has probed the e↵ect of secondary islands in

the Hall dominated regime, where Hall reconnection current sheets are shown as

unstable and collapsing back into collisional current layers in certain parameter

regimes [Huang et al. (2011)].

In addition to increasing the reconnection rate, secondary islands hasten the

transition to Hall reconnection [Shibata & Tanuma (2001); Daughton et al. (2009b);

Huang et al. (2011); Baalrud et al. (2011)]. When a secondary island forms, the frag-

mented current sheet is shorter, so its Sweet-Parker thickness is smaller [Daughton

et al. (2009b); Cassak et al. (2009)]. When the layer reaches ion gyroscales [Mandt
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et al. (1994); Ma & Bhattacharjee (1996)], Hall reconnection begins abruptly [Bhat-

tacharjee (2004); Cassak et al. (2005, 2006, 2007); Daughton et al. (2009b)]. This

was recently verified using collisional particle-in-cell (PIC) simulations [Daughton

et al. (2009b,a)].

The only previous study to include both secondary islands and the Hall e↵ect

utilized large PIC simulations [Daughton et al. (2009b,a)], but numerical constraints

forced S to be small enough that Hall reconnection began as soon as a secondary

island formed. Since the Hall e↵ect arises only at ion gyroscales, there should be a

regime in which secondary islands are present without the Hall e↵ect playing a role,

if the sheet is thicker than ion gyroscales. The goal of this study is to separate the

two e↵ects and ascertain which one leads to dramatically larger reconnection rates,

and which dictates the mechanism releasing the majority of the energy during the

eruptive phase of reconnection.

2.2 Simulation Setup

Numerical simulations are performed using the two-fluid code F3D [Shay et al.

(2004)]. Magnetic fields and densities are normalized to arbitrary values B0 and n0,

velocities to the Alfvén speed cA0 = B0/(4⇡min0)1/2 where mi is the ion mass,

lengths to the ion inertial length di0 = c/!pi, times to the ion cyclotron time ⌦�1
ci

,

electric fields to E0 = cA0B0/c, and resistivity to ⌘0 = 4⇡cA0di0/c2.

The initial configuration is a double tearing mode with two Harris sheets,

Bx(y) = tanh[(y + Ly/4)/w0] � tanh[(y � Ly/4)/w0] � 1, where w0 is the initial
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current layer thickness and Ly is the system size in the inflow direction. Total pres-

sure is balanced initially using a non-uniform density which asymptotes to 1. The

temperature T = 1 is constant and uniform. A single X-line is seeded using a co-

herent magnetic perturbation of amplitude 1.6 ⇥ 10�2 to rapidly achieve nonlinear

reconnection. Initial random magnetic perturbations break symmetry so secondary

islands are ejected. There is no initial out-of-plane (guide) magnetic field. Bound-

aries in both directions are periodic. Electron inertia is me = mi/25. This value is

acceptable since we focus on the onset of Hall reconnection at ion scales rather than

electron scales.

Simulation parameters are chosen so reconnection will proceed in three dis-

tinct phases: Sweet-Parker without secondary islands, Sweet-Parker with secondary

islands, and Hall reconnection. A very large system size Lx ⇥ Ly = 819.2 ⇥ 409.6

is employed with resistivity ⌘ = 0.008, corresponding to a global Lundquist number

Sg = Lx/⌘ ⇠ 105, which exceeds the Biskamp criterion of 104. To postpone sec-

ondary island onset, we choose w0 = 12.0 which makes the reconnection embedded

[Cassak & Drake (2009)]. Embedding makes the Sweet-Parker layer thicker since

� ⇠ (⌘LSP /cAup)1/2, where cAup is the Alfvén speed based on the upstream magnetic

field Bup. For wide current layers, Bup ⇠ B0�/w0 [Cassak & Drake (2009)], so elim-

inating Bup gives � ⇠ (⌘LSP w0)1/3 ⇠ 2.7, where LSP ⇠ Lx/4 ⇠ 200 in our periodic

system. Thus, the layer begins wider than di, and since �/LSP > 0.01, no sec-

ondary islands occur initially and the system undergoes Sweet-Parker reconnection.

The reconnection inflow convects in stronger magnetic fields, so the current sheet

self-consistently thins. Islands arise when �/LSP ⇠ 0.01, which gives � ⇠ 2.0 since
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LSP ⇠ 200. It has been shown [Daughton et al. (2009b); Cassak et al. (2009)] that if

N X-lines are present, � decreases by a factor of N1/2. For a single secondary island

(N = 2), the layer shrinks to � ⇠ 2.0/21/2 ⇠ 1.4. This exceeds di, so Sweet-Parker

with secondary islands should persist. Hall reconnection only starts when � ⇠ 1, so

three distinct phases occur.

A simulation is first performed with a grid scale � = 0.2 and the results are

qualitatively consistent with expectations. To assure � does not play a role, the

simulations are redone with � = 0.1, giving comparable results. Data is presented

only from the high resolution runs. The equations employ fourth order di↵usion

(with form D4r4) with coe�cient D4 = 1.75⇥10�4 to damp noise at the grid scale.

A smaller value of D4 leads to a slightly larger Hall reconnection rate, but does not

alter our key conclusions.

2.3 Results

We now summarize the simulation results, followed by a careful justification

of the conclusions. At early times, Sweet-Parker reconnection prevails. A secondary

island first appears at t ' 700. Reconnection proceeds with the secondary island

until t ' 1780, when Hall reconnection onsets. Thus, reconnection proceeds in three

distinct phases including an extended phase with secondary islands but without the

Hall e↵ect triggered.

We compare the reconnection rate E in the three phases to each other and

to theoretical predictions in Fig. 2.1(a), showing E vs. time t as the solid (blue)
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Figure 2.1: (a) Reconnection rate E as a function of time t. The solid (blue) line is
a Hall-MHD run. Dashed lines at t ⇠ 700 and 1780 indicate the onset of secondary
islands and Hall reconnection, respectively. The dot-dashed (red) line shows E for
a simulation restarted at t = 1120 with no Hall e↵ect and me = 0. (b) Thickness
� of the dissipation region vs. t. Horizontal dotted lines mark predicted � for the
onset of secondary islands (� ⇠ 2) and Hall reconnection (� ⇠ 1).

line. We measure E as the time rate of change in the di↵erence in magnetic flux

function  between the main X-line and O-line. Dashed lines at t = 700 and 1780

denote where secondary islands and the Hall e↵ect arise, respectively. Ignoring

secondary islands, Sweet-Parker theory predicts E ⇠ ESP ⇠ 0.006, where ESP ⇠

(⌘/LSP )1/2, and LSP ⇠ 200. This assumes the magnetic field is its asymptotic

value of 1. The measured value is E ⇠ 0.004, slightly lower than predicted as

expected because Bup < 1 (the reconnection is embedded). When N X-lines are

present, E scales as ESI ⇠ ESP

p
N [Daughton et al. (2009b); Cassak et al. (2009)].

The measured rate of 0.005 is consistent with this for a single secondary island

(N = 2). After the Hall e↵ect onsets, E increases by about an order of magnitude.

Therefore, the reconnection rate with secondary islands is faster than Sweet-Parker,
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Figure 2.2: (Color) Time history plot of the out-of-plane current density Jz in the
outflow direction. Dashed lines mark when a secondary island appears and when
the Hall term onsets.
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but significantly slower than Hall reconnection.

The transitions occur when predicted, as shown in Fig. 2.1(b). We plot �,

measured as the half-width at half-max of Jz in the inflow direction through the

X-line, vs. t. The dotted lines at � ⇠ 2 and 1 show the predicted value when islands

and the Hall e↵ect should appear, respectively. These conditions are met at t ' 700

and 1780, in good agreement with the observed transitions.

The appearance of new physics can be seen in direct observations of the out-

of-plane current density Jz. A two-dimensional time history plot of Jz in the outflow

direction is plotted in Fig. 2.2. Only the half domain centered on the seeded X-line

is shown. The raw data is sampled at a rate of one frame per 70 time units, so linear

interpolation is used to smooth data between time slices. The e↵ect is cosmetic, not

substantive. The color bar is stretched to enhance visibility of weaker currents.

Early in time, Jz is structureless and extends the half-length of the domain, as

expected during Sweet-Parker reconnection. A secondary island near x = 0 appears

as a dark spot with associated strengthening of the fragmented current sheets. This

occurs at t ⇠ 700, marked by the vertical dashed line. This agrees with Biskamp’s

criterion shown in Fig. 2.1(b). As time evolves, the island grows and � shrinks.

When � ⇠ di, Hall reconnection onsets and the current sheet becomes much shorter

and intense, appearing as a sharp peak in Jz in Fig. 2.2. This begins at t ⇠ 1780,

as also marked in Fig. 2.1(b).

There are two locations where Hall reconnection onsets. An X-line near x '

�70 onsets slightly earlier than an X-line at x ' 70. As Fig. 2.2 vividly shows, the

latter X-line is ejected from the dissipation region, along with the secondary island,
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Figure 2.3: (Color) Time evolution of Jz from the other current sheet in our double
tearing mode setup, showing the ejection of secondary islands when Hall reconnec-
tion onsets.
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which is ejected at the Alfvén speed. The ejection of the secondary island implies

that the two phases of reconnection will not (locally) coexist, so most of the energy

is released at Hall reconnection sites.

This current sheet has only a single secondary island and one may ask whether

this result remains valid in more realistic settings with multiple islands. To address

this, we show results from the other current sheet in our double tearing mode setup,

which self-consistently develops multiple islands. Figure 2.3 shows Jz at three times

near the onset of Hall reconnection. Panel (a) is just as Hall reconnection onsets at

x ' 20, showing three pre-existing secondary islands. The Hall reconnection X-line

grows steadily, as shown in panel (b). Panel (c) shows that the single X-line at

x ' 20 is the only one to persist as all of the secondary islands are ejected. This

suggests that the ejection of nearby secondary islands by Hall reconnection sites is a

robust result, and may reasonably represent local behavior in a macroscopic current

sheet.

A careful determination of when the Hall e↵ect begins to become important

is obtained using a time history plot of the out-of-plane Hall electric field EHz =

JyBx/n in the inflow direction through the main X-line, plotted in Fig. 2.4(a). (Note,

this cut is in the inflow direction, while Fig. 2.2 is in the outflow direction.) The

color bar is again stretched. The plot clearly shows that EHz does not contribute

during the secondary island phase. A cut of EHz in time, taken at the solid (gray)

line in Fig. 2.4(a), is plotted in Fig. 2.4(b). The onset time, defined as when EHz

reaches 1% of its maximum value, is at t ⇠ 1780, the time that E begins to increase

as seen in Fig. 2.1(a).
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Figure 2.4: (Color) (a) Time history plot of the out-of-plane Hall electric field EHz

in the inflow direction. The Hall term does not contribute during the secondary
island phase. (b) Plot of EHz vs. t at the y location marked in panel (a).

To emphasize di↵erences between Sweet-Parker with secondary islands and

Hall reconnection, we restart the simulation at t = 1120 with the Hall e↵ect and

electron inertia disabled. The reconnection rate is plotted as the dot-dashed (red)

line in Fig. 2.1(a). The value reaches E ⇠ 0.009 as the asymptotic upstream field

reaches the dissipation region, in excellent agreement with the predicted value ESI ⇠

ESP

p
N ⇠ 0.009 with N = 2 for a single island. This rate is consistent with the

largest scaling studies done to date [Bhattacharjee et al. (2009)]. Note, E remains

nearly an order of magnitude slower than Hall reconnection. Although the present

evidence is based on simulations only up to S ⇠ 105, it is clear that secondary island

reconnection does not produce the fastest reconnection rates.
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2.4 Discussion

In summary, reconnection in marginally collisional plasmas can evolve in three

distinct phases. In particular, Sweet-Parker reconnection with secondary islands can

occur without triggering collisionless e↵ects. The reconnection rate, though faster

than classical Sweet-Parker, is an order of magnitude slower than Hall reconnection.

The faster rate of Hall reconnection implies that secondary islands are ejected from

the dissipation region at the Alfvén speed. Due to computational constraints, the

present simulations contain only a single secondary island at a time, but it is reason-

able to expect that Hall reconnection sites locally eject previously existing islands in

macroscopic current sheets. Thus, a majority of the magnetic energy is released at

Hall reconnection sites. The transition from secondary island to Hall reconnection

might be responsible for the ejection of “monster islands” [Uzdensky et al. (2010);

Fermo et al. (2010)]. Monster islands are secondary islands that form near the cen-

ter of the current sheet. As the monster islands are ejected they consume nearby

smaller islands and plasma. Their size can reach ten percent the size of the length

scale.

The present results may be relevant for observations of two-phase reconnection

events in the corona. In observations of flux emergence [Longcope et al. (2005)], a

slow phase of reconnection preceded an abrupt transition to a fast phase ⇠ 30 times

faster (compare the slopes in their Fig. 18). In observations of the contraction of

magnetic loops in an impulsive flare [Liu & Wang (2010)], the contraction velocity

abruptly increased by a factor of ⇠ 16. It is enticing to attribute these observa-
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tions to a transition from resistive secondary island reconnection at a normalized

reconnection rate of E ⇠ 0.01 (consistent with implications of Refs. [Daughton et al.

(2009b); Bhattacharjee et al. (2009)]) to Hall reconnection ⇠ 10 times faster, which

occurs abruptly when gyroscales are reached. The existing level of accuracy of both

theory and observations make such an identification premature, but it remains an

exciting possibility.
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Chapter 3

Guide Field Dependence of 3D X-line Spreading During Collisionless

Magnetic Reconnection

The previous chapter detailed the transition from Sweet-Parker to Sweet-

Parker enhanced by secondary islands to Hall magnetic reconnection. The study

was performed in a two-dimensional box, but in nature it is di�cult to imagine

a scenario in which reconnection is a perfectly two-dimensional process. Magnetic

reconnection observed in the solar corona, magnetotail, and laboratory experiments

often exhibits behavior of beginning in a localized region and then spreading in the

direction perpendicular to the plane of reconnection. We refer to this behavior as

X-line spreading. A sketch of reconnection spreading is shown in Fig. 3.1. As dis-

cussed later in this chapter, the mechanism of X-line spreading is very sensitive to

the strength of the out-of-plane or guide field. Depending on where reconnection

is taking place, e.g., the corona versus the magnetotail, the relative strength of the

guide field varies greatly.

This chapter addresses reconnection spreading with and without a guide field,

and the e↵ect of the guide field on spreading. In Section 3.1, we discuss previous

theoretical and observational work on X-line spreading. In Section 3.2, we introduce

a theory of X-line spreading which predicts the behavior of reconnection spreading

depending on the strength of the guide field. In Section 3.3, the three-dimensional
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Figure 3.1: A sketch of magnetic reconnection spreading. At initial time t0, magnetic
reconnection is only occurring at the center of the domain. Some time t later,
magnetic reconnection spreads in the out-of-plane direction and allows excites new
reconnection sites.

simulation setup that will be used to test our predictions is discussed. In Section 3.4,

the results of the simulation that confirm our predictions are presented. The entirety

of the work presented in this chapter was published in the Journal of Geophysical

Research in October 2012 [Shepherd & Cassak (2012)].

3.1 Introduction

Early models [Sweet (1958); Parker (1957); Petschek (1964)] and the predom-

inance of numerical work on magnetic reconnection (e.g., [Birn et al. (2001)]) have

treated reconnection as two-dimensional. However, naturally occurring magnetic

reconnection often begins in a localized region and spreads in the direction per-

pendicular to the plane of reconnection. For example, satellite observations of sub-
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Figure 3.2: (a) The dawn-dusk asymmetry in the magnetotail. Magnetic reconnec-
tion spreads exclusively in the duskward direction. (b) The dawn-dusk asymmetry
in the solar corona. Solar arcade formation favors one direction over the other.

storms in the magnetotail identified a dawn-dusk asymmetry caused by localized

reconnection spreading in the westward direction [McPherron et al. (1973); Nagai

(1982); Nagai et al. (2013)]. The dawn-dusk asymmetry is shown in Fig. 3.2(a) in

the magnetotail. Reconnection begins in a localized region (solid-X) and spreads

duskward (dashed-X). A similar asymmetry was observed in the formation of ar-

cades in the solar corona [Isobe et al. (2002)]. This can be visualized in Fig. 3.2(b),

where reconnection begins on the arcade in a localized region and favors spreading

uni-directionally. Capturing e↵ects such as these requires a fully three-dimensional

treatment.

A number of numerical studies have addressed X-line spreading in the direc-

tion of the current during quasi-two-dimensional reconnection. Using a magnetic

perturbation localized in the out-of-plane direction in Hall-magnetohydrodynamics
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(Hall-MHD), the localized reconnection signal was found to propagate as a wave

structure carried by the electron current [Huba & Rudakov (2002, 2003)]. By seed-

ing reconnection with large random magnetic perturbations in Hall-MHD simula-

tions, it was observed that reconnection develops into spatially isolated structures

which lengthen in the direction of the electron current and these small structures

merge into larger scale structures [Shay et al. (2003)]. This study suggested that

spreading occurs in the direction of whichever species carries the current, which need

not be exclusively electrons. Spreading by the ions when they carry the current was

observed in hybrid simulations with localized resistivity [Karimabadi et al. (2004)].

These works demonstrate reconnection X-line spreads in the out-of-plane direction

by the current carriers in the direction of the current carriers [Lapenta et al. (2006)].

Nakamura et al. (2012) presented the first systematic study to vary the fraction of

current carried by each of the species; the results confirmed X-line spreading occurs

due to the current carriers. The results are not dependent on the Harris sheet ge-

ometry; [Lukin & Linton (2011)] observed X-line spreading in simulations of island

coalescence. Note, each of these studies primarily favored magnetotail applications,

so they either treated anti-parallel reconnection or reconnection with a weak out-

of-plane (guide) magnetic field compared to the background field. X-line spreading

in a system without a guide field was recently observed in laboratory experiments

at the Magnetic Reconnection eXperiment (MRX), and a physical mechanism for

spreading by current carriers was proposed [Dorfman (2012)].

Interestingly, experimental and satellite observations of systems with a strong

guide field reveal strikingly di↵erent behavior of X-line spreading. For example,
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coil currents are up-down symmetric. In some discharges,
after a delay of 100 !s the x-line current decreases sud-
denly [16]. This spontaneous decrease in current [Fig. 1(b)]
is accompanied by a spike in the toroidal inductive electric
field, which we take as the reconnection rate. Just before
the spontaneous reconnection, the width of the current
channel approaches "s, the ion-sound gyro-radius. As a
result of the reconnection, a significant portion of the
magnetic energy released drives Alfvénic plasma outflows,
and electron heating is also observed [16]. However, as
Fig. 1(b) shows, the plasma response is not toroidally
symmetric.

Thus, although the experimental setup is symmetric, we
find here that the reconnection onset is toroidally localized.
Figure 2 shows the reconnection rate (!@A’=@t) at various
times (top row), viewed from above. The reconnection
starts at one toroidal location, and then propagates in
both directions around the torus. The propagation speed
is approximately twice the Alfvén speed, although on this
time scale the ions are only marginally magnetized. While
asymmetries in the in-vessel coils may influence the onset
angle, this angle does vary among different discharges.
Here we take the onset angle to be 270", which is the
most frequent location. We compute @A’=@t in Fig. 2 as
ð1=RÞR _BzRdR from _Bz measurements, a method appli-

cable for this experiment, which has a strong guide mag-
netic field [17].
In the second row of Fig. 2, the toroidal electrostatic

field evaluated at the x line (#x) is added to @A’=@t. Note
that we split the potential# ¼ #xð’Þ þ#in-planeðrÞ, where
#x is poloidally uniform. We see that the total electric field
remains toroidally localized and is enhanced at the onset
location (’ ¼ 270"); the enhancement may be surprising,
but it is related to a global mode away from the x line. The
third row shows#in-plane at ’ ¼ 270". We approximate the
in-plane plasma potential by the floating potential, since it
is unlikely that temperature variations produce the strong
(60 V) structure in the floating potential, and the measured
I-V response of Langmuir probes is well described with
Maxwellian electrons. Also shown are cross sections of the
toroidal current density at two different toroidal angles.
The first row of current density was measured near the
onset location; superimposed on it are magnetic-field lines
projected onto the plane, measured by a novel flux probe
array [17]. The second row is at a different toroidal
location; the current density is clearly not toroidally
symmetric.
Further evidence of the asymmetry is seen in the electro-

static potential measurements, shown in Fig. 3 at one time
slice. A global 3D mode arises in conjunction with fast

FIG. 2 (color). The 3D measurements of magnetic reconnection on VTF at various times. Row 1: inductive electric field propagating
around the device (measured at six toroidal locations); reconnection peaks at t ¼ 1:412 ms. Row 2: toroidal electric field, which
includes the electrostatic component, remains toroidally localized. Row 3: floating potential measured near onset and growing in time.
Rows 4–5: toroidal current density (at 8 cm resolution) at two cross sections (’ ¼ 20", 260"), with overlaid poloidal magnetic-field
lines. The stressed angle of the x line shows a strong departure from the 90" of a vacuum x line. The current, which does not include the
in-vessel coil current, is clearly toroidally asymmetric.
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Figure 3.3: Measurement of the reconnection rate as a function of time. The increase
in the reconnection rate is shown as the transition from ligt blue to red. Printed
with permission from Katz et al. (2010). c� 2010 by The American Physical Society.

experiments performed at the Versatile Toroidal Facility (VTF) [Katz et al. (2010);

Egedal et al. (2011)] exhibit reconnection beginning in a localized region and spread-

ing bi-directionally in the out-of-plane (toroidal) direction at a speed consistent with

the Alfvén speed based on the guide field. Figure 3.3 is a plot of the reconnection

rate as a function of time from the Katz et al. (2010) study. Magnetic reconnec-

tion begins around � ⇠ 270� at t = 1.374 ms and then spreads bi-directionally at

the Alfvén speed attributed to the guide field. Another example is bi-directional

spreading (or elongating) of ribbons observed during two-ribbon solar flares [Qiu

(2009)] shown in Fig. 3.4(a), including the Bastille Day flare [Qiu et al. (2010)] in

Fig. 3.4(b). This presumably is related to spreading of the looptop reconnection

site where a sizable guide field is expected to be present because of the 3D nature

of the reconnection located in the corona. This spreading was also inferred to take

place at the local Alfvén speed. Prominence eruptions in the corona have also been

observed to spread bi-directionally; this behavior was attributed to magnetic re-

connection propagating along the magnetic polarity inversion line (PIL), where the

magnetic field flips direction at the coronal loop top [Tripathi et al. (2006)]. In mag-

netospheric contexts, observations of extended X-lines several Earth radii long at
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Figure 3.4: (a) Time evolution of a two-ribbon flare from November 7, 2004. The
initial flare region expands into the E-W and S-N directions (indicated by the yel-
low lines). Adapted from Qiu (2009). c� 2009 by The American Astronomical
Society. (b) The well known Bastille day flare that occurred on July 14, 2000.
There is rapid expansion again favoring expansions towards the left. Image Credit:
NASA/TRACE.

the magnetopause [Phan et al. (2000); Fuselier et al. (2002)] and hundreds of Earth

radii in the solar wind [Phan et al. (2006)] suggest X-line spreading occurs in these

areas as well, although direct evidence of spreading is prohibitively di�cult with

single- or even multi-point satellite observations. X-line spreading was also seen in

three-dimensional two-fluid simulations with a guide field [Schreier et al. (2010)].

The existing observational data provide a clear indication that the mechanism

controlling X-line spreading strongly depends on the strength of the guide field. In

the weak guide field limit, the signal is transmitted by the current carriers; in the

strong guide field limit, the reconnection signal is transmitted by the magnetic field

as an Alfvén wave. In general, we hypothesize the X-line spreads in both directions
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at the speed of whichever mechanism is faster for that direction. We emphasize,

we are considering thin current sheets with large amounts of free magnetic energy

present. The important topics of how the sheets become thin and how the magnetic

energy is stored is outside the scope of this study.

3.2 Theory

Here, we develop a prediction of the speed at which the X-line spreads in

each out-of-plane direction as a function of guide field and derive the critical guide

field at which the mechanism causing the spreading changes from current carriers to

Alfvén waves. To do so, we make the following simplifying assumptions. We treat

a quasi-two-dimensional system, meaning that the equilibrium parameters do not

depend strongly on the direction normal to the reconnection plane for all time. We

assume the current layer is flat, so that the current sheet is either not curved or that

the curvature does not strongly contribute to the dynamics. We assume the plasma

parameters are symmetric on either side of the current layer; asymmetries [Cassak

& Shay (2007)] are not considered here. Finally, we assume that a single mode

dominates the dynamics; in previous simulations, it was shown that when multiple

modes of reconnection occur, they can impede the spreading of X-lines [Schreier

et al. (2010)]. This assumption is valid at early times and in systems in which only

a single mode is present.

First, we estimate the spreading speed in each direction for each spreading

mechanism. We begin with the speed due to the current carriers. From Ampère’s
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law, the current is J = cr ⇥ B/4⇡, where B is the magnetic field. For simplicity,

we first assume the electrons carry the out-of-plane current, so that the electron

velocity is ve = �J/ne, where n is the electron density and e is the proton charge.

Using a scaling argument, the electron speed veg in the out-of-plane direction is

veg ⇠
cBrec

4⇡ne�
, (3.1)

where Brec is the strength of the reconnecting magnetic field upstream of the electron

layer, � is the thickness of the current layer, and g refers to the direction of the guide

field. As has been previously established [Huba & Rudakov (2002); Shay et al.

(2003); Karimabadi et al. (2004); Lapenta et al. (2006); Lukin & Linton (2011);

Nakamura et al. (2012)], this is the X-line spreading speed in the absence of a guide

field. In the strong guide field limit, the observations suggest the spreading speed is

the Alfvén speed cAg based on the guide field, given by

cAg =
Bgp

4⇡min
, (3.2)

where Bg is the strength of the guide field and mi is the proton mass.

Our hypothesis is that the X-line spreading speed in the direction of the elec-

tron out-of-plane flow, which we call vXe, is the larger of veg and cAg:

vXe = max{veg, cAg}. (3.3)

From this, one can find the critical guide field Bcrit,e at which the spreading mech-
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anism changes, where the e subscript denotes the critical field for motion in the

direction of the out-of-plane electron flow. Setting Eq. (3.1) equal to Eq. (3.2) and

solving for Bg gives

Bcrit,e ⇠ Brec

di

�
, (3.4)

where di = c/!pi is the ion inertial length and !pi = (4⇡ne2/mi)1/2 is the ion plasma

frequency. Since � is typically less than di as the current is set by electron scales,

we expect Bcrit,e > Brec. Bcrit,e is on the order of and slightly larger than the

reconnecting magnetic field strength upstream of the ion dissipation region.

We perform a similar analysis for the spreading speed in the direction of the

ions vXi. Since electrons carry the current, the ion speed vig in the out-of-plane

direction is

vig = 0. (3.5)

Therefore, the X-line spreading speed in the direction of the ion out-of-plane flow

vXi = max{vig, cAg} is given by the Alfvén speed based on the guide field,

vXi = cAg. (3.6)

Since vig = 0, the critical guide field Bcrit,i for spreading in the direction of the ion

out-of-plane flow is

Bcrit,i = 0. (3.7)

These results can be generalized to systems with both electrons and ions carry-

ing some of the current. Following Nakamura et al. (2012), we define the fraction of
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the total current Jz carried by the ions as ↵, which is assumed known or measurable.

Letting Jiz = ↵Jz, one has Jez = (1 � ↵)Jz so that Jz = Jiz + Jez. By performing

a similar analysis as before, one finds the out-of-plane electron and ion flow speeds

due to current carrying are

veg ⇠ (1� ↵)
cBrec

4⇡ne�
,

vig ⇠ ↵
cBrec

4⇡ne�
, (3.8)

which generalizes Eqs. (3.1) and (3.5). The X-line spreading speeds in the direction

of the electron and ion out-of-plane flow are

vXe = max{veg, cAg},

vXi = max{vig, cAg}, (3.9)

respectively. Finally, the critical guide fields at which the mechanism for X-line

spreading changes from the current carriers to Alfvén waves in the direction of

electron and ion flows are given by

Bcrit,e ⇠ (1� ↵)Brec

di

�
,

Bcrit,i ⇠ ↵Brec

di

�
, (3.10)

respectively, which generalizes Eqs. (3.4) and (3.7).

The predictions derived here are summarized pictorially in Fig. 3.5, where the
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Figure 3.5: Schematic diagram showing the mechanisms that cause X-line spreading.
The thin blue arrows are the reconnecting magnetic field components, the yellow
arrow is the total current. The red arrows denote the speed of the current carriers;
the thick blue arrows denote the speed of Alfvén waves along the guide field. The
top, middle, and bottom diagrams show the spreading mechanisms for strong, weak,
and intermediate guide field strengths. In each case, X-line spreading occurs at the
faster speed in each direction.
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current is depicted by the yellow arrows and the reconnecting magnetic fields are

the thin blue lines. The thick arrows denote the speeds of the current carriers (in

red) and the Alfvén speed (in blue) in each out-of-plane direction. The top, middle,

and bottom plots show the results for strong, weak, and intermediate guide field

strengths, respectively. In each case, the X-line spreading speed is the longer of the

arrows on either side. Note, there is nothing preventing the spreading mechanisms

from being di↵erent in the two directions, i.e., Alfvén waves in one direction and

current carriers in the other, if that is what Eq. (3.10) dictates for the system

parameters.

3.3 Simulation Setup

To test the predictions of X-line spreading, three-dimensional numerical sim-

ulations are performed using the two-fluid code F3D [Shay et al. (2004)]. The

code updates the continuity, momentum, and induction equations with the gen-

eralized Ohm’s law including electron inertia. Magnetic fields and densities are

normalized to arbitrary values B0 and n0. Velocities are normalized to the Alfvén

speed cA0 = B0/(4⇡min0)1/2. Lengths are normalized to the ion inertial length

di0 = c/!pi0 = (mic2/4⇡n0e2)1/2. Times are normalized to the ion cyclotron time

⌦�1
ci0 = (eB0/mic)�1, electric fields to E0 = cA0B0/c, and temperatures to T0 =

mic2
A0.

Simulations are performed in a three-dimensional domain of size Lx⇥Ly⇥Lz =

51.2 ⇥ 25.6 ⇥ 256.0 di0, where x is the direction of the oppositely directed field, y
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corresponds to the inflow direction if the simulations were two-dimensional, and z

is the direction of the initial current. The plasma is assumed to be isothermal and

there is no resistivity (⌘ = 0). Boundaries in all three directions are periodic, but

the system is long enough in the z direction that the periodic boundaries do not

a↵ect the dynamics on the time scales of import to the present study.

For simplicity, the simulations have the electrons carrying all of the initial

current (i.e., ↵ = 0). The electron inertia is me = mi/25. In previous simulations

with this electron mass (and confirmed in the simulations here), it has been observed

that the current layer thickness � thins down to the electron inertial scale de = 0.2 di

and the reconnecting magnetic field at the electron layer is Brec ' 0.4 B0 [Jemella

et al. (2003)]. Substituting this into Eq. (3.4), we predict a critical guide field of

Bcrit ' 2B0. (3.11)

Therefore, we can test the theory by running a series of simulations in which the

initial guide fields are Bg = 0, 0.5, 1, 1.5, 2, 2.5 and 3. Note, the scaling � ⇠ de and

Brec ⇠ 0.4 B0 may or may not be representative of naturally occurring reconnection;

care should be taken to investigate this for particular applications.

The initial configuration is a double tearing mode with two Harris sheets,

Bx0(y) = tanh[(y + Ly/4)/w0]� tanh[(y � Ly/4)/w0]� 1, with uniform initial tem-

perature T = 1 and a non-uniform plasma density to balance total pressure. Here,

w0 = 0.4 di0 is the initial current layer thickness. We choose this thickness to be com-

parable to the smallest value of the ion Larmor radius ⇢s = cs/⌦ci =
p

T/Bg ' 0.33,
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where cs is the sound speed and the latter expression is written in normalized units.

This scale is the Hall scale in the presence of a strong guide field [Zakharov et al.

(1993); Rogers et al. (2001)]. It is worth noting that the Hall scale increases smoothly

from ⇢s to di as the guide field is decreased to zero, which follows from a linear anal-

ysis of Hall-MHD waves [Rogers et al. (2001)]. Consequently, the smaller guide

field simulations start with a current sheet that is thin relative to the Hall scale,

and should onset rapidly. As the guide field is increased, the time to onset should

increase and it is expected that a hyper-resistive phase of reconnection will occur

before onset. This behavior will not adversely impact our study, as we will separate

out the times for which Hall reconnection is dominant.

We employ a grid scale of �x ⇥ �y ⇥ �z = 0.05 ⇥ 0.05 ⇥ 1.0 di0. Using

a stretched grid in the out-of-plane direction has been done before [Shay et al.

(2003)], and is acceptable since the in-plane kinetic-scale dynamics is on smaller

scales than the out-of-plane dynamics. To ensure the stretched grid scale in the

out-of-plane direction does not play a role in the numerics, some simulations are

confirmed by comparison with simulations with �z = 0.5 di0. All equations employ

a fourth-order di↵usion with coe�cient D4x = D4y = 2.5 ⇥ 10�5 in the x and y

directions. In the out-of-plane direction the fourth-order di↵usion coe�cient D4g

depends on the speeds in the out-of-plane direction. For Bg  2.0 the fourth-

order di↵usion coe�cient is D4g = 0.064 and for Bg = 2.5 and 3.0 the fourth-order

di↵usion coe�cient is D4g = 0.081 and 0.097, respectively. The values of D4g were

tested by varying the value by a factor of two to ensure that D4g does not play a

significant role in the dynamics.
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The inclusion of a guide field in these simulations changes the nature of re-

connection relative to previous work on X-line spreading. In three-dimensional pe-

riodic domains, it is well established that the linear tearing instability is excited

where k · B0 = 0, where B0 = Bx0x̂ + Bz0ẑ is the equilibrium magnetic field and

k = kxx̂ + kzẑ is the wave vector of the mode. The periodic domain enforces

that kx = 2⇡m/Lx and kz = 2⇡n/Lz, where m and n are integer mode numbers

which specify the number of X-lines in the x and z direction, respectively. In the

absence of a guide field, this condition is only satisfied where Bx0 = 0. With a

guide field, it is satisfied wherever q(y) = LxBz(y)/LzBx(y) = m/n is a rational

number, where q(y) is the safety factor well known in fusion applications. The y

locations where k · B0 = 0 is satisfied are called rational surfaces, and for the equi-

librium profile here, the modes are displaced from where Bx0 = 0 by a distance

ys = w0 tanh�1(nLxBg/mLzB0). Thus, modes in our simulations are excited on

multiple rational surfaces.

Reconnection is seeded using a coherent magnetic perturbation localized in

the out-of-plane direction of the form

By1 =
X

kx,kz

eB1 sin(kxx + kzz)fz(z), (3.12)

where eB1 = 0.1. Here, fz(z) is an envelope that localizes the perturbation in the out-

of-plane direction and is given by fz(z) = {tanh[(z +w0z)/6]� tanh[(z�w0z)/6]}/2.

We use w0z = 1; a plot of fz(z) is in Fig. 3.6. Random magnetic perturbations

that range from m, n = 0 to 20 with small amplitude 0.02 B0 are included with the
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Figure 3.6: The envelope fz(z) used to localize the magnetic perturbation in the
out-of-plane direction z.

initial conditions to break symmetry so that secondary islands are ejected.

In early simulations, we initially excite only the (m, n) = (1, 0) mode in

Eq. (3.12). Even though this mode is the strongest perturbation, oblique modes

with n 6= 0 grow from the noise and dominate the reconnection. This is consistent

with recent particle-in-cell (PIC) simulations [Daughton & Roytershteyn (2011)]

and linear theory [Baalrud et al. (2012)]. Oblique modes in reconnection have been

observed many times in fusion applications (see e.g., [Grasso et al. (2007)]). In light

of these results, we include oblique modes in Eq. 3.12) and compare the results with

the original simulations. The values of m and n are chosen so that the displacement

ys is less than w0. In this study, m = 1 for all simulations and n ranges from 0

to 3. Initially exciting oblique modes has no noticeable e↵ect on the results on the

development of reconnection. Thus, the results of this study are expected to be

independent of the modes used to seed reconnection. Note, although the modes are
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oblique, they are still quasi two-dimensional until they start interacting strongly.

It was shown [Schreier et al. (2010)] that interacting oblique modes can prevent

X-lines from spreading, so we focus on times early enough in the evolution that

oblique mode interactions have not yet occurred.

3.4 Results

To ensure numerical feasibility of the simulations in three dimensions, we

benchmark the simulations in two dimensions. The simulations are evolved from

t = 0 until nonlinear reconnection develops. In two dimensions, symmetry dictates

that the n = 0 mode is the only excited mode. The reconnection rate E, measured

as the time rate of change of the di↵erence in magnetic flux between the X-line and

O-line during a quasi-steady period, is approximately 0.08-0.1 for all simulations.

Also, as expected, the time until Hall reconnection begins increases as the guide

field increases since w0 is held fixed, and there is a brief hyper-resistive reconnection

phase before onset for stronger guide fields.

In the three-dimensional simulations, the evolution at z = 0 is very similar

to what is observed in two dimensions: the time scale of the development of re-

connection is comparable, and a hyper-resistive phase precedes Hall reconnection.

The reconnection rates can be compared, as well. The reconnection rate in three-

dimensions is measured by taking a cut of the z component of v⇥B in the y-direction

across the X-line; far from the current sheet, it asymptotes to the reconnection

electric field in a steady-state. The reconnection rates are in the 0.08-0.1 range,
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Figure 3.7: Cuts at di↵erent values of z of the out-of-plane current Jz for the Bg = 3
simulation. At t = 30 (top row), Hall reconnection is developing at z = 0 but not at
z = ±30. At t = 35 (bottom row), Hall reconnection has developed fully at z = 0
and is developing at z = ±30.

comparable to the two-dimensional results. One noticeable di↵erence, as discussed

earlier, is that oblique modes dominate over n = 0 modes in three-dimensions.

Each of the three-dimensional simulations display some form of X-line spread-

ing. This can be seen qualitatively in Fig. 3.7 for the simulation with Bg = 3. The

out-of-plane current Jz at time t = 30 (top row) and at time t = 35 (bottom row)

is displayed at three di↵erent out-of-plane positions: z = �30, 0, and 30 from left

to right. At the earlier time t = 30, a transition to fast (Hall) reconnection at

multiple sites at z = 0 has occurred, consistent with the development of multiple

oblique modes. At z = ±30, the reconnection is still hyper-resistive. At the later

time t = 35, the current sheet at all three positions in z has developed multiple Hall

reconnection X-lines. Thus, the Hall reconnection signal propagates bi-directionally

from z = 0 for Bg = 3. It is worth noting that the multiple oblique mode recon-

nection seen here is consistent with previous simulations, and the reason multiple
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Figure 3.8: Stack plots of Jmax(z) as a function of t and z. The vertical dashed green
lines indicate the range of time over which the spreading speed is measured, ti and
tf . The dashed white lines indicate the extent in z of the X-line; their slope gives
the speed of the spreading. Note, the images in the bottom row are on a di↵erent
scale in z than those in the top row.

X-lines appear despite the m = 1 mode being the dominant mode is that there are

multiple modes simultaneously excited on di↵erent rational surfaces.

To quantify the speed at which the X-line spreads, we must develop a system-

atic way to determine the extent of the reconnection region. As Hall reconnection

develops, the out-of-plane current Jz at the X-line becomes noticeably higher than

regions where reconnection is hyper-resistive. For each slice in z, we measure the

maximum out-of-plane current, which we call Jmax(z). These maximum values of

the current correspond to the location of the X-line for each position in z. The ex-

tent of the X-line can then be readily seen in a stack plot of Jmax(z) as a function of

t. Stack plots for all six initial guide fields in this study are displayed in Fig. 3.8. As

mentioned earlier, the plots only cover early times when the three-dimensional X-

line structure is well defined because the interaction of oblique modes make defining
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the X-line structure prohibitive.

The bright white regions in Fig. 3.8 correspond to the strongest currents and,

thus, the Hall reconnection X-lines. The dimmer areas outside of the white dashed

lines (the red to black colors) indicate the region undergoing hyper-resistive recon-

nection. As expected, the Bg = 0 simulation onsets almost immediately without a

hyper-resistive phase since w0 < di, while the onset time increases as the guide field

increases, leading to a longer hyper-resistive phase. Both phases of reconnection

spread in the z direction as time evolves; we focus on the Hall reconnection X-lines

in the present study.

From Fig. 3.8, the qualitative di↵erences in the nature of the spreading as a

function of the guide field can readily be seen. For the strong guide field simulations

Bg � 2, the X-line spreads symmetrically about z = 0 (top row), which is consistent

with our expectations for the strong guide field regime from Eq. (3.11). However,

for simulations with a guide field weaker than the predicted condition Bg < 2, we

observe di↵erent spreading behavior in the +z and �z directions (bottom row). For

the Bg = 1.5 case, there is bi-directional spreading, as observed in the stronger guide

field runs, but the spreading is not symmetric about z = 0. The spreading in the �z

direction appears marginally faster than in the +z direction. These di↵erences are

further amplified in the Bg = 1 simulation. With no guide field (Bg = 0), spreading

occurs primarily in the �z direction, with negligible spreading in the +z direction.

Since Jz is in the +z direction for this reconnection site, the propagation is in the

direction of the electron out-of-plane flow, consistent with previous work [Huba &

Rudakov (2002)].
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To make this quantitative, we measure the spreading speed of the X-line af-

ter Hall reconnection begins by finding the length of the X-line in the out-of-plane

direction; its time rate of change between an initial and final time is the spreading

speed. To do so, we note that the reconnection rate during hyper-resistive reconnec-

tion never exceeds 0.01. We observe that when the out-of-plane Hall electric field

EHg = (J⇥B)g/nec in a cut in the y direction through the X-line exceeds 0.01, the

reconnection has begun its transition to Hall reconnection. We also note empirically

that Jmax at the time of this transition is always close to 3.3, which is robust for all

the simulations performed here. Thus, we take Hall reconnection as occurring when

Jmax exceeds a threshold value of Jthresh = 3.3.

The time frame over which the spreading speed is measured is defined as

follows. The initial time ti is defined as the earliest time that Jmax exceeds Jthresh

over the entire range from z = ±5. This range of z is chosen because the initial

magnetic perturbation that seeds the X-lines is localized in this region, so genuine

spreading not being influenced by the growth of reconnection inside the initially

perturbed region requires the signal to leave this range in z. The final time tf

is defined for each simulation as the latest time in the evolution before multiple

oblique modes interact; this assessment is done visually by finding where the current

develops complicated structure as seen in Fig. 3.7. The length of the X-line at a

given time is defined as the extent in z for which Jmax exceeds Jthresh. The spreading

speed is calculated as the di↵erence of the length of the X-line between tf and ti

divided by the time di↵erence.

An example of this procedure is presented in Fig. 3.9, where representative
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Figure 3.9: Cuts of the stack plot for the Bg = 2.5 case plotted in Fig. 3.8. The
dashed (red) line and solid (blue) line are at ti = 18 and tf = 25, respectively. The
horizontal dotted line is at Jthresh as defined in the text. The vertical dotted lines
mark z = ±5, the approximate extent of the initial magnetic perturbation. The
green line denotes the change in length of the X-line between ti and tf .

data for the Bg = 2.5 simulation is shown. The initial time is ti = 18, which is the

earliest time that Jmax > Jthresh everywhere between z = ±5, as shown by the red

dashed line. The final time is taken to be tf = 25; a plot of Jmax(z) at tf is shown as

the blue line. The horizontal dotted line marks the current threshold Jthresh = 3.3

and the vertical dotted lines mark the boundary of z = ±5. The change in length

between the two times is the distance between the curves at Jthresh, marked by the

green line segments. The lengths and speeds are calculated separately for the ±z

direction because the speeds in the two directions may be di↵erent depending on

the strength of the guide field. For the Bg = 2.5 simulation, the change in length

in the +z and �z directions are 21 and 20 di0, respectively, and dividing by the

time di↵erence gives speeds of vXi = 3.0 cA0 for the speed in the +z direction (the

direction of ion out-of-plane flow) and vXe = 2.9 cA0 for the speed in the �z direction
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Figure 3.10: Spreading speeds vXi and vXe as a function of guide field Bg. The red
asterisks are the measured values of vXe; the solid red line is the prediction from
Eq. (3.3). The solid blue triangles are the measured values of vXi; the open triangles
are for simulations for which no spreading was measured. The dashed blue line is
the prediction from Eq. (3.6).

(the direction of electron out-of-plane flow).

The initial and final times ti and tf for each simulation are illustrated in

Fig. 3.8 as the vertical dotted green lines. The dashed white lines connect the

extent of the X-line at the initial and final times. By inspection, one can see that

the technique we employ to measure the extent of the X-line appropriately captures

the evolution of the X-line length. Also, since the region of stronger current is rather

straight between the beginning and final times, this implies the spreading speed is

approximately constant in time.
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The measured X-line spreading speeds vXe and vXi are calculated as the time

rate of change of the length of the X-line, which is equivalent to the slope of the

white dashed lines in Fig. 3.8. The results for the spreading speed in both directions

are plotted as a function of guide field Bg in Fig. 3.10. The measured value of the

spreading speed is given by the solid blue triangles for vXi and the red stars for vXe.

Note, vXi for Bg = 0.0 and 0.5 is plotted as zero as the hollow blue triangles. This

is because the Hall reconnection signal is found to not extend past z = ±5 for either

simulation during the time considered.

To compare these results to the theory, note that the electrons carry all of

the out-of-plane current in the �z direction in our simulations. Therefore, in the

weak guide field regime Bg < 2, Eq. (3.3) predicts that the spreading speed in the

direction of the electron current vXe is the speed of the electrons given in Eq. (3.1),

which is independent of Bg. When Bg � 2, the spreading speed is determined by

the Alfvén speed given by Eq. (3.2), which increases linearly with Bg. The predicted

speed of X-line spreading in the direction of the ion current vXi is the Alfvén speed

due to the guide field, as given by Eq. (3.6), which increases linearly with Bg for all

guide field strengths.

The predicted spreading speeds vXe and vXi are depicted in Fig. 3.10 by the

solid red line and the dashed blue line, respectively. Qualitatively, the data reveal

that the nature of X-line spreading is sensitive to the strength of the guide field. To

interpret this more quantitatively, we first discuss the estimated uncertainties in our

speed measurements. If we use a higher value of the current threshold Jthresh, the

spreading speed changes on the order of 15-20%, which we take as the uncertainty.
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We note that for the large guide field runs Bg � 2, the speeds in either direction are

within the uncertainties of each other. However, for Bg < 2, the speeds in either

direction are separated by more than their uncertainty. These two results suggest

that the spreading mechanism is the same in both directions for Bg � 2 and is

di↵erent in either direction for Bg < 2, which quantitatively agrees with Eq. (3.11).

For the absolute spreading speeds, when the estimated uncertainties are taken

into account, the measured values agree pretty well with the predicted speeds. It is

unexpected that the Bg = 3 speeds are slower than Bg = 2.5, but both are within the

uncertainties of the predicted value. Also, it is expected that for Bg = 0.5, a non-zero

value could be obtained if there had been a longer time before the oblique modes

started interacting. Therefore, we conclude that data in Fig. 3.10 quantitatively

support the theory presented in Sec. 3.2.

In summary, the mechanism of X-line spreading in the out-of-plane direction

is qualitatively di↵erent depending on the strength of the guide magnetic field. For

Bg � Bcrit,e, X-line spreading occurs bi-directionally along the guide field at the

Alfvén speed. For Bg  Bcrit,e, X-line spreading occurs bi-directionally along the

guide field, but the spreading speed in the direction of the current carriers is the

speed of the current carriers and in the direction opposite of the primary current

carriers the spreading speed is the Alfvén speed. Measurements of X-line spread-

ing for the hyper-resistive reconnection that precedes Hall reconnection agree with

the results obtained from measuring the Hall reconnection spreading (not shown).

Therefore, the main result of this study applies both to Hall and hyper-resistive

reconnection in a two-fluid model.
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3.5 Summary

In summary, the mechanism of X-line spreading in the out-of-plane direction

is qualitatively di↵erent for strong guide magnetic fields than it is for weak guide

fields. For weak guide fields, the reconnection signal is propagated by the current

carriers, as has previously been established; for strong guide fields, the reconnection

signal is propagated by Alfvén waves along the guide field. In general, the spreading

speed in either out-of-plane direction is given by the maximum of the speed of the

current carriers in that direction and the Alfvén speed based on the guide field, as

given by Eq. (3.9).

Because the changeover from one spreading mechanism to the other is abrupt,

there is a critical guide field strength (for each direction) at which the nature of

the spreading switches. This critical field depends only on the strength of the

reconnecting magnetic field, the ion inertial scale, the thickness of the electron

dissipation region, and the fraction of the current carried by each species, as given

by Eq. (3.10). When the guide field Bg exceeds the critical field, the spreading is

due to Alfvén waves; when it is smaller, the spreading is due to the current carriers.

The weak guide field result is consistent with previous numerical work of X-line

spreading [Huba & Rudakov (2002); Shay et al. (2003); Karimabadi et al. (2004);

Lapenta et al. (2006); Nakamura et al. (2012)], but the new result generalizes the

predictions to include a guide field.

The present results may be relevant for interpreting observations of reconnec-

tion in many settings. For example, in laboratory experiments, X-line spreading has
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been observed to be bi-directional and at the Alfvén speed in the strong guide field

limit [Katz et al. (2010)] and uni-directional in the small guide field limit [Dorfman

(2012)]. These results are consistent with the results of the present study.

Another potential application is for solar flares. Two-ribbon flare evolution

is marked by the ribbons moving apart from each other as time evolves, which is

interpreted as newly reconnected field lines piling on top of previously reconnected

field lines. In addition to this behavior, bi-directional spreading or elongation of the

ribbon in the direction parallel to the ribbons along the polarity inversion line has

been observed [Qiu (2009)]. It was shown that the spreading speed was consistent

with the Alfvén speed [Qiu (2009)]. Since the reconnection driving the flare is most

likely to have a sizable guide field, the present results suggest that this type of

bi-directional spreading at the Alfvén speed would be expected.

The Bastille Day flare exhibits this spreading, as well [Qiu et al. (2010)].

From geometrical considerations of the magnetic fields of the flare loops, it was

argued that the guide field was of comparable size as the reconnecting field, with

Bg ' 0.4 � 1.2 times the reconnecting field [Qiu et al. (2010)]. We can check this

using the present results and the observed properties of the spreading. From the

observations, the spreading speed ranged between 30� 70 km/s [Qiu et al. (2010)].

Let us assume the spreading is governed by Alfvén waves. Assuming an average

density of n = 1013 cm�3 [Qiu et al. (2010)], the guide field ranges from Bg ' 15�100

G using Eq. (3.2). The motion of the ribbons normal to the ribbons was 20 km/s

[Qiu et al. (2010)], which is expected to be correlated to the inflow speed at the

reconnection site. Since the inflow speed is often taken to be 0.1 of the Alfvén speed
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based on the reconnecting field, the reconnecting field strength Brec ' 140 G. These

results suggest the guide field is about 0.1-0.7 of the reconnecting field. Despite

the large uncertainties, the two techniques give similar results. This analysis is

obviously oversimplified and merely presented as an example of how the results can

be used, but it is hoped that future work will allow for a meaningful assessment of

the relative strengths of the guide and reconnecting fields. The reason this may be

useful, as emphasized by [Qiu et al. (2010)], is that the strength of the guide field is

known to influence the production of secondary islands [Drake et al. (2006)], and it

has been suggested that the presence of secondary islands (plasmoids) is important

for particle acceleration [Drake et al. (2006)].
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Chapter 4

Structure of Reconnection Exhaust

The previous chapter addressed guide field reconnection and explored the ba-

sic nature of X-line spreading. In nature, it is not di�cult to imagine reconnection

being limited to a particular region (e.g., by the geometry of the current sheet).

This type of reconnection will be referred to as localized reconnection (i.e., not

spreading). In this chapter, we study localized reconnection by using an anoma-

lous resistivity. What di↵erences exist, if any, between localized reconnection and

spreading reconnection?

This chapter addresses localized magnetic reconnection with and without a

guide field. Section 4.1 discusses previous work and observations where localized

reconnection may play a role. Theoretical predictions of the behavior of localized

reconnection are discussed in Section 4.2. In Section 4.3, the setup for simulations

that are used to test our predictions are discussed. The results for the simulations

are presented in Section 4.4. Applications in the solar wind and corona are discussed

in Section 4.5.

4.1 Introduction

In the solar wind, magnetic reconnection outflows, or exhausts, measuring

600RE (3.8 ⇥ 106 km) [Gosling et al. (2007)] and 390RE (2.5 ⇥ 106 km) [Phan
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Figure 4.1: (a) Diagram of a large-scale reconnection site that accounts for the total
length of the reconnection outflow, or exhaust. Reprinted with permission from
Phan et al. (2006). c� 2006 by Nature Publishing Group. (b) An alternate scenario
where the reconnection site is localized in the out-of-plane direction, and the exhaust
expands into the out-of-plane direction to create the extended exhaust signature.
Adapted from Phan et al. (2006).
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et al. (2006)] in length have been observed. A schematic of the Phan et al. (2006)

event is detailed in Fig. 4.1(a), where three satellites (ACE, Cluster, and Wind

separated by a large distance) measured the same reconnection signature within a

short period of time. The authors assumed that the extended exhaust was caused

by an extended X-line. If this is the case, what mechanism is responsible for these

large scale structures? It was suggested in Phan et al. (2006), the large exhaust

could be formed by a small X-line forming near the sun and spreading as the X-line

convects away from the sun. This configuration is depicted in Fig. 4.1(a), where the

X-line is symbolized by the solid red bar and the edges of the reconnection exhaust

are marked by the shaded blue planes which extend from the X-line. However,

the satellites only observed the exhausts, so it is not obvious that the X-line is

necessarily as extended as the exhausts. Another explanation that exists is the

X-line is localized in a small region and the exhaust extends into the out-of-plane

direction. This configuration is depicted in Fig. 4.1(b), where the X-line is marked

by the much shorter solid red bar and the edges of the exhaust are marked by the

solid black lines that extend from the X-line.

Localized reconnection may play a role in the creation of supra-arcade down-

flows (SADs); because of their sinusoidal nature they are often referred to as “tad-

poles”. SADs are dark features that appear at the top of coronal arcades. These

features descend towards the sun during solar flares [McKenzie & Hudson (1999);

McKenzie (2000)]. A TRACE image of SADs can be seen in Fig. 4.2, indicated by

the black arrows. It was suggested in Cassak et al. (2013), that localized recon-

nection is important for the creation of SADs, because localized reconnection can
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Figure 4.2: TRACE image of supra-arcade downflows (SADs) taken on April 21,
2002. The SADs are marked by the black arrows. Image credit: NASA/TRACE

create a collimated reconnection exhaust, which is important for carving out the

thin SADs. Applications to SADs will be discussed later. Some of the work pre-

sented in this chapter is in preparation to be submitted for publication [Shepherd

et al. (2014)], while some of this work was published in The Astrophysical Journal

Letters [Cassak et al. (2013)].

4.2 Theory

Here, we develop the physical characteristics and predictions of the structure

of localized reconnection as a function of guide field and length of the X-line. To do

so, we treat a quasi-two-dimensional system, meaning the equilibrium parameters

do not depend strongly on the direction normal to the reconnection plane over time.
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We assume the plasma parameters are symmetric on either side of the current layer;

asymmetries [Cassak & Shay (2007)] are not considered here.

We begin by examining two-dimensional magnetic reconnection. Figure 4.3

displays a sketch of a typical collisionless two-dimensional X-line. The purple lines

represent the magnetic fields above the current sheet, while the orange lines represent

the fields below the current sheet. The black squares represent the guide field

piercing the xy plane. When reconnection begins, the magnetic fields are pulled

towards the neutral line where they break and reconnect at the ‘X’ point. The

bent magnetic field lines caused by the magnetic reconnection process generate a

rotational discontinuity (RD) that propagates along the reconnected magnetic field

line, represented by the blue line. There is an inflow (viy) across the boundary, that

is then converted into reconnection outflow (vix). This inflow is required for mass

conservation to be satisfied, because the outflow continually expands into the inflow

direction.

How does this picture change when we consider a localized X-line? A recent

paper by Sasunov et al. (2012) addressed localized reconnection through a theoret-

ical approach to develop profiles for specific plasma parameters and compare these

profiles for magnetic field, plasma flows, temperature and density to observations of

reconnection in the solar wind. The predicted geometry of the magnetic reconnec-

tion exhaust is sketched in Fig. 4.4(a). The X-line is localized in the out-of-plane

(M) direction. The dotted lines that extend from the X-line are the last field lines

that reconnect at the edge of the X-line. Figure 4.4(b) is a view of the reconnection

exhaust at the location of the W plane located in the first image. The exhaust is

76



!"

#$%&''$%(&'"
)$*+',"

)-"."/"

)-"0"/"

)1"0"/"
2'"345'$"6+$7"&8""
9:"#$%&''$%(&'"

!"#$
!"%$

#:"

Figure 4.3: Sketch of a two-dimensional reconnection site. The red ion inflows Viy

flow through a rotational discontinuity and are turned into the green outflows Vix.
The exhaust will expand continually into the inflow direction for 2D reconnection.
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viewed downstream looking back towards the X-line. The inflow direction is the

vertical axis and the out-of-plane direction is along the horizontal axis. The thick

black lines mark the tangential discontinuities and form primarily the upper and

lower boundaries of the exhaust. The red lines are rotational discontinuities formed

by the reconnection process and compose the side boundaries of the exhaust. A

contact discontinuity is predicted to occur at the center of the exhaust. A con-

tact discontinuity separates two di↵erent plasma populations that are in pressure

balance; because there is pressure balance, there is no force between the two popu-

lations and they will not mix in the MHD model. In reality, this discontinuity would

not exist because the two populations will naturally mix.

These sketch qualitatively provide the structure of localized reconnection. We

now derive quantitative features of localized reconnection by geometry of the mag-

netic field. A sketch of the magnetic field geometry from the inflow direction is

shown in Fig. 4.5. The localized reconnection X-line of length 2W0z is marked by

the dashed line. The purple and orange lines mark the last field lines to be re-

connected at the edge of the X-line. In the diagram on the left, the purple lines

represent the magnetic fields above the current sheet, while the orange lines rep-

resent the fields below the current sheet. During reconnection, the magnetic field

lines break, reconnect, and then retreat from the X-line, as seen in the sketch on the

right. This sketch reveals that the exhaust extends into the out-of-plane direction;

the amount it does is determined by the opening angle ✓. From the diagram, we see
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the different regions between the discontinuities and shocks
are connected in analogy to the general boundary layer
procedure.
[6] Because the total pressure P = Bt

2/2m0 + p with p the
thermal plasma pressure is constant across a tangential dis-
continuity, P1 = P2, fast shocks need not be considered in the
decay process. Fast waves are essentially driven by pressure
gradients, whereas for a tangential discontinuity forces
related to shear in magnetic field and velocity are important.
Therefore, the scheme of the decay of the current sheet is
reduced to the simpler sequence A, S!(R!), C, S!(R!), A.
[7] If we can assume that reconnection happens such that

Bn/Bt ≪ 1, it follows that there must also appear a normal
flow Vn/VA " ɛ where VA = Bt/

ffiffiffiffiffiffiffiffim0r
p

is the Alfvén speed and
r the plasma density. The finite inflow velocity is needed to
replace the tangentially ejected plasma as a consequence of
balancing the tangential magnetic stresses by plasma inertia.
[8] In lowest order, the Rankine-Hugoniot system of

equations reduces to a system for the tangential components
Vt, Bt, the plasma density r, and plasma pressure p which
depend only on the initial parameters of the tangential dis-
continuity and do not depend at all on first order parameters
such as the reconnection rate, Bn/Bt. Moreover, they are not
related to the geometry of the reconnection line and the
scenario of reconnection, i.e. if reconnection is locally
switched on, switched off, steady state or impulsive in
character. Therefore, the profiles of Vt, Bt, p and r can be
considered to be very general and independent of the details
of the reconnection process. In the present study such char-
acteristic profiles are looked for in solar wind data from
Wind and are then compared with the predictions of the
nonlinear theory outlined above.

3. Kelvin-Helmholtz Stability of Tangential
Discontinuities

[9] The solution of the Riemannian decay problem deter-
mines tangential magnetic fields and flows as well as plasma
densities and pressures in lowest order and in the different
regions of the boundary layer (bl) like structure. On the other
hand, the detailed geometry of the bl is mainly dictated by
the length of the reconnection line (X-line) and the electric
field along the X-line as a consequence of the diffusive
process. As sketched in Figure 1, outflow regions with high
speed plasma are formed and these regions expand primarily
along the guiding magnetic fields outside the bl. This picture
is the result of a quantitative time-dependent model for
transient reconnection of skewed magnetic fields [Semenov
et al., 2004] and is quite similar to the qualitative picture
of magnetic flux tube reconnection first sketched by Russell
and Elphic [1978]. An important feature of the analytical
model is the fact that one expects after some time most of the

Figure 1. Reconnection geometry in case of skewed mag-
netic fields B1 and B2. (top) 3D sketch of a reconnected flux
tube, Alfvén discontinuities are shown in red, the heavy
black arrow shows the direction of the plasma flow inside
exhaust. (middle) W-plane: cross section perpendicular to
the current sheet; the internal structure of the exhaust con-
tains various MHD discontinuities. (bottom) Profiles of |V|,
|B|, number density n and temperature T expected along
the different cross sections A, B, C.

SASUNOV ET AL.: KH STABILITY OF RECONNECTION EXHAUSTS L06104L06104

2 of 7

Figure 4.4: The top panel displays the 3D geometry of the magnetic field. The
coordinate system for this figure is as follows, the outflow direction is L, the inflow
direction is N, and the out-of-plane direction is M. The dashed lines represent the
last reconnected field lines. The W plane marks the position of the cut in the bottom
panel. It is predicted that the 3D exhaust structure will consist of rotational discon-
tinuities (red), a slow shocks (green), a contact discontinuity (blue), and tangential
discontinuities (black). Reprinted with permission from Sasunov et al. (2012). c�
2012 by the American Geophysical Union.
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Figure 4.5: A sketch of the 3D reconnection geometry. The purple lines represent
the magnetic fields above the current sheet, while the orange lines represent the
fields below the current sheet. After reconnection begins, the reconnection exhaust
forms a cone-like structure into the out-of-plane direction with opening angle ✓ =
tan�1(Bx/Bz).

the opening angle is controlled by the strength of the guide field Bg,

✓pred = tan�1

✓
Bx

Bg

◆
, (4.1)

where Bx is the upstream asymptotic value of the reconnecting magnetic field.

The localized reconnection X-line of length 2W0z is marked by the dashed

line. The purple lines represent the magnetic fields above the current sheet, while

the orange lines represent the fields below the current sheet. During reconnection,

the magnetic field lines break and reconnect and then retreat from the X-line. The

colored magnetic field lines in this sketch are the reconnected field lines at the edge

of the reconnection region. As in the 2D picture Fig. 4.3, an RD propagates along

each reconnected magnetic field line as well as all areas in between the ends of the

reconnection region. Therefore, in 3D localized reconnection, the RD is localized in
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Figure 4.6: (a) Sketch of the magnetic field geometry in the xz-plane. Rotational
discontinuities propagate in a ribbon in the out-of-plane direction. (b) Sketch of
the 3D structure of the reconnection exhaust. The exhaust forms a parallelogram
structure, where each side of the parallel is either a TD or an RD.

a ribbon (shown as the red dashed line in Fig. 4.6(a)). Two RD ribbons propagate

above and below the current sheet in the out-of-plane direction. At tangential

discontinuity (TD) is formed at the boundary of the reconnected magnetic field

lines and the magnetic fields that do not reconnect. The ribbon structure of the

exhaust can be seen more explicitly in the 3D sketch in Fig. 4.6(b), where the

blue marks the location of TDs and the red lines mark the location where RDs are

located. We can now see that the reconnection exhaust has a distinct parallelogram

shape, with opposite sides being either an RD or a TD as in Fig. 4.4.

In three-dimensional reconnection, the reconnection exhaust can collimate af-
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ter a short distance from the X-line. We call the location where the collimation

begins the “turnover point”. Collimation begins when the reconnection exhaust

stops expanding in the y (inflow) direction. Using the magnetic field geometry we

can predict the location of the turnover point. As is shown in Fig. 4.6, the recon-

nected magnetic fields (or RDs) cross the z = 0 reconnection plane at the turnover

point indicated in Fig. 4.6(a). From Eq. 4.1, the magnetic field makes an angle ✓

with the z-axis, such that tan(✓) = Bx/Bg, whereBx is the reconnecting magnetic

field. Also, ✓ defines the angle between the turnover point distance and half-length

of the X-line, tan(✓) = lx/lz. Solving for the distance to the turnover point lx, we

find the distance to the turnover point to be

lx = lz
Bx

Bg

. (4.2)

The turnover point is indicated as the black circle in Fig. 4.6(a), where the last

reconnected field line passes through the z = 0 plane.

We can predict the thickness of the reconnection exhaust at the turnover point.

The expected thickness of the collimated exhaust was derived in Cassak et al. (2013).

Consider a recently reconnected flux tube with flux �� formed by reconnection at

an X-line of finite extent lz in the out-of-plane direction z and length �lx in the

outflow direction x. Just downstream of the X-line,

�� ⇠ Bylz�lx, (4.3)
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where By is the reconnected (normal) component of the magnetic field. After the flux

tube has convected downstream, the magnetic field in the exhaust is predominantly

in the z direction, so the flux is

��
0
= Bl

0

y
�lx, (4.4)

where ly is the width of the flux tube in the y direction, B = |B| is the magnitude

of the total magnetic field, and the prime denotes post-convection downstream. By

conservation of flux, �� = ��
0
, so solving Equations (4.3) and (4.4) for l

0
y

gives

l
0

y
⇠ lz

By

B
. (4.5)

Regardless of whether reconnection is 2D or 3D, the maximum value of By is approx-

imately 0.1 of the reconnecting field Bx since the normalized rate of fast reconnection

is close to 0.1 [Cassak et al. (2013)].

We can also use a geometric argument to predict the thickness of the reconnec-

tion exhaust at the turnover point. This is illustrated in Fig. 4.7 with the collimation

of the exhaust beginning at the turnover point located at lx and the thickness of the

exhaust at the turnover point is given as ly. The angle ✓ is a measure of the angle

between By and Bx and between ly and lx. If we use this geometry, we find that

tan ✓ = By/Bx = ly/lx, therefore ly = lxBy/Bx. We know that lx = lzBx/Bg, from
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Figure 4.7: Sketch of the xy magnetic reconnection geometry. The magnetic field
opens up into the inflow direction with an angle ✓, where tan ✓ = By/Bx = TE/Dx.

Eq. 4.2. Solving for the exhaust thickness yields

ly = lz
By

Bg

. (4.6)

This is similar to the argument provided by Cassak et al. (2013), except only the

guide field contributes to the denominator instead of the total magnitude of B.

4.3 Simulation Setup

To test the predictions on X-line structure, three-dimensional numerical sim-

ulations are performed using the two-fluid code F3D [Shay et al. (2004)]. The code

updates the continuity, momentum, and induction equations with the Ohm’s law

including electron inertia. The Hall term is turned o↵ for these simulations. Mag-

netic fields and densities are normalized to arbitrary values B0 and n0. Velocities

are normalized to the Alfvén speed cA0 = B0/(4⇡min0)1/2. Lengths are normal-

ized to an arbitrary length L0. Times are normalized to L0/cA0, electric fields to
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E0 = cA0B0/c, and temperatures to T0 = mic2
A0.

Magnetic reconnection is initiated and localized in the out-of-plane direction

by utilizing anomalous resistivity (⌘anom). Anomalous resistivity is discussed in more

detail in Chapter 1. Anomalous resistivity achieves fast reconnection and allows us

to fix the X-line length in the out-of-plane direction. The extent of the X-line is

dependent on the profile of ⌘anom, and the reconnection does not spread. Anomalous

resistivity has the form

⌘anom = ⌘0e
�(x/0.5)2�(y/0.5)2


tanh(z + w0z)� tanh(z � w0z)

2

�
, (4.7)

where ⌘0 = 0.01 and w0z sets the half-width of the X-line length in the out-of-plane

direction.

Simulations are performed in a three-dimensional domain of size Lx⇥Ly⇥Lz =

51.2 ⇥ 25.6 ⇥ 256.0 in arbitrary units, where x is the direction of the oppositely

directed field, y corresponds to the inflow direction if the simulations were two-

dimensional, and z is the out-of-plane direction. The plasma is assumed to be

isothermal. Boundaries in the x, y, and z directions are periodic, but the system

is long enough in the z direction that the periodic boundaries do not a↵ect the

dynamics on the time scales of import to the present study. A grid scale of �x ⇥

�y ⇥�z = 0.05⇥ 0.05⇥ 1.0 in arbitrary units. Using a stretched grid in the out-

of-plane direction has been done before [Shay et al. (2003)], and is acceptable since

the in-plane dynamics are on smaller scales than the out-of-plane dynamics. All

equations employ a fourth-order di↵usion with coe�cient D4x = D4y = 2.5 ⇥ 10�5
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in the x and y directions. In the out-of-plane direction the fourth-order di↵usion

coe�cient D4g depends on the speeds in the out-of-plane direction. For Bg = 0.0

the fourth-order di↵usion coe�cient is D4g = 0.064 and for 3.0 the fourth-order

di↵usion coe�cient is D4g = and 0.097, respectively. The values of D4g were tested

by varying the value by a factor of two to ensure that D4g does not play a significant

role in the dynamics.

The initial magnetic field configuration is a double tearing mode setup where

Bx(y) = B0


tanh

✓
y + Ly/4

W0

◆
� tanh

✓
y � Ly/4

W0

◆
� 1

�
, (4.8)

where B0 = 1 is the asymptotic value of the magnetic field and W0 = 0.2 is the initial

half-width of the initial current sheet in the inflow direction. We utilize a constant

and uniform temperature T = 1.0. Total pressure is balanced by non-uniform gas

pressure. The system parameters are the same used in chapter 3, except for the

exclusion of the Hall term.

4.4 Results

We show the primary di↵erence between the exhaust structure of localized

reconnection and spreading reconnection in Fig. 4.8 in the strong guide field regime,

Bg = 3.0. Figure 4.8 displays the reconnection exhaust vix in the xz plane in a

cut made through the X-line. The white ion flow represents a flow with a positive

velocity, and black ion flow represents a flow with negative velocity. Reconnection

for a system containing the Hall term is shown in panel Fig. 4.8(a). The square
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Figure 4.8: (a) Image of the exhaust in xz plane due to Hall reconnection. (b) Image
of the reconnection exhaust due to anomalous resistivity.

shape of the exhaust is attributed to the reconnection spreading in the out-of-plane

direction. For magnetic reconnection with an anomalous resistivity, the anomalous

resistivity is localized between z = ±10 (w0z = 10.0). As we see in Fig. 4.8(b), the

magnetic reconnection remains localized to z = ±10 and the reconnection exhaust

expands into the out-of-plane direction forming a cone-like shape. An important

item of note is that an exhaust of any length could be created with or without

spreading because of the presence of a guide field.

The cone-like shape of the reconnection exhaust is controlled by the magnetic

field geometry, as predicted by Eq. 4.1. Images of the reconnection exhaust as a

function of guide field in Fig. 4.9. As can be seen, the larger the guide field the more

the reconnection extends into the out-of-plane direction. We measure the opening

angle by finding the boundary of the exhaust beyond the initial reconnection region
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Figure 4.9: Plots of the reconnection exhaust in the xz plane for Bg = (3, 2, 1, 0)B0.

z > 10. The boundary is chosen by taking cuts of the exhaust vix in the outflow

direction and the edge is chosen to be where vix = 1.0. The measured angle is defined

as ✓measured = tan�1(Lzb/Lxb), where Lzb and Lxb are the lengths of the boundary in

the out-of-plane direction and outflow direction, respectively. The predicted (solid

line) and measured (triangles) opening angle ✓ as a function of guide field Bg are

shown for each simulation in Fig. 4.10. The measured angle agrees very well with

the predicted opening angle given by Eq. 4.1.

In the plane of reconnection (xy), we find the reconnection exhaust becomes

collimated in the inflow direction. We show the collimation e↵ect of localized recon-

nection with varying guide field in Fig. 4.11, where each image is of the reconnection
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Figure 4.10: Plot of opening angle ✓ versus guide field Bg. The predicted opening
angle given as ✓predicted = tan�1 Bx/Bz is marked by the solid line. The measured
angle is marked by the triangles. The measured opening angle agrees well with the
predicted opening angle.

exhaust vix. The inflow and outflow directions are the horizontal and vertical axes,

respectively. Each of these simulations have the same w0z = 10.0 parameter. For

reference, vertical dashed lines are added a distance 0.5 in arbitrary units from the

center of the exhaust. We see for Bg = 3.0, 2.0, and 1.0, the exhaust expands and

then collimates (runs parallel to the x direction) at the turnover point located at

x ⇠ 4, 7, and 10, respectively. According to Eq. 4.2, the turnover point will be

x ⇠ 3.3, 5, and 10 for Bg = 3.0, 2.0, and 1.0, respectively, in good agreement with

the simulations! As the guide field decreases the turnover point moves further away

from the X-line. For Bg = 0.35, in agreement with Eq. 4.2 the turnover point is

not within the plotted domain, but since a guide field is present, we expect to see a

turnover point at distances further downstream than what our simulation box will

allow. We also include a two-dimensional simulation for Bg = 3.0. As expected, we
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Figure 4.11: Collimation of exhaust vs. guide field.
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Figure 4.12: Reconnection rates for varying guide fields but for the same X-line
length, w0z. Exhaust collimation does not a↵ect the reconnection rates.

do not see any collimation of the exhaust confirming that the collimation e↵ect is

indeed a three-dimensional e↵ect. In Fig. 4.12, the reconnection rate as a function of

time is shown for each simulation from Fig. 4.11. We see here that that collimation

of the exhaust does not a↵ect the steady state reconnection rate. Therefore, while

in 2D a collimated exhaust implies slow reconnection, the reconnection rate is still

fast even with a thin exhaust in 3D!

The previous simulations held w0z constant. If we vary w0z and hold Bg
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Figure 4.13: Collimation of exhaust vs. X-line length w0z = (a) 60, (b) 30, and (c)
10.

constant, then according to Eq. 4.2 the turnover point will change accordingly.

The reconnection outflow vix is shown in Fig. 4.13 for w0z = 60, 30, and 10 in

panels (a),(b), and (c), respectively. For reference, vertical dashed lines are added

a distance of 0.5 from the center of the reconnection exhaust. The reconnection

exhaust expands in the y-direction continuously in panel (a) because the turnover

point is very far from the X-line, as expected from Eq. 4.2. As the length of the

reconnection site decreases, the collimation of the exhaust approaches the X-line.

For Bg = 3.0, our simulation domain can support an X-line length w0z ' 77 before

the turnover extends beyond the edge of the domain.

The collimation of the exhaust is a product of the rotational discontinuities

passing through the z = 0 plane. As discussed in Chapter 1, an important character-

istic of RDs is there is a flow normal to the discontinuity. In Fig. 4.14(a), an image
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Figure 4.14: (a) Image of the inflow Viy. The inflow terminates at the turnover
point of the exhaust at x ⇠ 3.3. (b) The collimation of the exhaust can be seen in
the image of the out-of-plane current Jz. The turnover is visible where the current
stops expanding in the y-direction and lies parallel to the x-axis.

of the y-component of the ion velocity or inflow is shown for Bg = 3.0 and w0z = 10

in the z = 0 plane. The inflow as expected is present along the exhaust in the x

direction until the turnover point near x = 10, after which the exhaust collimates.

Figure 4.14(b) is an image of the out-of-plane current Jz; after collimation begins

around x = 3.3 the inflow (viy) goes to zero. Indeed beyond the turnover point

the exhaust is bounded by tangential discontinuities (TD) above and below. TDs

do not allow particle flow across the discontinuity; in fact the current layer before

reconnection occurs can be considered a tangential discontinuity. The RD appears

to propagate until it reaches the turnover point and then transforms into a TD.

However as discussed in Section 4.2, this is a geometric e↵ect not a transformation.

We now look at the exhaust structure in the yz plane to compare with the

model proposed by Sasunov et al. (2012). Figure 4.15(a) is an image of the recon-

nection inflow viy for the Bg = 3.0 and w0z = 10 simulation. The yz cut is taken
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Figure 4.15: (a) Image of the inflow Viy in the yz-plane. The inflow indicates
the presence of an RD. (b) Image of the reconnection exhaust in the yz-plane for
Bg = 3.0. The parallelogram structure is evident.

after the exhaust collimates in the z = 0 plane. Two reconnection inflows are lo-

cated around z ⇠ �28 and +28, but not at z = 0. This happens because the RDs

propagate along reconnected field lines and leave the z = 0 plane. We can envision

the RDs forming a ribbon like structure which propagates from the X-line in the

outflow and out-of-plane direction. The top and bottom of the exhaust are TDs be-

cause there is no inflow across those boundaries. In Fig. 4.15(b), the parallelogram

shape of the exhaust is clearly visible, as predicted by Sasunov et al. (2012)

The width of the reconnection exhaust for each simulation, measured at the

turnover point as the half-width at half-max of Vix in the inflow direction as a func-

tion of x, is listed in Table 4.1. The columns of the table are the guide field (Bg), the

X-line length (w0z), and the turnover point (lx). The “flux” column is the predicted
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width of the reconnection exhaust according to Eq. 4.5. The “geometry” column

is calculated from the geometry argument given by Eq. 4.6. The measured exhaust

widths agree well with the predicted widths from both flux and geometry arguments.

In order to distinguish between the flux and geometry argument several simulations

with small guide field would need to be performed. It should be noted that even

though we do not observe a turnover point for some simulations we performed, we

expect a turnover to occur for any system as long as there is a guide field and the X-

line is localized. We only find a limited number of examples of exhaust collimation

due to the finite size of our simulation domain and numerical constraints.

Bg w0z lx Flux Geometry Measured

3.0 10 3.3 0.44 0.47 0.60

3.0 30 10.0 1.33 1.40 1.46

2.0 10 5.0 0.63 0.70 0.79

1.0 10 10.0 0.99 1.40 1.07

4.5 Applications

4.5.1 Solar Wind

We have shown that localized magnetic reconnection can still have an impact

outside of the region of reconnection in the presence of a guide field. The degree to

which the reconnection exhaust expands into the out-of-plane direction depends on

the strength of the guide field and width of the X-line. The magnetic reconnection
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observations made in the solar wind by Phan et al. (2006), where a reconnection

exhaust of at least 390 RE was observed, raises an important question. What is the

cause of these large scale reconnection exhausts? There are two possible explanations

for this observation. The first option is reconnection begins at small scales near

the sun, and as reconnection convects toward Earth, reconnection spreads into the

out-of-plane direction. The second possibility is that reconnection is finite and the

exhaust (not the reconnection) spreads into the out-of-plane direction. Both of these

scenarios will be discussed in the following few paragraphs.

One can ask whether the spreading of reconnection in the out-of-plane direction

could allow the X-line to be on the order of hundreds of RE. We can estimate the

size of an X-line. We assume that reconnection begins close to the Sun with an

initially small finite X-line length. Suppose the reconnection site convects out with

the solar wind at a speed vSW . (For simplicity, this calculation ignores variations

in solar wind speed, magnetic field strength, and plasma density as a function of

distance from the Sun.) Then, the time it takes to get to a position rf away from

the Sun is t ⇠ rf/vSW . If the speed of the spreading of the X-line is vX , then the

extent L of the X-line at rf is L ⇠ vXt ⇠ rfvX/vSW , which gives the upper limit on

the length of the X-line that could arise in the solar wind.

One can test the implications of this from the observations of the reconnection

event in the study [Phan et al. (2006)], where the solar wind speed is inferred

to be vSW = 340 km/s. The satellite observations occurred near the Earth, so

rf ' 1 AU ' 2.3 ⇥ 104RE. The Alfvén speed based on a guide field of strength

Bg = 4 nT and density n = 20 cm3 is cAg = 19 km/s. If we take this as the
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Figure 4.16: (a) Sketch of the reconnection exhaust in the xz plane. (b) Sketch of
the reconnection exhaust in they xy plane.

spreading speed vX , then the maximum length of the X-line is L ⇠ rfvX/vSW ⇠

1.3⇥ 103RE. This exceeds the length of the X-line reported by Phan et al. (2006),

which was 390 RE. In this event, the strength of the guide field was 0.35 of the

reconnecting field, so the Alfvén speed is the slower of the two velocities and the

extent of the X-line if spreading is due to current carriers is even longer. Thus,

while this calculation assumes that the reconnection proceeds at short distance

from the Sun, the calculation gives an indication that it is not impossible to achieve

reconnection X-lines of the lengths reported by Phan et al. (2006), but this does not

point to spreading as the only mechanism.

To predict the length of the X-line, consider the distance the observing satel-

lites (Dsat) are from the X-line to provide some clarity on how large scale structures

in the solar wind may be formed. Figure 4.16(a) displays a sketch of the xz-plane

structure of the reconnection exhaust. The solid black lines mark the edge of the
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exhaust. How far away must the satellites be to measure an exhaust of length lexh of

390RE? The solid black lines reference the boundary of the exhaust. In a localized

reconnection scenario, we calculate Dsat from the geometry of the magnetic field

where tan(✓) = (lexh � lxline)/2Dsat = Bg/Bx. We find that

Dsat =
(lexh � lxline)Bx

2Bg

. (4.9)

We now measure the satellite distance Dsat using the observation data from

Phan et al. (2006). A sketch of how the measurement is made is shown in Fig. 4.16(b),

where lcross is determined by the speed of the satellite divided by the crossing time of

the satellite through the reconnection exhaust. Using the geometry of the in-plane

magnetic field, we find tan(✓) = lcross/Dsat = By/Bx. Solving for Dsat yields

Dsat = lcross

Bx

By

, (4.10)

By is the strength of the magnetic field in the inflow direction. We find the distance

DSat ⇠ 270RE. Solving Eq. 4.9 for the X-line length gives

lxline = lexh �
2BgDSat

Bx

. (4.11)

For the parameters in the Phan et al. (2006) event, we find lxline � 200RE. The

minimum length of the 3D X-lines tends to be on the order of 10di [Shay et al.

(2003)]. The ion inertial length in the solar wind during the Phan et al. (2006)

event is found to be di ⇠ 50 km ⇠ 8 ⇥ 10�3RE. Therefore, the X-line responsible
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for this exhaust is at least hundreds of RE long, this is significantly larger than the

expected minimum length of 10di [Shay et al. (2003)]. Note, the thickness of the

exhaust is assumed to not be collimated.

4.5.2 Supra-Arcade Downflows

Supra-arcade downflows (SADs) are observed in the solar corona as dark

patches that descend towards the solar surface during solar flares [McKenzie & Hud-

son (1999); McKenzie (2000)] and are highlighted in Fig. 4.2. SADs are interpreted

as a density depletion in the high density plasma of the arcade, and because they

are comparatively thin and have a curved shape, they are often called “tadpoles”.

SADs are generally thought of as reconnected flux tubes that are contracting under

tension [McKenzie & Hudson (1999); McKenzie (2000); Asai et al. (2004); Sav-

age et al. (2010); Warren et al. (2011)]. Simulations of SADs [Linton & Longcope

(2006)] produced flux tubes with short-lived patchy reconnection which led to a

teardrop-shaped cross section. A recent study by Savage et al. (2012) posits SADs

are not contracting flux tubes, but the wake of the flux tube caused passing through

the plasma. A recent work [Cassak et al. (2013)] suggests that SADs are due to

reconnection that is persistent in time (as opposed to short-lived or bursty).

An issue with the idea that persistent reconnection explains SADs is that the

exhaust in 2D reconnection opens out in order to be fast, so this would produce wide

cavities, instead of the thin tadpole-like voids that are observed. However, we have

shown that localized reconnection remains collimated. This potentially shows how
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(a)
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Figure 5. (a) 3D view from the wz = 10 simulation of isosurfaces of the
outflow speed (in blue) showing the exhaust spreading in z but not y and a
relatively high value of density (gray) showing the depletion carved into the
arcade. Representative unreconnected (red) and reconnected (green) magnetic
field lines are shown. (b) The density isosurface from panel (a) rotated to reveal
the 3D SAD-like density depletion.

spatial localization of reconnection causes exhaust collimation,
a necessary ingredient to explain SADs.

5. DISCUSSION

We have presented a model with the critical physics for SAD
formation being (1) density stratification of the corona so that
the outflow jet can carve out a depletion, (2) reconnection being
continuous instead of bursty to prevent the coronal plasma
from filling in behind the SAD, and (3) localization of the
reconnection site in the out-of-plane direction in order for the
outflow jet to remain collimated over the large distances. Proof-
of-principle simulations confirm these three basic features.

The present model differs from previous ones in a number of
important ways and has a number of appealing aspects because
it potentially answers open questions about SADs. Previous
models suggested SADs are a result of spatially localized and
temporally bursty reconnection. It is not clear why reconnection
stops abruptly. In the present model, SADs are localized in space
but not in time. We argue the observed burstiness of SADs arises
from the abrupt onset of reconnection in disparate spatially
localized regions.

A very important question about the interpretation of SADs
as flux tubes or wakes behind them is why the high density
corona does not rapidly fill in behind the descending flux tube.
If it did, SADs would appear as a descending circle instead
of an extended depletion. In our model, elongated depletions
are a natural consequence of their formation as collimated
reconnection outflow jets. An alternative explanation within the
flux tube model has been explored in terms of peristaltic flow
(Scott et al. 2013).

Asai et al. (2004) previously discussed the correlation of
SADs with reconnection outflows, but no clear distinction was
made between outflow jets and plasmoids ejected from the
reconnection site. There are outward similarities between the
present model and one by Costa et al. (2009), Schulz et al.
(2010), Maglione et al. (2011), and Cécere et al. (2012). These
studies used a pressure pulse to emulate the effect of energy
deposition from reconnection. It was argued that shocks and
waves generated from the pulse interfere to produce voids. This
occurs even in a uniform plasma, while here the reconnection jet
itself carves the SAD and requires density stratification. With
the exception of Cécere et al. (2012), we know of no previous
simulation study to include density stratification.

The present model has similarities to a leading model for low
density plasma bubbles propagating earthward in the Earth’s
magnetotail (Pontius & Wolf 1990), though there are some
differences. In both models, reconnection jets impinge on a
higher density region underlying the reconnection site. In the
magnetotail, an extended reconnection X-line in the out-of-
plane direction forms and breaks up due to interchange into
numerous flow channels (Wiltberger et al. 2000). Here, we argue
the X-line is spatially localized, leading to a single flow channel.

Of course, SAD-like depletions in simulations should not be
overstated as real SADs. The many similarities to observed
SADs are qualitative rather than quantitative. Future work
will require quantitatively investigating whether the following
properties in the simulations agree with observations: sub-
Alfvénic sunward speed, deceleration, duration, penetration
depth, sizes, and energy content.
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Figure 4.17: (a) 3D view of the reconnection exhaust (blue isosurface) and density
(gray isosurface), showing that the exhaust collimates in the y direction but spreads
in the z direction. Notice, the exhaust creates a density depletion in the primary
island (analogous to an arcade). Non-reconnected field lines are shown in red and
reconnected field lines are shown in green. (b) The density isosurface from panel (a)
is rotated to reveal the 3D SAD-like density depletion.
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thin SADs are carved out by reconnection exhausts - if the reconnection is localized.

To see this, Fig. 4.17(a) shows the three-dimensional structure of the reconnection

exhaust (vix), represented by the blue isosurface, for the simulation w0z = 10 and

Bg = 3.0. Here, the green lines are non-reconnected field lines and the reconnected

field lines are shown in red. The limited expansion of the exhaust into the inflow (y)

direction and the large expansion in the out-of-plane (z) direction is clearly visible.

The grey surface is high density plasma in an island (analogous to a solar arcade)

populated by reconnection. In Fig. 4.17(b) the exhaust isosurface is removed and

the density is rotated around the x-axis and a very thin cavity is carved out of

the high density plasma, and this cavity is very similar in appearance to SADs.

Therefore, localized reconnection can produce thin density cavities in high density

regions and may be important in the formation of SADs.

4.6 Conclusion

We studied the e↵ect of localization of magnetic reconnection on the recon-

nection exhaust. Even though the reconnection is localized, the exhaust can still

expand into the out-of-plane direction in the presence of a guide field. This fact

is important for observations of reconnection in the solar wind. It is feasible to

get large scale reconnection structures through spreading and from localized recon-

nection. We believe that in the case of the Phan et al. (2006) event of a large

reconnection exhaust structure in the solar wind is the by-product of an extended

X-line (lxline � 200RE), by Eq. 4.11. However, we have shown small scale X-lines
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can produce large scale structures if there is a guide field. Therefore, an extended

exhaust does not imply an extended X-line.

We also discussed the collimation of magnetic reconnection exhausts when the

magnetic reconnection is localized and remains localized. It is expected that the

exhaust collimates as long as there is a guide field present and the reconnection

cannot spread. Localized reconnection with a guide field appears to be a very

important component of supra-arcade downflows (SADs), and due to collimation of

the exhaust of localized reconnection can carve thin, low density cavities in the high

density magnetic islands. The collimation of the exhaust is caused by the geometry

of the magnetic field.
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Chapter 5

Summary of Work

5.1 Summary of Results

In summary, magnetic reconnection is a plasma process in which stored mag-

netic energy is converted into thermal and kinetic energies of the surrounding

plasma. Oppositely directed magnetic field lines break and cross connect due to

a dissipative mechanism (e.g., resistivity). The now bent, reconnected field lines

retreat from the X-line (the point of reconnection) at the Alfvén speed due to the

magnetic tension in the reconnected magnetic field, therefore generating outflows.

The plasma leaving the reconnection site creates a region of low pressure, which in

turn pulls in more plasma that pulls in more magnetic fields. The new magnetic

fields that enter the region can now also break and reconnect. Reconnection can

continue in a steady-state. The process of reconnection is believed to be responsible

for the rapid energy release in solar flare events and geomagnetic substorms.

Magnetic reconnection can persist in various di↵erent regimes. The slowest

form of reconnection is Sweet-Parker reconnection, which is too slow to explain

observations. Sweet-Parker enhanced by secondary islands is faster than Sweet-

Parker reconnection rates and believed by some to explain energy release rates in

the corona. The regime of reconnection that can explain observed energy release

rates is Hall reconnection.
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This dissertation addresses three fundamental properties of magnetic recon-

nection. The first is the role of secondary islands in energy release, essentially can

secondary islands explain the energy release rates in solar explosive events? We then

transitioned from 2D magnetic reconnection into studying 3D dynamics of magnetic

reconnection, more specifically exploring how localized reconnection spreads into the

out-of-plane direction and the conditions responsible for the transition between two

di↵erent spreading mechanisms.

The final topic involves the structure of localized magnetic reconnection, and

a study into whether localized reconnection occurs in the solar wind and the forma-

tion of supra-arcade downflows (SADs). We summarize the results in the following

sections.

5.1.1 Role of Secondary Islands in Energy Release

We studied the transition from Sweet-Parker reconnection to Sweet-Parker re-

connection enhanced by secondary islands to Hall reconnection; the first simulation

to separate the three regimes of reconnection. Three main results from this study are

discovered. First, there exists a regime of reconnection with secondary islands but

without the Hall e↵ect playing a significant role. Second, secondary island reconnec-

tion is faster than Sweet-Parker, but still much slower than Hall reconnection. This

implies that secondary islands are not the cause of the fastest reconnection rates.

Thirdly, the onset of Hall reconnection ejects secondary islands in the vicinity of

the X-line. This all points towards the notion that Hall reconnection is the most
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e�cient form of energy release.

This study made some assumptions that will require further study. These

omissions include: ohmic heating, viscosity, Dreicer field e↵ects, a guide field, three-

dimensional e↵ects, and employing a Spitzer resistivity. Future research involving

solar flare energy release will be discussed in the next section.

5.1.2 Guide Field Dependence of X-line Spreading

We studied the guide field dependence of 3D X-line spreading during collision-

less magnetic reconnection. Theoretical arguments are used to predict the strength

of the guide field at which a transition from current carrying spreading to Alfvén

wave spreading occurs. In the weak guide field limit, spreading is due to the motion

of the current carriers. Spreading in the strong guide field limit is bidirectional

and is due to the excitation of Alfvén waves along the guide field. We hypothesize

that the X-line spreads bidirectionally with a speed governed by the faster of the

two mechanisms for each direction. A prediction on the strength of the guide field

(Bg = 2.0) when this transition occurs is found and tested with 3D simulations.

When the guide field is weaker than Bg = 2.0, the X-line spreads in the out-of-plane

direction by the current carriers (electrons for our study). Above the predicted guide

field strength, the X-line spreads in the out-of-plane direction by Alfvén waves.

A few assumptions are made in the formation of this work. We treat our

system as quasi-2D, meaning any variation in the system in the direction of the

current is negligible. The current sheets in all simulations performed are initially
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thin, meaning that free magnetic energy has already been stored. The plasma

parameters across the current sheet are assumed symmetric. The simulations employ

a two-fluid model, which does not fully capture electron scale physics. This may

make quantitative changes to our results (such as the estimate of � and the size

of Brec), but we do not expect qualitative changes to the theoretical results. The

simulations are isothermal and contain no thermal conduction.

Another main assumption is that only a single mode is dominating the dynam-

ics. However, the role of multiple oblique modes can play an important part of the

dynamics of the spreading process. As seen in our simulations, the X-line structure

is identifiable at early times but as the complicated nature of the oblique modes

develop, the X-line structure breaks up due to the interaction between the cur-

rent sheet. The interaction of oblique modes can impede X-line spreading [Schreier

et al. (2010)]. More work is necessary on the impact oblique modes have on X-line

spreading.

Future work would involve employing resistive-Hall MHD simulations for 3D

magnetic reconnection. An unanswered question during solar flares is how does

the energy get stored prior to the rapid energy release during the flare? Generally,

Sweet-Parker can be thought of as an energy storage phase of reconnection and

then a transition to fast reconnection releases this stored energy. In a few test

simulations, we found that Sweet-Parker reconnection does not spread in the out-of-

plane direction. This could have important implications on pre-flare energy storage,

and lead to a better understanding of the flaring cycle.
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5.1.3 X-line Structure for Localized Reconnection

We studied the e↵ect of localizing magnetic reconnection in the out-of-plane

direction by using an anomalous resistivity. We found that in the presence of a guide

field, the reconnection exhaust can expand into the out-of-plane direction forming a

ribbon-like structure. The opening angle of the ribbon is dependent on the strength

of the guide field. The exhaust is bounded by four MHD-discontinuities. Two RDs

allow plasma to enter the reconnection exhaust and are caused by reconnected field

lines. The other boundaries are TDs which are caused by unreconnected layers of

magnetic field that bound the collimated portion of the reconnection exhaust.

The expansion of the reconnection exhaust is relevant to the solar wind, and

the collimation of the exhaust may be vital in the formation of supra-arcade down-

flows (SADs). The solar wind observation from Phan et al. (2006) of a reconnection

exhaust 390RE long is believed to be a product of an extended X-line and not re-

connection being localized. Calculation of the length of the X-line reveal that the

Phan et al. (2006) event was at least 200RE in length. Cassak et al. (2013) claims

that the SADs require magnetic reconnection to be localized. If the exhausts spread

in time, the density carved out by the reconnection exhaust would not be long, thin

structures but large swaths of darkening.

This model localized the reconnection with an anomalous resistivity and ne-

glected the Hall term. Future work would include localizing the reconnection by the

magnetic field geometry by fluting the current sheet (e.g., making the current sheet

thinner near the middle of the out-of-plane simulation domain and wider at the
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edges) and including the Hall term, thus reintroducing spreading e↵ects. This could

have applications for sympathetic flares, which are flares that are triggered by the

disruption of the magnetic field in the upper corona caused by other flares. A sin-

gle flare has been observed triggering nearby explosive events [Török et al. (2011)].

Creating multiple fluted current sheets in the same simulation domain could address

sympathetic flares.
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