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Abstract

Energy Conversion in Plasmas out of Local Thermodynamic
Equilibrium: A Kinetic Theory Perspective

Mahmud Hasan Barbhuiya

The study of energy conversion in collisionless plasmas that are not in local
thermodynamic equilibrium (LTE) is at the leading edge of plasma physics
research. Plasma constituents in such systems can exhibit highly structured
phase space densities that deviate significantly from that of a Maxwellian. A
standard approach has emerged in recent years for investigating energy con-
version between bulk flow and thermal energy in collisionless plasmas using
the non-LTE generalization of the first law of thermodynamics. The primary
focus is placed on pressure-strain interaction (PS) term, with a particular
emphasis on its non-LTE piece called Pi � D. Recent studies have found that
Pi � D can be negative, which makes its identification as collisionless vis-
cous heating counterintuitive. A kinetic understanding of Pi � D has been
limited. We argue that the non-LTE generalization of the first law of thermo-
dynamics and subsequent attempts to extend thermodynamics overlooks the
kinetic aspects associated with phase space densities having arbitrary shapes
that can deviate significantly from a Maxwellian. Only changes in work due
to compression that changes the zeroth moment of the phase space density,
i.e., the number density, and Pi � D and heat flux which change the second
moment, i.e., e↵ective temperature are considered by the non-LTE general-
ization of the first law of thermodynamics. However, it remains agnostic to
energy conversion associated with changes to any higher moment of the phase
space density. We address these limitations by first developing a kinetic un-
derstanding of Pi � D and introducing an alternative decomposition of the
PS term in Cartesian coordinates which separates the physics of converg-
ing/diverging flows from shear deformation. We further find that in magnetic
field-aligned coordinates, the PS term can be decomposed into eight groups
of terms, each corresponding to a di↵erent physical mechanism. Lastly, we
develop a first-principles theory of the energy conversion associated with all
higher moments of the phase space density. Using particle-in-cell simulations
of a well understood non-LTE system, i.e., two-dimensional antiparallel mag-
netic reconnection, we first examine the decompositions of PS term in both
Cartesian and magnetic field-aligned coordinates. This enables us to identify
the predominant mechanisms contributing to positive and negative PS terms
during reconnection, thereby facilitating the interpretation of numerical and
observational data. Additionally, simulation results reveal that energy conver-
sion associated with higher-order moments can be locally significant by being
a substantial fraction of the internal energy and even surpassing it in regions
characterized by strongly non-LTE phase space densities. These results may
be useful in numerous plasma settings, such as heliospheric, planetary, and as-
trophysical plasmas, and for other non-LTE phenomenon such as turbulence,
shocks and wave-particle interactions.
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ẑ, and �t is the time step. . . . . . . . . . . . . . . . . . . . . . . . . 231

A.2 Data from the fitting method described in Sec. A.4.2 for all simu-
lations. The first column gives the value being varied, and nr, v?0,
and vTh are the ring density, major radius, and minor radius. The �
values are standard deviations from the mean from cuts in the ? 1
and ? 2 directions, and 95% err is the error calculated using 95%
confidence bounds from the fit. . . . . . . . . . . . . . . . . . . . . . 237

A.3 Upstream plasma parameters from the simulations using the method
described in Sec. A.4.2. The first column gives the value being varied,
Bup,e is the upstream magnetic field, nup is the upstream density, and
Te,up is the upstream temperature at the EDR edge. The last two
columns give the theoretical predictions for the major radius v?0 and
minor radius vTh based on the upstream values using Eqs. (A.2) and
(A.3), respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

x



List of Figures

1.1 Sketch of a one-dimensional Maxwellian distribution function, where
the black curve shows the distribution of particles as a function of
velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Sketch of a discretized phase space where the red lines show the uni-
formly spaced grid with phase space area�x�v for a 2-D phase space.
Green circles show the N particles populating this phase space. For
illustrative purposes, there are phase space bins shown with few or
no particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Sketch of a discretized phase space bin with particles (shown by green
circles) moving in the phase space from location 1 denoted by (x, v)
to location 2 denoted by (x+�x, v +�v), with the phase space bin
at location 2 losing some particles due to sinks (denoted by miss-
ing green-colored particles) and gaining few particles due to sources
(denoted by dark green circles) that can abruptly change f . . . . . . 14

1.4 Sketch of the 2-D geometry of reconnection, tilted in the x� y plane.
Please refer to the text for a detailed description. . . . . . . . . . . . 33

1.5 Sketch of the 2-D geometry of anti-parallel reconnection. Please refer
to the text for a description. . . . . . . . . . . . . . . . . . . . . . . . 39

2.1 Plot of the magnetic field perturbation of the form given by Eq. (2.8)
shown in panel (a) and Eq. (2.9) shown in panel (b) that seed an X-O
line pair in lower current sheet at (x, y) = (9.6, 1.6) and upper current
sheet at (x, y) = (3.2, 4.8) when simulation is initialized, shown by a
sketch in panel (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2 Plot of the total energy density (panel (a)) and change in total energy
density (panel (b)), for the whole simulation domain, as a function of
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3 A 1-D cut (taken at the lower X-line) of the kinetic entropy density
for electron se centered around the lower X-line at t = 0 displaying
its profile. In black is shown the simulated se for �ve = 1.33, and in
red dashed is shown the theoretical profile. . . . . . . . . . . . . . . . 62

2.4 A 1-D cut (taken at the lower X-line) of the z-component of velocity-
space kinetic entropy density flux Jv,z for electrons centered around
the lower X-line at t = 0 displaying its profile. In black is shown the
simulated curve and in red dashed is shown the theoretical profile,
given by Eq. (2.13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xi



2.5 1-D cut (taken and centered around the lower X-line) of the z-compon-
ent of velocity-space thermal kinetic entropy density flux Jth,v,z for
electrons at t = 0. Panels (a) and (b) show Jth,v,z simulated from our
implementation in p3d and post-processed, respectively. The green
curve in panel (a) shows the profile of the weight of the macroparti-
cles, the red dashed line denotes the theoretical value and the black
curves are the simulated values in panels (a) and (b). In panel (c),
the di↵erence between the simulated Jth,v,z shown in panel (a) and
(b) is plotted, where we observe less than a 1% error when comparing
the two methods of obtaining J th,v. . . . . . . . . . . . . . . . . . . . 66

2.6 1-D cut (taken and centered around the lower X-line) of relative en-
tropy for electrons at t = 0 using PPG = 25,600. Panel (a) shows
relative entropy density sv,rel and (b) shows relative entropy per par-
ticle sv,rel/n simulated from our implementation in p3d. The green
curve in panel (a) shows the the non-uniform macroparticles weight,
red dashed line denotes the theoretical value and the black curves
denote the simulated values in panels (a) and (b). Panels (c) and (d)
repeat panel (b) but for PPG = 6400 and PPG = 400 simulations,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.7 Plots of 1-D cuts (taken and centered around the lower X-line) for
electrons at t = 0. In black, red, and green are simulated sv/n, the
simulated sv,E/n, and the computed value of sv,rel/n, respectively. . . 72

2.8 Plots of d(sv,rel)/dt for electrons at t = 13 are shown. Panel (a) and
(b) show 2D plots centered around the lower X-line, with the former
displaying data from p3d implementation of relative entropy density
and the latter data obtained via post-processing. Panel (c) and (d)
show overplots of the 1-D cuts (taken and centered at the X-line) of
data shown in panel (a) (in black color) and (b) (in red color), with
former showing the horizontal cut and the latter showing the vertical
cut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.9 Plot of reconnection rate E and its instantaneous time rate of change
dE/dt as a function of time in black and red, respectively, for the
lower current sheet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.10 1-D cuts of Pi � D for electrons (taken and centered at the lower X-
line), with panel (a) showing the horizontal cut and panel (b) showing
the vertical cut. In both panels, various smoothing procedures are
overplotted with the raw simulation data (black curves) and are color-
coded as described in the legend. . . . . . . . . . . . . . . . . . . . . 78

xii



3.1 Sketch of representative contributions to the pressure-strain interac-
tion in the fluid description. Black shapes are the initial fluid ele-
ments, and bold arrows show the bulk flow directions. The dashed
arrows map the change between initial and final shapes of the fluid
elements. (a) Pressure dilatation (red), showing compression, (b) nor-
mal deformation (blue), and (c) shear deformation (green). Panels
(a) and (b) are essentially copies of Figure 1 from Ref. (Del Sarto
& Pegoraro, 2018); panel (c) is new. Modified with permission from
Figure 1 of “Shear-induced pressure anisotropization and correlation
with fluid vorticity in a low collisionality plasma,” by Daniele Del
Sarto and Francesco Pegoraro, Monthly Notices of the Royal Astro-
nomical Society, 475, 181 (2018). . . . . . . . . . . . . . . . . . . . . 90

3.2 Sketches showing the physical interpretation of PDU, i .e., heating via
converging flow, in kinetic theory, ignoring body forces and collisions
for simplicity. Magenta ellipses denote a 2D slice of the phase space
density f in the (vx, vz) plane given by bi-Maxwellian distributions
with Pk > P?, where x is a perpendicular direction and z is parallel.
(a) Phase space densities at initial time t = t0 at three locations
at and near z = 0. The vertical bulk flow velocity uz, denoted by
the magenta arrows, is converging in the parallel direction. (b) The
phase space density at z = 0 at a slightly later time t = t0 + dt.
The phase space densities labeled 1, 2, and 3 in panel (a) evolve
to their associated positions labeled in panel (b). The phase space
density at this time is broader in vz, implying an increase in thermal
energy density. Note, Pi � D is positive for this case. (c) and (d) are
analogous for the same phase space density except with converging
bulk flow in x. There is an increase in the thermal energy density
in the phase space density at x = 0 at t = t0 + dt in panel (d).
Interestingly, Pi � D is negative for this case. . . . . . . . . . . . . . . 94

3.3 Sketch illustrating the kinetic theory explanation of why Pi � Dshear

leads to heating or cooling. (a) Array of sketches at locations in
position space (x, z) near the origin at the initial time t0. Each sketch
contains a phase space density f in the (vx, vz) plane in blue and red,
where blue represents relatively low f and red represents relatively
high f . Such phase space densities have Pxz < 0. The placement
of the phase space density in each axis system reveals its bulk flow
u, denoted for each f by the magenta arrow. The flow profile has a
representative form (ux, uz) = (0, x). (b) Sketch of the phase space
density at the origin at a slightly later time t = t0+ dt. The portions
of the phase space densities in (a) labeled 1 and 2 evolve to make
up the portions of the phase space densities in (b) labeled 1 and
2, respectively. For this flow profile, there is a net displacement of
particles away from the velocity space origin, implying an increase in
thermal energy density. . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xiii



3.4 Sketch illustrating the kinetic theory explanation of why (a) symmet-
ric shear (pure straining motion) can lead to heating/cooling, while
(b) anti-symmetric shear (rigid body rotation) cannot. In each sketch,
the grid in x and z denotes physical positions in the environment of
the origin (x, z) = (0, 0). Each red and blue box denotes a phase
space density f with a negative Pxz in the (vx, vz) plane at the loca-
tion in question. The local bulk flow u is denoted for each f with
a magenta arrow. The flow profiles are (a) (ux, uz) = (z, x) and (b)
(ux, uz) = (z,�x). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1 Representative sketches of the eight sets of terms in the decomposition
of the pressure-strain interaction in field-aligned coordinates. Black
arrows represent the magnetic field B. Green and blue arrows denote
the curvature and binormal directions, respectively. Red arrows de-
note the bulk flow u. The eight sketches represent (a) parallel flow
compression �PS1, (b) perpendicular flow compression �PS2, (c)
shear of parallel flow in the perpendicular direction �PS3, (d) shear
of perpendicular flow in the perpendicular and/or parallel directions
�PS4, (e) perpendicular geometrical compression �PS5, (f) torsional
geometrical compression �PS6, (g) parallel geometrical shear �PS7,
and (h) torsional geometrical shear �PS8. . . . . . . . . . . . . . . . 122

5.1 Two-dimensional profiles of the (a)-(f) six independent elements of
the electron pressure tensor P, (g)-(i) three components of bulk elec-
tron velocity u, (j)-(l) three components of the magnetic field B,
and (m)-(r) six non-zero elements of the strain-rate tensor ru, as
labeled in each panel. Representative magnetic field projections in
the xy plane are in black. [Associated dataset available at http:
//dx.doi.org/10.5281/zenodo.7117619]. . . . . . . . . . . . . . . . 142

5.2 Pressure-strain interaction for electrons in a reconnection simulation.
(a) The pressure-strain interaction �P : S. (b) Pressure dilatation
�P(r · u) and (c) Pi � D, giving the compressible and incompress-
ible parts. (d) PDU and (e) Pi � Dshear, giving the flow converg-
ing/diverging and flow shear parts. The dotted-line in (a) is the
path along which 1D cuts are taken in Figs. 5.3 and 5.6. [Associated
dataset available at http://dx.doi.org/10.5281/zenodo.7117619]. 144

5.3 Pressure-strain interaction along the 1D path shown in Fig. 5.2(a).
L0 is the distance along the dotted path from the left. �P : S
is in black, PDU is in red, and Pi � Dshear is in blue. The shading
marks the regions of negative (blue) and positive (red) pressure-strain
interaction. [Associated dataset available at http://dx.doi.org/
10.5281/zenodo.7117619]. . . . . . . . . . . . . . . . . . . . . . . . 149

xiv

http://dx.doi.org/10.5281/zenodo.7117619
http://dx.doi.org/10.5281/zenodo.7117619
http://dx.doi.org/10.5281/zenodo.7117619
http://dx.doi.org/10.5281/zenodo.7117619
http://dx.doi.org/10.5281/zenodo.7117619


5.4 For the same data as in Fig. 5.1, 2D profiles of the (a)-(f) six inde-
pendent elements of the electron pressure tensor P and (g)-(i) three
components of bulk electron velocity u in field-aligned coordinates.
The magnetic fieldB is plotted again in (j)-(l) for convenience. Repre-
sentative magnetic field projections in the xy plane are in black. [As-
sociated dataset available at http://dx.doi.org/10.5281/zenodo.
7117619]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5 Decomposition of the pressure-strain interaction �(P ·r) ·u for elec-
trons in field-aligned coordinates classified according to their phys-
ical causes. Bulk flow compression in the (a) parallel �PS1 and
(b) perpendicular �PS2 directions. Bulk flow shear for (c) paral-
lel flow varying in the perpendicular direction �PS3, (d) perpen-
dicular flow varying in the perpendicular direction �PS4,a, and (e)
perpendicular flow varying in the parallel direction �PS4,b. Ge-
ometrical compression terms due to (f) perpendicular flow �PS5

and (g) torsion �PS6. Geometrical shear terms due to (h) paral-
lel flow �PS7 and (i) torsion �PS8. [Associated dataset available at
http://dx.doi.org/10.5281/zenodo.7117619]. . . . . . . . . . . . 154

5.6 Pressure-strain interaction along the 1D cut shown as the dotted
path in Fig. 5.2(a). L0 is the distance from the left along the dot-
ted path. In both panels, the pressure-strain interaction �P : S
is in black. (a) Contribution due to each �PSj term, with com-
pression terms in red and shear terms in blue. (b) The pressure-
strain interaction contribution �P : Suk dependent on uk (blue)
and the pressure-strain interaction contribution �P : Su? depen-
dent on u and un (red). [Associated dataset available at http:
//dx.doi.org/10.5281/zenodo.7117619]. . . . . . . . . . . . . . . . 160

5.7 Sketch of the physical mechanisms contributing to the pressure-strain
interaction in a magnetic reconnection region electron di↵usion region
(EDR) during the reconnection onset phase. In-plane projections of
the magnetic field B are in black and gray, and the in-plane electron
bulk flow ue is in red. The green rectangle denotes the EDR. The
ellipses in the red color palette denote regions of positive pressure-
strain interaction (a contribution to heating), and the blue ellipses
denote negative pressure-strain interaction (a contribution to cool-
ing). The colored dashed arrows illustrate the physical mechanism
causing the non-zero pressure-strain interaction in each location. . . . 164

6.1 Schematic showing energy conversion channels according to their im-
pact on the phase space density f�. The initial f� is depicted as
Maxwellian for illustrative purposes on the left. The final f� is to
their right. The descriptions of the changes in f� are to their right. . 179

xv

http://dx.doi.org/10.5281/zenodo.7117619
http://dx.doi.org/10.5281/zenodo.7117619
http://dx.doi.org/10.5281/zenodo.7117619
http://dx.doi.org/10.5281/zenodo.7117619
http://dx.doi.org/10.5281/zenodo.7117619


6.2 Electron energy conversion in a PIC simulation of magnetic reconnec-
tion. (a) Out-of-plane current density Jz, with projections of mag-
netic field lines and segments of electron velocity streamlines over-
plotted in black and orange, respectively. (b) Electron entropy-based
non-Maxwellianity M̄KP,e. Time rates of change per particle of (c)
work dWe/dt, (d) internal energy dĒe,int/dt, and (e) relative energy
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Chapter 1

Introduction

1.1 Motivation behind the work

As a dynamical system with a large number of constituents evolves during

a physical process, it is important to understand the conversion of di↵erent forms

of energy. For a system with its initial and final states in local thermodynamic

equilibrium (LTE), the first law of thermodynamics describes the conversion be-

tween heat, work, and internal energy (Clausius, 1850). However, systems such as

weakly collisional plasmas are often not in LTE and, in such cases, the first law

of thermodynamics fails. Much research has gone into extending the first law of

thermodynamics for systems near (Onsager, 1931; Chapman & Cowling, 1970; Jou

et al., 2010) and far (Prigogine, 1978) from LTE, but systems far from LTE remain

poorly understood.

A number of non-LTE extensions of thermodynamics have been previously de-

veloped. In (classical) irreversible thermodynamics, rates of non-equilibrium trans-

port due to two or more mechanisms occurring simultaneously, such as conduction

and di↵usion, were shown to be related to each other (Onsager, 1931). Other exten-

sions were based on the kinetic theory of gases, for which the fundamental variable,

as we will discuss in Sec. 1.3, is the phase space density f� for a species �. In

Sec. 1.4.1, we will discuss how multiplying powers of velocity components by f�

1



and integrating over velocity space (called taking “moments”) yields an infinite set

of fluid properties of the gas or plasma, including the density, bulk flow velocity,

pressure tensor, heat flux tensor, etc. In the Chapman-Enskog expansion, the phase

space density is expanded around LTE in powers of a dimensionless parameter re-

lated to a system’s collisionality, resulting in a derivation of non-LTE transport

coe�cients such as viscosity and thermal conductivity (Braginskii, 1965; Chapman

& Cowling, 1970). In extended irreversible thermodynamics (EIT), additional non-

LTE corrections to the first law of thermodynamics are systematically obtained

using perturbation theory; EIT has proven useful for a wide variety of applications

including microfluidics, nano-devices, polymer solutions, and cosmology (Jou et al.,

2010). As these treatments are based on linear expansions around LTE, they are

most valid for small departures from LTE. Less is known about thermodynamics in

systems arbitrarily far from LTE (Jarzynski, 1997), but it is crucial for a number

of research areas including condensed matter physics (Jaeger & Liu, 2010), plasma

physics (Howes, 2017; Matthaeus et al., 2020), nano-machines and open quantum

systems (Schaller, 2014), micro- and nano-scale gas and fluid flow for chemical and

biological applications (Evans & Hoover, 1986), and numerous examples in chem-

istry (Popielawski & Gorecki, 1991).

Taking the second velocity moment of f� (which we will discuss in Sec. 1.4.2)

provides the time evolution equation for internal (or thermal) energy density, where

a term called the pressure-strain interaction emerges o↵ering a non-LTE pathway

through which internal energy can change via conversion from bulk kinetic energy. In

recent years, pressure-strain interaction has garnered a lot of interest (Yang et al.,
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2017a,b) as it is the only term that can change the internal energy of a closed

collisionless system (Yang et al., 2022). The pressure-strain interaction is usually

decomposed into two terms. The first term, called pressure dilatation accounts for

compressible e↵ects, while the second component, referred to as “Pi � D”, deals with

incompressible e↵ects and has been described as collisionless viscosity (Yang et al.,

2017a,b). However, relating Pi � D to viscosity is confusing, as it can be locally

negative, as observed in simulations of non-LTE systems (Yang et al., 2017a,b;

Pezzi et al., 2019, 2021). A thorough understanding of the kinetic aspects of the

pressure-strain interaction is crucial and we do this in Chapters 3-5.

However, the analysis of pressure-strain interaction and by extension the time

evolution of internal energy still misses the fact that energy can be associated with

changing the infinite number of moments of the phase space density f�, for systems

not in LTE. In Chapter 6, to address this deficiency, we derive a first-principles

generalization of the first law of thermodynamics that is valid arbitrarily far from

LTE using the Boltzmann transport equation in kinetic theory that fully accounts

for energy conversion into all moments of the phase space density, including both

thermodynamic and non-thermodynamic degrees of freedom. The main result of

Chapter 6 is that we arrive at what we dub “the first law of kinetic theory”, which

captures all physics described by the internal energy evolution equation, as well as

energy conversion to all higher order moments of the phase space density associated

with changes to the shape of the phase space density that are not captured by the

first law of thermodynamics. Though the first law of kinetic theory is a statement of

conservation of energy, it follows from the evolution of kinetic entropy (Boltzmann,
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1877). The result is important because it provides a first-principles analytical form

for the energy going into or coming out of non-LTE moments. The theory identifies

where and when all non-LTE e↵ects occur, and quantifies their contribution to

energy conversion. The present result and any further generalizations obtained by

relaxing the assumptions used here will have far-reaching implications for physical,

chemical, and biological systems that are not in LTE for which the phase space

density can be measured experimentally and/or numerically, including solar, space,

astrophysical, and laboratory plasmas (Howes, 2017; Matthaeus et al., 2020), many

body astrophysics (Aarseth & Aarseth, 2003), micro- and nano-fluidics for chemical

and biological applications (Karplus & Petsko, 1990), and quantum entanglement

(Floerchinger & Haas, 2020).

The primary objective of this Chapter is to establish the fundamental concepts

underlying the dissertation. To achieve this, we carefully examine the key terms

mentioned in the title of the dissertation. We start by o↵ering an overview of

temperature, a quantity routinely associated with energy as defined in plasmas

that are in and out of local thermodynamic equilibrium. Subsequently, we provide

a brief introduction to kinetic theory, which is a theoretical framework used to

describe the behavior of plasma statistically and their collective interactions. We

focus on an inherently non-LTE plasma phenomenon of magnetic reconnection and

also emphasize how magnetic reconnection serves as an ideal test-bed for studying

this dissertation’s central theme, i.e., non-LTE energy conversion. Finally, we lay

the foundational principles for better understanding non-LTE energy conversion as

it is currently understood and relay the importance of the novel approach discussed
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in this dissertation.

1.2 Temperature and thermodynamic equilibrium

Plasma is often referred to as the fourth state of matter and it is said that

most of the visible matter in the universe is in the plasma state. Plasma is ionized

gas, where “ionized” means the constituent atoms have lost one or more electrons,

thereby turning the neutral atoms into positively charged ions in a sea of nega-

tively charged electrons. A plasma needs to be su�ciently hot to deter electrons

from recombining with the ions. Partial ionization and/or recombination can lead

to neutral atoms being present; plasmas with no neutrals are called fully ionized

plasmas and are the focus of subsequent material in this dissertation. Since the

constituents of plasma are charged particles, they respond to and produce electric

and magnetic fields, which in turn a↵ect how these charged particles move, making

a plasma a “non-linearly coupled system”.

To study plasmas, we take a statistical approach called kinetic theory that we

describe in greater detail in a subsequent section. Here, for the purposes of under-

standing “temperature,” we present a basic explanation of a velocity distribution

function. As the name suggests, it is a quantity that is a function of velocity and it

arises from counting the particles in a system.

The most common distribution function in physics is called a Maxwell-Boltzmann

distribution function (or a Maxwellian in short). It is ubiquitous because it describes

particles of fluid or plasma that are in “thermodynamic equilibrium”. If the system
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is in a “global” thermodynamic equilibrium (GTE), then enough time has passed

that macroscopic quantities are uniform and unchanging with time. Mathemati-

cally, a Maxwellian distribution function for species � in systems that are in GTE

is represented as

f�(v) = n�

✓
m�

2⇡kBT�

◆3/2

e
�m�(v�u�)2/2kBT� , (1.1)

where the bold v is a short-hand describing the components of the velocity in an ar-

bitrary coordinate system. A Maxwellian distribution function is shown in Fig. 1.1

for a one-dimensional case for simplicity, i.e., f is a function of only one velocity

component chosen here to be v. Here, n� is the number density which is equal

to the area under the curve, kB is the Boltzmann constant, and T� is related to

the width of the distribution function elucidating that there are many particles

inside the width moving with random velocities that are lower than the thermal

speed vth,� =
p

2kBT�/m� and fewer particles with random velocities higher than

the thermal speed. To reestablish a connection between temperature and energy,

we illustrate a scenario in which the temperature increases, and thus the width

of the distribution function increases, resulting in an increased number of parti-

cles exhibiting higher random velocities. Consequently, this rea�rms the intuitive

understanding that a higher temperature corresponds to a greater proportion of

particles with faster random motion. In our notation, u� represents the o↵set of the

peak of the distribution function in the v coordinate from the origin, which carries

the physical interpretation of the system’s bulk flow. Conceptually, this can be un-
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Figure 1.1: Sketch of a one-dimensional Maxwellian distribution function, where
the black curve shows the distribution of particles as a function of velocity.

derstood as the statistical average velocity of the system. However, systems can be

in “local” thermodynamic equilibrium (LTE) if small localized regions exist where

thermodynamic equilibrium has been reached and where macroscopic quantities can

be dependent on position space coordinate r and time t (and we will discuss what

they mean in the subsequent section). For LTE systems, a Maxwellian distribution

function is represented as

f�(r, v, t) = n�(r, t)

✓
m�

2⇡kBT�(r, t)

◆3/2

e
�m�(v�u�(r,t))2/2kBT�(r,t), (1.2)

where n�, u�, and T� are allowed to have dependencies on r and t. Analogous to

Eq. (1.1), Eq. (1.2) defines temperature for systems also in LTE, and the implication

of linking temperature to LTE is that the temperature of a system not in LTE is

ill-defined.
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1.3 Kinetic theory - a brief primer

In this section, we provide an overview of kinetic theory, the statistical ap-

proach employed to study plasmas, which serves as the foundation for the theoretical

developments and simulation results presented in this dissertation.

1.3.1 Phase space and its discretization for large N particles

In kinetic theory, a phase space plot provides a way to represent the positions

and velocities of all the particles in a system at a given time. For a three-dimensional

system, the phase space is a six-dimensional space, with three dimensions represent-

ing the positions r of the particles along the three position-space coordinates and

the other three dimensions representing the velocities v of the particles along the

three velocity-space coordinates. The position-space coordinate and velocity-space

coordinate, along with time t, form the three independent variables. For simplicity,

consider a system with a single particle. Then, at any given time, a single point in

phase space denotes the position and velocity of the particle. Moreover, the dynam-

ics of such a system can be studied by keeping track of this single point as it moves

in this space.

In order to study the dynamics ofN particles with N � 1, we can keep track of

N points as they move in their orbits but this proposition becomes computationally

hard for large N . Consider a 1-D system for simplicity, we discretize the phase space

into small boxes of size �x in each of the position-space coordinate and size �v in

each of the velocity-space coordinate. In 3-D, the three position-space bins need not

8



Figure 1.2: Sketch of a discretized phase space where the red lines show the
uniformly spaced grid with phase space area �x�v for a 2-D phase space. Green
circles show the N particles populating this phase space. For illustrative purposes,
there are phase space bins shown with few or no particles.

be equal and similarly, the three velocity-space bins need not be equal.

For simplicity of the discussion, we assume a 1-D dynamical system, and its

phase space is shown in Fig. 1.2 that is populated by N particles. In Fig. 1.2, Njk

denotes the number of particles in the phase space area �x�v with x 2 (xj, xj+�x)

in position-space and v 2 (vk, vk + �v) in velocity-space, i.e., the jkth bin of the

phase space has Njk particles in it. Note that in 3-D, the phase space volume is

�3
r�3

v. Since there are N particles in total, summing the particles in each of

the phase space bins gives N . Mathematically, N =
P

j,k Njk. We arrive at the

fundamental meaning of a distribution function, i.e., it is the number of particles
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per unit phase space volume (or area in case of 1-D system). In 3-D,

f(rj,vk, t) =
Njk

�3r�3v
. (1.3)

This implies that f is a density in phase space, i.e., it is a measure of the phase

space density and it is non-negative with units of s3/m6 (in SI) or s3/cm6 (in CGS)

in 3-D.

The discretization brings into question the size of the phase space bins and in

Chapter 2, we will see it has important consequences for determining the position-

space and velocity-space grid lengths in the particle-in-cell simulations. �x should

be big enough otherwise the statistical description of kinetic theory breaks down.

In 3-D, n ⇠ r
�3 =) r ⇠ n

�1/3 where r is the average separation between particles

with density n. Thus, �x � n
�1/3. For plasmas collectively, a large number of parti-

cles is needed inside the Debye cube, i.e., n�3D� � 1, where �D� =
p
kBT�/(4⇡n�e

2)

(in CGS units). Thus the upper limit on �x is set by �D�. Suppressing the subscript

�, we have n
�1/3 ⌧ �x ⌧ �D. The velocity-space grid �v is most appropriately

determined relative to the thermal speed vth, which sets the upper limit to ensure

that the grid contains a su�cient number of particles for reliable statistical charac-

terization. Thus, �v < vth. For appropriately small enough phase space volume,

we turn the summation into integrals and rewrite Eq. (1.3) to give

N =

Z
f(r,v, t)d3rd3v. (1.4)
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For 3-D systems,
R

is a shorthand notation for the integral over all position-space

and all velocity-space.

Since N =
R
n(r, t)d3r, using Eq. (1.4), we also obtain

n(r, t) =

Z
f(r,v, t)d3v. (1.5)

Eq. (1.5) is an example of taking a moment which is multiplying f with powers of

the velocity components and performing an integral over the whole velocity-space.

n is thus the “zeroth-order” velocity moment. The “first-order” velocity moment of

f is the bulk flow velocity determined as

u(r, t) =
1

n(r, t)

Z
vf(r,v, t)d3v, (1.6)

which is the average velocity of the distribution and for a Maxwellian distribution

function, it is presented as an o↵set in Fig. 1.1. The other moments used in the

dissertation are as follows. The “second-order” moment of f is represented as P

which is a rank-2 tensor denoting the pressure tensor, with the jkth elements given

by

Pjk =

Z
mv

0
jv

0
kfd

3
v, (1.7)

where v0 = v�u is the random (also called peculiar or thermal) velocity. Note that

taking moments of v0 is called taking “internal moments” of f . The temperature
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tensor is defined as T = P/(nkB), with e↵ective temperature given by

T =
P
nkB

=
2

3nkB

Z
1

2
mv

02
fd

3
v, (1.8)

where P is the e↵ective pressure defined P = (1/3)tr[P]. The vector heat flux

density is defined as

q =

Z
1

2
mv

02v0
fd

3
v, (1.9)

and it is a contraction of the rank-3 tensor that is the third-order internal moment

of the distribution function. There are infinite moments of a general distribution

function, however, for a Maxwellian distribution function, only the zeroth, first,

and second moments can be non-zero. Moreover, the e↵ective temperature can be

thought of as the non-LTE generalization of temperature, i.e., it defines a scalar

temperature for distributions that are not Maxwellian.

We analyze distribution functions at particular position-space locations, and

such distribution functions are called “velocity distribution functions”, an example

of which was discussed in Sec. 1.2. By integrating out one (or more) velocity-

space coordinates, we obtain “reduced velocity distribution functions”, and we show

examples of reduced velocity distribution functions for electrons in Chapter 6 and

in the appendices of the dissertation.
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1.3.2 Time evolution of the distribution function

For large N particles, we discussed the statistical approach of kinetic theory to

avoid examining the time evolution of each particle and developed the concept of dis-

tribution function f(r,v, t). Here, we discuss the time evolution of the distribution

function.

For simplicity, we again consider the case of a 2-D phase space for a 1-D system

shown in Fig. 1.3 where particles of similar (x, v) move from the location given by

(x, v) to (x +�x, v +�v) in the phase space. As this motion happens, the distri-

bution function cannot change if there are no physical processes that can locally (in

phase space) change the distribution function. Such processes are collectively called

“sources” and “sinks” of f , and they cause particles to suddenly appear or disappear

from the phase space bins. Intra- and inter-species collisions change the distribution

function in time, by causing particles to disappear and then reappear in di↵erent

phase space bins. Ionization is a source of creating new charged species, while re-

combination is a sink and their presence changes species distribution functions in

time.

We consider the absence of all other sources and sinks except for collisions C[f ].

We omit the detailed derivation of the time evolution of the distribution function

f which can be found in textbooks, e.g., Bellan (2008), but discuss the result here.

The time evolution of f� is given by the “Boltzmann equation” (Boltzmann, 1872)

@f�

@t
+ (v · r)f� +

✓
F�

m�
· rv

◆
f� = C[f ]. (1.10)
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Figure 1.3: Sketch of a discretized phase space bin with particles (shown by green
circles) moving in the phase space from location 1 denoted by (x, v) to location 2
denoted by (x + �x, v + �v), with the phase space bin at location 2 losing some
particles due to sinks (denoted by missing green-colored particles) and gaining few
particles due to sources (denoted by dark green circles) that can abruptly change f .

Here we only consider the Lorentz force Flor,� = q�(E + v/c ⇥ B) (in CGS units)

and inclusion of other forces, such as gravity is straight-forward. E(r, t) and B(r, t)

denote the electric and magnetic fields, respectively, c is the speed of light and q� is

the charge of species �. We rewrite Eq. (1.10) to obtain

@f�

@t
+ (v · r)f� +

q�

m�

⇣
E+

v

c
⇥ B

⌘
· rvf� = C[f ]. (1.11)

We provide a brief overview (given the limited scope of this dissertation) of

the collision operator. It should be noted that the plasmas considered throughout

this dissertation consist of two species: electrons (� = e) and ions (� = i). The

shorthand notation C[f ] in Eqs. (1.10) and (1.11) represents the combined e↵ect

of intra-species and inter-species collisions (we only consider binary collisions), de-
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noted as Cintra[f�] and
P

�0 Cinter[f�, f�0 ], respectively. For a collision operator to be

physically meaningful, it needs to satisfy the following constraints which come from

conservation laws. In the absence of sources and sinks, e.g., ionization, recombina-

tion that can change the total number of particles thereby changing f�,

1. collisions cannot change the number of particles. This is a statement of con-

servation of the number of particles and is mathematically given by

Z
Cintra[f�]d

3
v = 0 (1.12)

and
Z X

�0

Cinter[f�, f�0 ]d3v = 0, (1.13)

2. collisions cannot change the total momentum of a species via intra-particle

collisions but can transfer momentum between species via inter-species colli-

sions. This is a statement of conversation of momentum, which for electron-ion

plasma can be written mathematically as

Z
m�vCintra[f�]d

3
v = 0 (1.14)

where � = i, e and

Z
mevCinter[fe, fi]d

3
v +

Z
mivCinter[fi, fe]d

3
v = 0, (1.15)

3. collisions cannot change the total energy of a species via intra-particle collisions
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but can cause energy exchange between species via inter-species collisions.

This is a statement of conversation of energy, which for electron-proton plasma

can be written mathematically

Z
1

2
m�v

2
Cintra[f�]d

3
v = 0, (1.16)

where � = i, e and

Z
1

2
mev

2
Cinter[fe, fi]d

3
v +

Z
1

2
miv

2
Cinter[fi, fe]d

3
v = 0. (1.17)

1.3.3 Maxwell’s Equations in kinetic theory

To complete the closure of the Boltzmann equation, Maxwell’s equations are

employed to determine the calculations of the electromagnetic fields. We reformulate

the source terms of the electromagnetic fields, namely the charge density ⇢ and the

current density J, in terms of the distribution function f� and its moments. Thus,

⇢(r, t) =
X

�

q�n�(r, t) (1.18)

and

J(r, t) =
X

�

q�n�(r, t)u�(r, t) (1.19)

are rewritten as

⇢(r, t) =
X

�

q�

Z
f�(r,v, t)d

3
v (1.20)
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and

J(r, t) =
X

�

q�

Z
vf�(r,v, t)d

3
v (1.21)

by using Eq. (1.5) and Eq. (1.6). Thus, Maxwell’s equations (in CGS units) become

r · E = 4⇡⇢ = 4⇡
X

�

q�

Z
f�(r,v, t)d

3
v, (1.22a)

r · B = 0, (1.22b)

r ⇥ B =
4⇡

c
J+

1

c

@E

@t
=

4⇡

c

X

�

q�

Z
vf�(r,v, t)d

3
v +

1

c

@E

@t
, (1.22c)

r ⇥ E = �1

c

@B

@t
. (1.22d)

Eqs. (1.22a) - (1.22d) along with Eq. (1.11) are called the “Boltzmann-Maxwell

equations”.

We note that in the absence of any physical collisions C[f ] = 0; this is a valid

approximation for systems with low number density and/or due to the time scale of

collisions being su�ciently lower than fundamental time scales of the plasma systems

in question. An example of this is space plasma systems where the distance traveled

between collisions can be as long as the system itself, e.g., plasma that exists between

the Sun and Earth at one astronomical unit. In such cases, Eq. (1.11) becomes the

“Vlasov equation” (Vlasov, 1968) given by

@f�

@t
+ (v · r)f� +

q�

m�
(E+

v

c
⇥ B) · rvf� = 0. (1.23)
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and then along with Eqs. (1.22a) - (1.22d), they are called the “Vlasov-Maxwell

equations”.

1.3.4 Entropy in kinetic theory

In anticipation of the forthcoming discussion on entropy in Chapter 6, here we

provide a concise overview of these concepts, and readers are referred to previous

literature (Bellan, 2008; Liang et al., 2019) for a comprehensive analysis.

Boltzmann described kinetic entropy (Boltzmann, 1877), for an isolated sys-

tem, as

S(t) = kB ln⌦(t). (1.24)

⌦ is the total number of microstates which corresponds to a specific configuration

of particles in the jkth phase space bin, i.e., Njk, that describes the macrostate

of the system; here the macrostate is the macroscopic “observable” properties of

the system. The Njk particles are indistinguishable and the various ways they

can be exchanged between phase space bins without changing the macrostate gives

⌦. Mathematically, this statement is written as ⌦ = N !/⇧jkNjk!. This simplifies

Eq. (1.24) (and we suppress the t dependency) as

S = kB[lnN ! �
X

jk

lnNjk!]. (1.25)

After application of Stirling’s approximation, i.e., lnNjk! ⇡ Njk lnNjk � Njk appli-
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cable for Njk � 1, Eq. (1.25) becomes

S = kB[N lnN �
X

jk

Njk lnNjk]. (1.26)

We use Eq. (1.3) to rewrite Eq. (1.26) as

S = kB

"
N ln

✓
N

�3r�3v

◆
�
X

jk

f(rj,vk)�
3
r�3

v ln[f(rj,vk)]

#
. (1.27)

Under the assumption of appropriately small phase space volume as mentioned in

sec 1.3.1, we turn summations into integrals, and get

S = kB


N ln

✓
N

�3r�3v

◆
�
Z

f(r,v, t) ln[f(r,v, t)]d3rd3v

�

= �kB

Z
d
3
rd

3
vf(r,v, t) ln


f(r,v, t)�3

r�3
v

N

�
(1.28)

=

Z
d
3
rs(r, t) (1.29)

where for Eq. (1.28), we employ the definition ofN =
R
f(r,v)d3vd3r. For Eq. (1.29),

we define kinetic entropy density s(r, t) as

s(r, t) = �kB

Z
d
3
vf(r,v, t) ln


f(r,v, t)�3

r�3
v

N

�
. (1.30)

1.4 Fluid description of plasmas from kinetic theory

For a general C[f ] with properties as discussed in Sec. 1.3.2 and for the case of

C[f ] = 0, the derivation of the “fluid” equations from kinetic theory using the Boltz-
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mann equation is straightforward and is available in plasma physics textbooks, e.g.,

Bellan (2008). Below, we briefly discuss the results. We note that Braginskii (1965)

provides the derivation of fluid equations (that Richardson (2019) calls “transport

equations for a multispecies plasma”) for a particular collision operator C[f ] called

the Landau collision operator (Landau, 1936) and by utilizing a Chapman-Enskog

expansion (Chapman & Cowling, 1970) of the distribution function f .

1.4.1 Fluid equations

The fluid equations are

@n�

@t
+ r · (n�u�) = 0, (1.31)

m�n�


@u�

@t
+ u� · ru�

�
= �r · P� + q�n�

✓
E+

u� ⇥ B

c

◆
+R�, (1.32)

3

2
n�


@T�

@t
+ u� · rT�

�
= �(P� · r) · u� � r · q� + Q̇�,visc,coll. (1.33)

Physically, Eq. (1.31) is the continuity equation describing how the number density

changes with time. Eq. (1.32) is the force equation describing how the bulk flow

velocity changes with time. Eq. (1.33) is the internal energy equation describing

how e↵ective temperature T� changes with time.

R� denotes the exchange of momentum between various plasma species due

to collisions and is given by R� =
R
m�v0

�

P
�0 Cinter[f�, f�0 ]d3v. Finally, Q̇�,visc,coll

denotes the volumetric heating rate from inter-species collisions and is given by

Q̇�,visc,coll =
R
(1/2)m�v

02
�

P
�0 Cinter[f�, f�0 ]d3v.
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1.4.2 Energy time evolution equations

We define the internal or thermal energy density (which are used interchange-

ably in this dissertation) as E�,th = 3P�/2 = 3n�kBT�/2 and after some algebraic

manipulations, we cast Eq. (1.33) into an equation for time evolution of internal

energy density

@E�,th

@t
+ r · (E�,thu�) = �(P� · r) · u� � r · q� + Q̇�,visc,coll. (1.34)

The time evolution of bulk kinetic energy density E�,k = 1/2m�n�u
2
�, is obtained

by taking a dot product of Eq. (1.32) with the bulk flow velocity u�. After some

algebraic manipulations and the usage of Eq. (1.31), it becomes

@E�,k

@t
+ r · (E�,ku�) = �r · (u� · P�) + (P� · r) · u� + q�n�u� · E+R�,coll. (1.35)

Comparing Eqs. (1.34) and (1.35), we note �(P� · r) · u� term appears with a

di↵erent sign in each equation. This indicates the �(P� ·r) ·u� term is the channel

that facilitates conversion between bulk kinetic and thermal energy densities of the

same species �. We will briefly discuss the importance of this term in Sec. 1.6. The

q�n�u� · E term can also be written as n�u� · F�, with F� being the Lorentz force

given by F� = q�(E + u� ⇥ B/c). We note that in this form, it is straightforward

to include other body forces. R�,coll = u� · R� denotes the inter-species collisional

drag force power density.

We take the dot product of Eqs. (1.22c) with E and (1.22d) with B to attain a
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time evolution equation for the electromagnetic energy density EEM = (1/8⇡)(E2 +

B
2) (in CGS units) given by

@EEM

@t
+

c

4⇡
r · (E ⇥ B) = �J · E, (1.36)

where we notice that the �J · E term appears with an opposite sign as compared

to q�n�u� · E in Eq. (1.35) which when summed over all species � gives J · E using

Eq. (1.21). This indicates that this term is the channel of conversion between bulk

flow kinetic energy density (when all species are considered) and electromagnetic

energy density. Yang et al. (2017a) shows these available channels of energy conver-

sion pictorially (see their figure 1) e�ciently when the system averages for a closed

system (such as simulations considered in this dissertation) are considered.

A drawback of Eqs. (1.31) - (1.33) is that Eq. (1.33) specifically describes the

time evolution of the e↵ective temperature in time, but it relies on knowledge of the

next (third-order) moment of f�. This presents what is referred to as the “closure

problem”, which arises from the requirement of each moment’s time evolution equa-

tion to rely on the next higher-order moment. This issue becomes problematic since

Eqs. (1.31) - (1.33) play a crucial role in understanding the energy evolution in dy-

namical plasma systems not in LTE. We will briefly touch on this issue in Sec. 1.6.

In Chapter 6 of this dissertation, a novel approach is presented to overcome this

closure problem and provide insights into the time evolution of energy that is not

captured by Eqs. (1.34) - (1.36).

22



1.4.3 Magnetohydrodynamics (MHD) - a primer

The goal of this section is to find a single fluid equation for multispecies plas-

mas. The MHD approximation is valid for 1) length-scales of interest that are

significantly larger than the characteristic length scales of electrons and ions, i.e.,

their gyroradii, 2) the time-scales of interest that are much longer than the electron

and ion time scales, i.e., inverse of their plasma frequencies and cyclotron frequen-

cies and 3) speeds involved to be much slower than the speed of light. Though

the rest of the dissertation does not particularly use the MHD equations, they are

pertinent in understanding the physics of reconnection discussed in the subsequent

sections.

The derivation of single fluid equations can be found in many places in the

literature, such as in MHD books and even in broader plasma physics books e.g.,

Bellan (2008) and it involves manipulations of Eqs. (1.31) - (1.33) and implementing

limits based on the scales of interest. Before we list the relevant equations, we first

discuss the assumptions behind them. Ions are singly charged. The bulk flow of the

plasma is a center of mass flow and is defined as u = (miui + meue)/(mi + me),

the current density is given by J = nieui � neeue, and the mass density is given by

⇢m = nimi + neme, where i = ions, and e = electrons. Under the assumption that

mi � me and that of quasi-neutrality, i.e., ni ⇡ ne = n, the first two can be solved

to get ue and ui as ue = u � J/(ne) and ui = u, and the mass density becomes

⇢m = nmi, which physically means that most of the mass density is coming from

the heavier ions.
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The MHD equations of mass continuity, force and pressure evolution are given

as follows

@⇢m

@t
+ r · (⇢mu) = 0 (1.37)

⇢m


@u

@t
+ u · ru

�
= �rP +

J ⇥ B

c
(1.38)

d

dt

✓
P

⇢
�
m

◆
= 0 (1.39)

where P = Pi +Pe, is the total scalar pressure and � is the ratio of specific heat for

the single fluid. Under the MHD limit, we also modify Maxwell’s equations. The

inductive electric field term in Eq. (1.22c) is neglected. The MHD limit of Maxwell’s

equations are

r · B = 0, (1.40a)

r ⇥ B =
4⇡

c
J, (1.40b)

r ⇥ E = �1

c

@B

@t
. (1.40c)

where we drop Gauss’ law from Eq. (1.22a) since at MHD scales, ⇢ is negligible.

The two equivalent forms of the electron momentum equation, which when

written in this particular way, are called the “generalized Ohm’s law” are given by

E+
ui ⇥ B

c
= ⌘J+

J ⇥ B

nec
� r · Pe

ne
+

me

e2

d

dt
(J/n), (1.41a)

E+
ue ⇥ B

c
= ⌘J � r · Pe

ne
+

me

e2

d

dt
(J/n). (1.41b)
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Here, ⌘ is resistivity, and ⌘J arises from Re from Eq. (1.32) for electrons, and it

is given by ⌘ = me⌫ei/(ne2) where ⌫ei is the electron-ion collision frequency (Bra-

ginskii, 1965; Richardson, 2019). On the right-hand side of Eq. (1.41a), the first

term is the resistive term, the second term is the Hall term, the third term is the

electron pressure gradient term and the fourth term is the electron inertia term. In

Eq. (1.41a), the left-hand side has the electric field and the ion bulk flow convective

electric field, which together, can be thought of as the electric field in the frame of

ion motion. Similarly, for Eq. (1.41b), the left-hand side has the electric field and

the electron bulk flow convective electric field, which together, can be thought of as

the electric field in the frame of electron motion, for which Hall term disappears in

the right-hand side.

We use scaling analysis to evaluate the relative importance of each term on

the right-hand side of Eq. (1.41a) in relation to the convective term on the left-hand

side. This analysis allows us to ascertain the characteristic length scales at which

each term on the right-hand side becomes significant.

For the resistive term, scaling gives

|⌘J|
|ui⇥B

c |
⇠ ⌘J

uB/c
⇠ ⌘cB/l�,res

4⇡uB/c
, (1.42)

where we use Eq. (1.40b) for the second scaling result. J denotes the typical scale

value of J and u is the typical scale value of ui. l�,res is the length over which B

changes if the resistive term is to be appreciable. Defining (Sweet, 1958; Parker,

1957) a resistive length �⌘ = ⌘c
2
/(4⇡vA) where vA = B/

p
4⇡⇢m is the Alfvén speed,
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we get,

|⌘J|
|ui⇥B

c |
⇠ �⌘vA

ul�,res
, (1.43)

which shows that for the resistive term to be comparable to the convective term,

l�,res ⇠ �⌘vA/u (Vasyliunas, 1975) and if u ⇠ vA, then l�,res ⇠ �⌘.

For the Hall term, scaling gives

|J⇥B
nec |

|ui⇥B
c |

⇠ JB/(nec)

uB/c
⇠ cB

2
/(l�,Hnec)

4⇡uB/c
⇠ d

2
i⌦ci

ul�,H
⇠ divA

ul�,H
, (1.44)

where l�,H is the length over which B changes if the Hall term is to be appreciable.

⌦ci = eB/(mic) is the ion cyclotron or gyrofrequency, which is the frequency at

which ions gyrate around the magnetic field. di is the ion skin depth or inertial

length which is the length light travels over one ion plasma frequency interval, and

hence is denoted by di = c/!pi =
p

(c2mi)/(4⇡ne2). Eq. (1.44) shows that for the

Hall term to be comparable to the convective term, l�,H ⇠ divA/u and if u ⇠ vA,

then l�,H ⇠ di.

For the electron pressure gradient term, we use Eq. (1.41b). Scaling gives

|r·Pe
ne |

|ue⇥B
c |

⇠ Pe/(nel�,P )

ueB/c
⇠ �eB

2
/(8⇡)

neueBl�,P/c
⇠ d

2
e�e⌦ce

uel�,P
⇠ de�evA,e

uel�,P
, (1.45)

where l�,P is the length over which B changes if the pressure gradient term is to be

appreciable, ue is the characteristic value of ue, and Pe is the characteristic value

of Pe. For the second scaling result, we use electron plasma beta �e defined as

�e = Pe/(B2
/(8⇡)); physically it describes the ratio of electron gas pressure and
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magnetic pressure in a plasma. de is the electron skin depth or inertial length which

is the length light travels over one electron plasma frequency interval and is given

by de = c/!pe =
p

(c2me)/(4⇡ne2). Eq. (1.45) shows that for the pressure gradient

term to be comparable to the convective term, l�,P ⇠ �edevA,e/ue and if ue ⇠ cs,e,

where cs,e =
p

kBTe/me is the electron sound speed, then l�,P ⇠ �
1/2
e de.

For the electron inertia term, we again use Eq. (1.41b). Scaling gives

|me
e2

d
dt(

J
n)|

|ue⇥B
c |

⇠ meJ/(ne2l�,iner)

B/c
⇠ mec

2
/(4⇡ne2)

l
2
�,iner

⇠ d
2
e

l
2
�,iner

, (1.46)

where l�,iner is the length over which B changes if the electron inertia term is to be

appreciable. In the last scaling result, we use the definition of de. Eq. (1.46) shows

that for the electron inertia term to be comparable to convective term, l�,iner ⇠ de.

1.5 Magnetic reconnection

Magnetic reconnection is perhaps one of the more ubiquitous processes occur-

ring in the universe wherever there is magnetized plasma. In such environments, the

close proximity of two regions with a component of the magnetic field that reverses

direction can lead to the formation of a thin current sheet. These opposing magnetic

fields can undergo cross-connections, i.e., the magnetic fields break and reconnect,

at what is termed the “X-line” in the current sheet. This change in the magnetic

field configuration is referred to as a “change in magnetic field topology”. Since

reconnection generates outflows, it becomes a process by which the electromagnetic

energy of the regions with opposing magnetic fields is readily converted into the
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kinetic energy of the outflows. Moreover, a portion of the electromagnetic energy is

also channeled into heating the plasma, thereby changing the internal energy of the

plasma. In the subsections that follow, we discuss how reconnection is essentially a

small-scale process, but can a↵ect the large-scale of the system.

1.5.1 Magnetic reconnection - where does it take place?

The history of magnetic reconnection can be traced back nearly eighty years to

work done by Giovanelli (1947) to explain solar flares, which are explosive (1024 J)

events that happen very fast (over a few minutes) (Priest & Forbes, 2002). What

started with Giovanelli (1947) observing magnetic “neutral points” or “null points”

occurring near solar flare locations has also been used to explain the production

of ultra-high-energy cosmic rays from active galactic nuclei (AGNs) or gamma-ray

bursts (GRBs) (Giannios, 2010) and astrophysical regions where the high-energy

density requires taking special relativistic e↵ects and even quantum electrodynamics

(QED) e↵ects into account (Uzdensky, 2011).

We focus on a limited segment of heliophysical (pertaining to the region around

the Sun called the “heliosphere” where its magnetic field exerts influence), astrophys-

ical (pertaining to regions beyond the heliosphere) systems, and terrestrial fusion

experiments where magnetic reconnection is observed or theorized to occur.

1. Aurora is an indirect consequence of magnetic reconnection occurring in Earth’s

magnetosphere, which represents the region influenced by Earth’s magnetic

field. Reconnection takes place in the “magnetotail”, which refers to the side
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of the magnetosphere facing away from the Sun, often referred to as the “night-

side”. The occurrence of reconnection on the “dayside”, which is the side fac-

ing the Sun, has an impact on the magnetotail through the process dubbed

the “Dungey cycle” (Dungey, 1953, 1958). Dungey coined the term “magnetic

reconnection”.

2. In laboratory fusion experiments, reconnection has been used to elucidate the

mechanism behind the “sawtooth instability.” This instability is characterized

by a sawtooth-like pattern in the plasma parameters, such as temperature,

when plotted against time. During a sawtooth event, there is a notable de-

crease in temperature accompanied by a sharp decline in the magnetic con-

finement of the plasma. As a result, the plasma expands and releases a burst

of energy in the form of heat and particles (Kadomtsev, 1975; Yamada et al.,

1994; Biskamp, 2000).

3. In turbulent systems, both observational (Phan et al., 2006; Retinò et al., 2007)

and numerical studies (Matthaeus & Lamkin, 1986; Servidio et al., 2009) have

revealed the occurrence of reconnection in thin (sub-ion and electron-scale)

current sheets. The solar wind, consisting of energetic particles emitted by the

Sun, exhibits turbulent behavior characterized by the presence of fluctuations

in plasma parameters such as density, temperature, and electromagnetic fields.

4. Astrophysical plasma systems, such as astrophysical jets produced by AGNs

(Uzdensky, 2011; Matsumoto et al., 2015), accretion disks around compact

objects, e.g., black holes, neutron stars, and magnetars which are a type of
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neutron star with magnetic fields ⇠ 1013�1015 G (Kaspi & Beloborodov, 2017),

also possess magnetospheres and studies have proposed reconnection as the

mechanism for producing highly energetic particles. Moreover, reconnection

has been theorized to cause explosive stellar flares (Lyutikov, 2003, 2006) and

for explaining the problem of stellar formation in accretion disks via transport

of angular momentum across the di↵erent length-scales (Dal Pino et al., 2010).

1.5.2 Basic theory of magnetic reconnection

We motivate this discussion by looking at Eq. (1.41a) and imagining a situ-

ation when all the terms on the right-hand side are negligible. From our previous

discussions in Sec. 1.4.3, we know this approximation is true if the length-scales of

interest are larger than the characteristic length-scales of the terms on the right-

hand side of Eq. (1.41a). This branch of MHD is called “ideal MHD” which, using

ui ⇡ u from Sec. 1.4.3 gives,

E+
1

c
(u ⇥ B) = 0. (1.47)

Eq. (1.47) has two profound implications, 1) an observer in the reference frame of

plasma bulk flow moving at velocity u does not see an electric field, 2) by manipu-

lating Eq. (1.47) to give the plasma flow speed perpendicular to the local magnetic

field, which comes out as

u? =
c(E ⇥ B)

B2
, (1.48)
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and u · B = u|| that denotes the plasma flow speed parallel to the local magnetic

field. The right-hand side of Eq. (1.48) has the same form as the drift velocity

experienced by single particles in crossed electric and magnetic field (Chen, 1974)

and here it implies that the bulk of the plasma “drifts” along with the magnetic

field, by forcing the plasma constituents to move at this velocity. This has been

dubbed the “frozen-in” theorem (Axford, 1984) which essentially states that plasma

is frozen into the magnetic field and is thus convected along with it. One can find

its derivation in many of the plasma physics books (Chen, 1974; Bellan, 2008).

An important implication of the frozen-in theorem is that it prohibits the process

of reconnection from occurring. According to this theorem, plasma fluid elements

are bound to the same magnetic field lines, while in regions of reconnection, there

arises uncertainty regarding the “identity” of magnetic field lines. Consequently,

if the frozen-in theorem were to be considered an inviolable “law” of nature, it

would prevent any topological changes to the geometry of magnetic field lines. This

implies that for reconnection to actually happen, the physics of the other terms

from the right-hand side of Eq. (1.41a) must become important, which happens at

their appropriate characteristic length-scales. That, in turn, allows the plasma to

slip from the magnetic field and for the topology of the field line to change.

Nature is inherently spatially 3-D, but if the system is unvarying in one of the

spatial directions called the “out-of-plane” direction, reconnection can be studied as

a 2-D process, making it simpler to examine. Reconnection requires an oppositely

directed magnetic field line geometry, an example of which is a Harris sheet (Harris,

1962) profile, which is a steady-state solution of the Vlasov equation (Eq. (1.23)).
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The magnetic field follows a tanh profile given by Bx(y) = B0 tanh (y/w0), where

B0 is the asymptotic value at a far away distance and w0 is the half-distance over

which Bx changes direction. From Eq. (1.40b), there is a current density only along

the out-of-plane direction given by Jz(y) = �(cB0/(4⇡w0))sech
2(y/w0). This thin

current sheet is where the frozen-in theorem breaks down; the geometry is shown in

Fig. 1.4. The light green colored box denotes the current sheet which separates the

two regions along ŷ called “upstream” where we have oppositely directed magnetic

field lines (shown by red and blue) and two regions along x̂ called “downstream”

where we have newly reconnected magnetic field lines (shown by half red and half

blue). For reconnection to begin, some dissipative mechanism, i.e., one of the terms

in the right-hand side of Eq. (1.41a) becomes appreciable, causing the magnetic

field to break. In order to preserve Gauss’ law (Eq. (1.22b)), these broken magnetic

field lines cross-connect or “reconnect” inside this “di↵usion” or “dissipation” region

shown by the light blue box in Fig. 1.4 at a location is called the “X-line” (shown by

the black x). The newly reconnected field lines are bent and as they straighten out

outside the di↵usion region, they take the frozen-in plasma out, creating outflows

(shown by thick green arrows). Here in the downstream regions, the stored magnetic

energy gets converted to bulk flow kinetic energy. Plasma flowing outward from the

di↵usion region creates a dearth of mass, thus creating a low-pressure region and so

plasma flows in from upstream (shown by thick red arrows) and doing so brings in

magnetic field lines, turning reconnection into a self-sustaining process. The whole

cycle repeats itself until the upstream magnetic flux is spent, and steady-state is

achieved when the rate at which magnetic flux entering the di↵usion region equals
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Figure 1.4: Sketch of the 2-D geometry of reconnection, tilted in the x � y plane.
Please refer to the text for a detailed description.

the magnetic flux exiting the di↵usion region.

Magnetic flux is linked to reconnection and hence is a measure for quantifying

the rate at reconnection proceeds. We define magnetic flux � as the flux of magnetic

field B through an area of interest S illustrated by cyan loop in the x � z plane in

Fig. 1.4. � =
R
S B · dS where dS is an infinitesimally small element shown by the

small cyan box in Fig. 1.4. This dS is normal to the cyan loop. We use Faraday’s

law (Eq. (1.22d)), then dot it with dS, integrate the flux over the whole surface and

apply Stokes’ theorem to convert the area integral into a line integral to obtain,

d�

dt
= �c

I

C

dl · E, (1.49)

where
H
C denotes the integral along the perimeter of the cyan loop. The left-hand

side of Eq. (1.49) describes the rate at which flux through the loop of interest changes
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in time, and it is called the “reconnection rate”. The loop integral becomes

d�

dt
= �c

I

C

dl · E

= �c [E · dl|left + E · dl|up + E · dl|right + E · dl|down] (1.50a)

=) d�

dt
= �c (Ezlz + Exlx � 0lz � Exlx) = �cEzlz. (1.50b)

In Eq. (1.50a), the subscripts left, right, up, and down indicate the corresponding

edges of the cyan loop perimeter: left, right, upper, and lower, respectively. For

obtaining Eq. (1.50b), we assume that z-component of the electric field is only

important at the X-line and not on the rightmost edge which we choose to be far

away from the reconnection region, and that the x-component of the electric field

has the same strength above and below the x� y plane of reconnection because we

assume it is a 2-D system. Eq. (1.50b) shows that the out-of-plane Ez becomes a

metric of reconnection rate per unit out of plane length.

Since far from the di↵usion region, plasma is frozen-in the magnetic field,

ideal-MHD is an adequate model. We rewrite Eq. (1.38) as

⇢m


@u

@t
+ u · ru

�
= �r


P +

B
2

8⇡

�
+

B · rB

4⇡
, (1.51)

where Eq. (1.40b) is utilized to replace J in the second term on the right-hand side

of Eq. (1.38). We note here that the force density due to a pressure gradient, i.e.,

the rP term on the right-hand side of Eq. (1.51), is responsible for the motion of

plasma into the di↵usion region from upstream, as we discussed at the beginning of
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this section. Moreover, the force density due to magnetic curvature, i.e., B·rB/(4⇡)

on the right-hand side of Eq. (1.51) is responsible for plasma moving outward from

the di↵usion region with the newly reconnected bent magnetic field.

We use scaling analysis on relevant equations when the system is assumed to

be in steady-state, i.e., @/@t ! 0. From the mass continuity equation in MHD as

shown in Sec. 1.4.3, i.e., Eq. (1.37), we obtain r·(⇢mu) = 0. Doing a volume integral

over the di↵usion region, we get
R
V dV r · (⇢mu) =

R
S dS · (⇢mu) = 0, where dV is

an infinitesimally small volume of the di↵usion region, and dS is the corresponding

surface, with out-of-plane length of �z. We consider the surfaces on the upstream

and downstream sides for scaling and obtain

⇢mux

2l�z
⇠ ⇢muy

2��z
,

=) ux

l
⇠ uy

�

=) uin

uout
⇠ �

l
, (1.52)

where we assume that ⇢m is is approximately uniform throughout the di↵usion

region and is dropped in the second relation. l is the half-length and � is the half-

width of the di↵usion region, respectively. We also assume that the flow along ŷ

is approximately uniform across the surface on the upstream side and uy ⇠ uin

where uin is called the inflow speed. Similarly, the flow along x̂ is assumed to be

approximately uniform across the surface on the downstream side and ux ⇠ uout

where uout is called the outflow speed. Eq. (1.52) shows that for a di↵usion region

with � ⌧ l, the outflow speed is faster than the inflow speed. Using a similar
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approach, we obtain a scaling result from Eq. (1.40a)

Bdown

Bup
⇠ �

l
. (1.53)

Similar assumptions about the field strengths at the upstream and downstream

sides of the di↵usion region are made, i.e., Bx ⇠ Bup and By ⇠ Bdown, where Bup

and Bdown denote the magnetic field at the upstream and downstream edges of the

di↵usion region, respectively. Eq. (1.53) implies that for a di↵usion region with

� ⌧ l, the downstream field strength is weaker than the upstream field strength.

A scaling analysis of Eq. (1.51) during steady-state reveals that the curvature term

balances the convective term under the assumption that the pressure gradient term

balances the gradient of magnetic pressure, i.e., B2
/(8⇡), throughout the di↵usion

region. Therefore, we get ⇢mu · ru ⇠ B · rB/(4⇡). Taking a dot product with x̂,

we obtain

⇢m (ux@xux + uy@yux) ⇠ 1

4⇡
(Bx@xBx +By@yBx)

=) ⇢m

⇣
uout

l
+

uin

�

⌘
uout ⇠ 1

4⇡

✓
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+

Bdown
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◆
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2
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l
⇠ 1
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l

◆
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s
B2

up

4⇡⇢m
= cA,up. (1.54)

For the third scaling relation, we use Eqs. 1.52 and (1.53). Eq. (1.54) elucidates

that the outflow speed of plasma exiting the di↵usion region scales the Alfvén speed

based on the upstream magnetic field cA,up. Moreover, from Eq. (1.52), (1.53) and
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(1.54), we also obtain that the inflow speed scales as the Alfvén speed based on the

downstream magnetic field, i.e., uin ⇠ cA,down.

Using ideal MHD, which is valid upstream of the di↵usion region, we obtain a

scaling result for the reconnection rate. We dot Eq. (1.47) with ẑ to get

Ez +
1

c
(uxBy � uyBx) = 0

=) Ez ⇠ 1

c
Bupuin (1.55a)

=) ER ⌘ cEz

uoutBup
⇠ �

l
, (1.55b)

where Eq. (1.55b) gives the normalized reconnection rate ER, which is the out-of-

plane electric field normalized to the outflow speed and upstream magnetic field

strength.

We briefly discuss the resistive reconnection (Sweet, 1958; Parker, 1957) pro-

cess, also eponymously called Sweet-Parker reconnection. It utilizes the resistive

term (of Eq. (1.41a)) to break the frozen-in theorem and this limit of MHD is aptly

called “resistive” MHD. In this model, previous work (Dungey, 1953; Sweet, 1958;

Parker, 1957) has shown that the normalized reconnection rate scales as the square

root of the resistivity ⌘. However, ⌘ is small for many plasma systems of interest,

i.e., the solar corona, where the Sweet-Parker reconnection model was tried as a

potential application for solar flares. Using values for ⌫ei and n for the solar corona

(Richardson, 2019), we get ⌘ ⇡ 2.4⇥10�16
s (in CGS), and this implies a very small

reconnection rate and slow reconnection time-scales. This could not explain the

time-scales of a few minutes observed in solar flares (Parker, 1963). The underlying
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reason for the failure of the Sweet-Parker reconnection model can be attributed to

mass conservation. In the Sweet-Parker model, the di↵usion region where magnetic

field lines reconnect is characterized by a long length and a narrow width. This

aspect ratio leads to a slow reconnection process because plasma that enters the dif-

fusion region from upstream is unable to escape quickly to the downstream region.

Consequently, the limited outflow speed contributes to a slow reconnection process.

Moreover, the resistive model fails to explain reconnection observed in plasma sys-

tems where collisions are infrequent, and thus the system is “collisionless” plasmas,

which we discuss in the next section.

In concluding our discussion on collisional reconnection, it is noteworthy to

comment on the thermodynamic aspects of the system. The frequent collisions

occurring in a resistive plasma imply that the system is in local thermodynamic

equilibrium (LTE). Previous work employing a volume control analysis of the Sweet-

Parker model to examine the energy budget has shown that approximately 50% of

the incoming Poynting flux, which represents the magnetic enthalpy, is converted to

the bulk kinetic energy flux (Priest & Forbes, 2000; Birn et al., 2010; Shay et al.,

2014). This implies approximately 50% is available for increasing the plasma tem-

perature, i.e., internal energy. However, for collisionless reconnection, the absence

of collisions means that the system may not be in LTE and this partition of energy

may not hold true.
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Figure 1.5: Sketch of the 2-D geometry of anti-parallel reconnection. Please refer
to the text for a description.

1.5.3 Collisionless reconnection

We use the framework described in Sec.1.4.3 to motivate how reconnection can

proceed in a collisionless plasma. In the absence of resistivity, the other terms in

Eq. (1.41a) can cause dissipation at smaller scales which in turn leads to field lines

breaking and reconnecting.

We first provide a description of the 2-D geometry of collisionless reconnec-

tion, where an out-of-plane external magnetic field (called a “guide field”) is absent

before reconnection starts, thus giving us an “anti-parallel” configuration. More-

over, a simplistic case is when the two upstream regions have all the same plasma

parameters, thus making the system “symmetric” as well. Such a system is shown

in Fig. 1.5.

According to ideal-MHD, plasma is stuck to the same field line indefinitely due
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to the frozen-in theorem. However, the finite gyroradii of these particles become

important at length-scales at which when particles, while undergoing gyration, can

get a↵ected by the changes in the direction of the magnetic field B within gyro-

period. Then, particles “decouple” from the field line and begin to “meander”

(Speiser, 1965). The distribution functions of such particles are not Maxwellian and

they show sharp features, making the system not in LTE, which requires a theory

beyond the first law of thermodynamics to properly account for the energy budget

of the system.

In a two-species plasma such as the one examined in this dissertation, because

ions are heavier than electrons, the former has larger gyroradii even if the two species

have the same temperature (and the gyroradii are based on their thermal speeds).

This implies that ions decouple first at a larger length-scale and then electrons

decouple at a relatively smaller length-scale, giving rise to the two-scale structure,

as shown in Fig. 1.5 (in contrast to resistive reconnection in Fig. 1.4) (Shay et al.,

1998). The red box portrays the region where electrons are decoupled from the field,

thus called the “electron” di↵usion region (EDR). Since ions decouple at a larger

length-scale, the EDR is embedded in the “ion” di↵usion region (IDR), depicted by

the blue box. The IDR itself can be embedded in a wider current sheet, illustrated

by the green box (analogous to the green box shown in Fig. 1.4). We use the red

thick arrows to illustrate flows into the di↵usion regions, and in green are flows out

of the di↵usion regions. The thickest arrows indicate the bulk motion of plasma into

and out of the di↵usion regions when both electrons and ions are still coupled to

the magnetic field while it is convecting into the di↵usion region. Inside the IDR,
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ion flows are shown by the thicker arrows. Similarly, electron flows are displayed by

the least thick arrows.

We analyzed the di↵erent length scales associated with the terms in Eq. (1.41a)

in relation to the spatial scale over which the magnetic field B varies in Sec. 1.4.3.

We utilize the generalized Ohm’s law from Eq. (1.41b) to replace the electric field

in Faraday’s law from Eq. (1.40c) and obtain

@B

@t
= �cr ⇥


�ue ⇥ B

c
� r · Pe

ne
+

me

e2

d

dt
(J/n)

�
, (1.56)

where we disregard the resistive term. At length-scales when the inertia term is

unimportant and in the absence of o↵-diagonal electron pressure tensor elements,

Eq. (1.56) reduces to

@B

@t
= r ⇥ [ue ⇥ B] . (1.57)

Eq. (1.57) provides the mathematical foundation for understanding why electrons

remain coupled to the magnetic field. This is because it shares the same form as

the equation obtained when the ideal-MHD electric field, as shown in Eq. (1.47),

is used to calculate the time derivative of B. A key implication of Eq. (1.57) is

that it implies that in order for electrons to decouple and reconnection to proceed,

o↵-diagonal electron pressure tensor elements and/or electron inertia need to be non-

negligible. Previous work, e.g., Zenitani et al. (2011) has shown that for symmetric

anti-parallel reconnection, it is the gradient of the o↵-diagonal electron pressure

tensor that breaks the electron frozen-in condition.
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An equivalent expression to Eq. (1.56) can be obtained by using the generalized

Ohm’s law from Eq. (1.41a) instead and we then find

@B

@t
= �cr ⇥


�ui ⇥ B

c
+

J ⇥ B

nec
� r · Pe

ne
+

me

e2

d

dt
(J/n)

�
, (1.58)

where we again ignore the resistive term. Eq. (1.58) can be simplified to give

@B

@t
= �B(r · ui) + (B · r)ui � (ui · r)B � cme

e2

d

dt

✓
r ⇥ J

n

◆

+
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ne
� (B · r)J

ne
+

(J · r)B

ne
.

(1.59)

In the right-hand side of Eq. (1.59), two terms appear that demonstrate the

convection of magnetic field:

1. the third term �(ui · r)B denotes the convection of magnetic field with the

bulk flow of ions,

2. the seventh term (J · r)B/(ne) denotes the convection of magnetic field with

the current, called the “Hall” current, and is portrayed by magenta dashed

curves in Fig. 1.5.

Since the seventh term comes from the Hall term in Eq. (1.41a) and the third term

from the convection term in Eq. (1.41a), their balance signifies the scale at which

Hall term becomes important. Using the result obtained in Sec. 1.4.3, we obtain

the thickness of the IDR is �IDR ⇠ di. For the EDR where electrons decouple, we

use the arguments from Sec. 1.4.3 to find the length-scales at which the electron

inertia term balances the convective term in the electron frame. Doing so, we get
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�EDR ⇠ de. Numerical simulations (Shay et al., 1998; Birn et al., 2001; Hesse et al.,

2002, 2011) have shown that these scaling results hold very well for symmetric

anti-parallel reconnection. A simulation study of in-situ spacecraft observations of

symmetric anti-parallel reconnection in Earth’s magnetosphere measured by NASA’s

Magnetospheric Multiscale (MMS) mission (Burch et al., 2016a) has shown that the

presence of o↵-diagonal electron pressure terms and thus their gradient indeed break

the electron frozen-in theorem, and thus allow for reconnection to proceed (Egedal

et al., 2019).

In order to determine the length of the di↵usion regions, we turn to simulation

studies of collisionless reconnection. Previous studies (Shay et al., 1999; Birn et al.,

2001) demonstrate that the normalized reconnection rate ER is not significantly

a↵ected by the specific non-ideal term in Eq. (1.41a) that facilitates the reconnection

process and ER ⇠ 0.1 implying lIDR ⇠ 10di and lEDR ⇠ 5 � 10de.

The presence of the Hall current in two-species plasmas gives rise to the gen-

eration of an out-of-plane magnetic field. This magnetic field has a quadrupolar

structure, which has been identified as a signature of collisionless Hall reconnection

(Sonnerup, 1979; Mandt et al., 1994), and is a direct consequence of the two-scale

structure. Studies of collisionless simulations for pair plasmas (where electron and

ion inertial lengths are equal, hence no two-scale structure) have shown that the Hall

term disappears, along with the quadrupolar out-of-plane magnetic field structure

(Bessho & Bhattacharjee, 2005; Daughton & Karimabadi, 2007; Hesse & Zenitani,

2007). Even so, Bessho & Bhattacharjee (2005) finds an e↵ective collisionless re-

sistivity (Speiser, 1965) using which they find ER ⇠ 0.1. The independence of the
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normalized reconnection rate ER on the specific dissipation mechanism has been a

subject of confusion. In recent work, Liu et al. (2022) used geometrical arguments

to claim a first-principles calculation of the 0.1 reconnection rate.

1.6 Motivation for studying non-LTE energy conversion in reconnec-

tion

Here, we motivate and justify our choice of employing reconnecting plasma

systems for studying non-LTE energy conversion. In the preceding sections on re-

connection, we have alluded to the inherent non-LTE nature of systems that recon-

nect with low or zero initial guide fields. Ions and electron distribution functions in

the upstream regions, far away from the current sheet, are typically Maxwellian dis-

tributions, and numerical simulations are often initialized with such distributions,

as elaborated upon in Chapter 2. Previous studies, both numerical (Egedal et al.,

2013; Bessho et al., 2014; Shuster et al., 2014, 2015; Egedal et al., 2016; Barbhuiya

et al., 2022) and observational (Burch et al., 2016b; Torbert et al., 2018; Nakamura

et al., 2018, 2019; Egedal et al., 2019; Shi et al., 2022a,b), have demonstrated that

plasmas exhibit highly structured and localized (in position-space) non-Maxwellian

velocity distribution functions, which make applying the first law of thermodynam-

ics as known for LTE systems, restrictive. Nonetheless, the partitioning of incoming

magnetic energy into bulk flow energy and thermal energy of the plasma in reconnec-

tion systems is routinely investigated using the principles we developed in Sec. 1.4.1,

specifically Eqs. (1.34) - (1.36) for thermal (internal) energy density, bulk flow energy
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density, and electromagnetic energy density, respectively. This approach has been

widely employed in first-principle theoretical studies (Liu et al., 2022), numerical

studies (Shay et al., 2014; Haggerty et al., 2015), laboratory experiments (Yamada

et al., 2014), as well as in-situ space satellite observation studies (Eastwood et al.,

2013, 2020; Zhou et al., 2021).

We review the first law of thermodynamics for systems in LTE since it is among

the core themes of the dissertation. One way to write the first law of thermodynamics

is in terms of rates of energy conversion per particle in a small increment of time dt

as

dQ

dt
=

dW

dt
+

dĒint

dt
. (1.60)

This relates the increment in heat per particle dQ, work per particle dW done by

the system, and increment in internal energy per particle dĒint. In thermodynamics,

these increments are parametrized as dQ = TdS where T is the thermodynamic

temperature and dS is the increment in entropy per particle, dW = PdV where

P is the thermodynamic pressure and dV is the change in volume per particle and

dĒint = (3/2)kBdT for a monatomic constituent.

As discussed and alluded to in Sec. 1.4.2, Eq. (1.34) is the non-LTE general-

ization of the first law of thermodynamics and it follows directly from kinetic theory.

To obtain the internal energy evolution equation for a non-LTE system, we multi-

ply Eq. 1.10 by the random energy (1/2)m�v
02
� and integrate over all velocity space
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(Braginskii, 1965; Jou et al., 2010) to get

3

2
n�kB

dT�

dt
= �r · q� � (P� · r) · u� + n�Q̇�,coll,inter, (1.61)

which is yet another way of describing how e↵ective temperature evolves in time,

and is equivalent to Eq. (1.33) and Eq. (1.34). The pressure-strain interaction term,

denoted as �(P� ·r) ·u� in Eq. 1.61 plays a crucial role in understanding non-LTE

energy conversion. As discussed in Sec. 1.4.2, this term, along with its decomposi-

tion (discussed in the next paragraph), has been widely employed in plasma physics

(Yang et al., 2017a,b; Pezzi et al., 2019, 2021) to elucidate the mechanisms responsi-

ble for temperature changes in such systems. However, several unanswered questions

surround the pressure-strain interaction term, raising concerns about whether the

conventional decomposition is always suitable for capturing the underlying physics

of the system. Moreover, the system’s geometry may necessitate the use of non-

Cartesian coordinate systems, and to our knowledge, there is no existing study

that investigates the pressure-strain interaction term and its decompositions using

a non-Euclidean coordinate system. This dissertation aims to address these gaps

and provide insights into these aspects and we do so in chapters 3 - 5.

To demonstrate that Eq. (1.61) is the non-LTE generalization of the first

law of thermodynamics, we write it in a form analogous to Eq. (1.60) by using

the known decomposition (Jou et al., 2010; Yang et al., 2017a) (P� · r) · u� =

P�(r ·u�)+⇧�,jkD�,jk, where we use the Einstein summation convention on indices

j and k, ⇧�,jk = P�,jk � P��jk are elements of the deviatoric pressure tensor ⇧,
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D�,jk = (1/2)(@u�j/@rk + @u�k/@rj)� (1/3)�jk(r · u�) are elements of the traceless

symmetric strain rate tensor D, and �jk is the Kroenecker delta. The continuity

equation implies P�(r·u�) = �(P�/n�)dn�/dt = P�n�d(1/n�)/dt = n�P�dV�/dt =

n�dW�/dt, where V� = 1/n� is the volume per particle and dW� = P�dV� is the

non-LTE generalization of the work per particle done by the system. Dividing

equation 1.61 by n� and rearranging gives

dW�

dt
+

dĒ�,int

dt
=

dQ�

dt
+ Q̇�,coll,inter, (1.62)

where we define dĒ�,int = (3/2)kBdT� as the increment in internal energy per particle,

dQ� as the increment in thermodynamic heat per particle, and dQ�/dt = �(r ·

q� + ⇧�,jkD�,jk)/n�. The non-LTE quantities in calligraphic font generalize the

thermodynamic quantities in a standard font in Eq. (1.60). Thus, Eq. (1.62) is

the non-LTE generalization of the first law of thermodynamics, which accounts for

energy conversion between work, internal energy, and heat for systems not in LTE.

Though we described what e↵ective temperature is early in this dissertation

(see Sec. 1.2), its physical meaning warrants a small discussion. The e↵ective tem-

perature is the appropriate non-LTE generalization to the thermodynamic temper-

ature. The thermodynamic temperature T is related to the average random kinetic

energy in a thermodynamic system via (3/2)kBT� =< (1/2)m�v
02
� >, where the

angular brackets denote the average over all constituent particles. For a non-LTE

system, (3/2)kBT� =< (1/2)m�v
02
� > as well, i.e., it is the analogous measure of the

average random kinetic energy of the particles in the distribution. The distinction
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for systems not in LTE is that T� only contains the average random kinetic energy;

it importantly does not contain energy associated with other forms of random mo-

tion, such as < m�v
0
�jv

0
�k > where j 6= k, which are zero for systems in LTE but can

be non-zero for systems out of LTE and captured in the deviatoric pressure tensor

⇧. This fact underscores the necessity to account for random energy not captured

by the non-LTE generalization of the first law of thermodynamics, and we do in

Chapter 6.

1.7 Outline of the dissertation

We conclude by providing an outline of this dissertation, which is structured

as follows:

1. Chapter 2 serves as a general introduction to the particle-in-cell code p3d,

which is used for the numerical simulations of magnetic reconnection discussed

in chapters 5 and 6. The Chapter also presents a comprehensive explanation

of the new additions made to the kinetic entropy diagnostics and discusses

methods for validating the quantities used in Chapter 6. Furthermore, it

includes simulation material that is elaborated upon in appendices A and C,

2. chapters 3 to 5 consist of a series of published “Featured articles” in Physics of

Plasmas (Cassak & Barbhuiya, 2022; Cassak et al., 2022; Barbhuiya & Cassak,

2022). These chapters focus on gaining a kinetic understanding of the pressure

strain interaction term �(P� · r) · u� identified in Sec. 1.4.2, which describes

the conversion between kinetic bulk energy and thermal energy densities. The
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pressure-strain interaction term has garnered significant attention in recent

years and the aforementioned chapters explore this term and its alternative

decompositions in Cartesian coordinates and in a magnetic field-aligned coor-

dinate system,

3. Chapter 6 features a published “Editor’s Suggestion” article in Physical Re-

view Letters, where we discuss a novel approach for quantifying non-LTE

energy conversion and how it originates from kinetic entropy (Cassak et al.,

2023), and employ anti-parallel reconnection as a test case for our investiga-

tions,

4. Chapter 7 functions as the concluding chapter of the dissertation, where we

summarize the main outcomes and their implications in the field. Additionally,

we o↵er a roadmap for future research and also outline potential avenues that

are being currently explored,

5. Appendix:

(a) A is a published article in the Journal of Geophysical Research Space

Physics, where we discuss the formation of highly structured non-Maxwellian

distributions which have torus shape in velocity-space. These “ring” dis-

tributions appear in the magnetic flux pile-up regions downstream of the

EDR and lead to electron heating. We provide a theory of how the elec-

tron temperature of these ring distributions depends on upstream plasma

conditions and make connections with observed electron temperatures in
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dipolarization fronts in Earth’s magnetotail region and hypothesize how

it could explain super-hot solar flares with temperature in the 10s of MK

(Barbhuiya et al., 2022),

(b) B is a portion of a published article in the Journal of Plasma Physics

that provides the theoretical work where we analytically calculated the

kinetic entropy density for commonly occurring non-Maxwellian distri-

butions. An entropy-based non-Maxwellianity parameter called M̄KP is

then calculated for said distributions (Liang et al., 2020a). Addition-

ally, kinetic entropy density and di↵erent M̄KP for a ring distribution

discussed in Appendix A is also provided.

(c) C is a portion of a published article in Physics of Plasma with the first-

ever MMS observation of kinetic entropy for electrons in a reconnection

event followed by comparisons with 2-D simulation result showing good

qualitative and quantitative agreement (Argall et al., 2022). We also

discover that non-LTE features in the reduced velocity distributions agree

well when comparing observations and simulation data.

50



Chapter 2

Numerical simulations

2.1 General description of the simulations

In order to examine the non-LTE plasma system we described in Chapter 1,

i.e., magnetic reconnection, we simulate antiparallel symmetric reconnection using

a particle-in-cell code called p3d (Zeiler et al., 2002). It is a massively parallelized

code capable of running on tens of thousands of processors, e.g., the simulations

used in this dissertation ran on 32,768 processors. It is important to note that all

simulations conducted for this dissertation are 2.5-dimensional in position-space,

which means there are no variations in quantities along one spatial direction that

is the out-of-plane direction, while they are 3-dimensional in velocity-space. In

p3d, the particles and electromagnetic fields are stepped forward in time using the

relativistic Boris particle stepper (Birdsall & Langdon, 1991) and the trapezoidal

leapfrog method (Guzdar et al., 1993), respectively. The particle time step is chosen

to be twice that of the fields. In order to ensure the validity of Poisson’s equation,

the multigrid method (Trottenberg et al., 2000) is utilized to clean the electric field

E every 10 particle time steps. The simulation domain is bounded by periodic

boundaries in both spatial directions.
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2.2 Normalized units of simulated quantities

In Nature, quantities such as temperature and number density can have dis-

parate orders of magnitude. For example, the number density in the solar corona

is ⇠ 109 cm
�3 whereas the temperature is ⇠ 106 K (Richardson, 2019). Simulating

such quantities with varied magnitudes is computationally challenging. Hence, it is

convenient in simulations to have all quantities in “code normalized units” which

makes it so that all quantities have a similar order of magnitude in spite of being

di↵erent variables. We now proceed to discuss the normalization in p3d.

2.2.1 Governing equations and normalization

At its core, the numerical code solves the four Maxwell’s equations (Eq. (2.1a)-

(2.1d)) alongside the macroparticle equation of motion, with the subscript p denoting

macroparticles (Eq. (2.1e)) and subscript � denoting species, with the Lorentz force

(Eq. (2.1f)) given by

r · E = 4⇡⇢, (2.1a)

r · B = 0, (2.1b)

r ⇥ B =
4⇡

c
J+

1

c

@E

@t
, (2.1c)

r ⇥ E = �1

c

@B

@t
, (2.1d)

dxp,�

dt
= vp,�, (2.1e)

mp,�
dvp,�

dt
= qp,�

✓
E+

vp,� ⇥ B

c

◆
, (2.1f)
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where Eq. (2.1e) - (2.1f) are solved for ions and electrons separately. Macroparticles

(or superparticles) correspond to a large number of actual particles, from which they

are made, i.e., the actual particles that make up a macroparticle have similar posi-

tions and velocities and thus can be regarded as chunks of phase space as discussed

in Sec. 1.3. c is the speed of light. xp,� is the (macro)particle position of species �,

and vp,� is the (macro)particle velocity of species �. We show the non-relativistic

equations of motion in Eq. (2.1f) where vp,� ! �vp,� in the left-hand side for rel-

ativistic regimes, with � = (1 � v
2
p,�/c

2)�1/2. Here, E and B are the electric and

magnetic fields, respectively. ⇢ =
P

�

P
p qp,�np,� is the charge density where qp,� is

the charge of the (macro)particle p of species � and np,� is the number density of

the (macro)particle p of species �. J =
P

�

P
p qp,�np,�vp,� is the current density..

For a detailed derivation of the normalization, which requires some algebraic

manipulations, we refer readers to https://terpconnect.umd.edu//~swisdak/

p3d/ courtesy of Marc Swisdak. For brevity, we provide the normalized equa-

tions and normalization constants, also known as “dimensional constants” called

as such since they contain the dimensional information. The normalized equations,
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suppressing the p subscript, are as follows

r̃ · Ẽ =
c
2

v
2
0

⇢̃, (2.2a)

r̃ · B̃ = 0, (2.2b)

r̃ ⇥ B̃ = J̃+
v
2
0

c2

@Ẽ

@t
, (2.2c)

r̃ ⇥ Ẽ = �@B̃
@t

, (2.2d)

dx̃

dt
= ṽ, (2.2e)

dx̃e

dt
= ṽe, (2.2f)

dṽ

dt
=

⇣
Ẽ+ ṽ ⇥ B̃

⌘
, (2.2g)

m̃e
dṽe

dt
= �

⇣
Ẽ+ ṽe ⇥ B̃

⌘
, (2.2h)

where ˜ denote code normalized dimensionless variables. The dimensional constants

are denoted by the “0” subscript and are as follows. For mass, m0 = mi, i.e., the

normalized ion mass is 1, for charge q0 = e, i.e., the normalized ion charge is 1.

Eqs. (2.2e) and (2.2g) is for ions and we write Eqs. (2.2f) and (2.2h) separately for

electrons. The normalization constants used are based on a reference density n0 and

a reference magnetic field B0. Doing so then defines the other dimensional constants

which are as follows. For lengths, L0 = di which is ion skin depth based on n0. For

times, t0 = ⌦�1
ci0 = [eB0/(m0c)]�1 which is the inverse of ion cyclotron frequency

based on B0. Thus, for speeds, v0 = cAi0 which is the ion Alfvén speed based on B0

and n0. For electric fields, E0 = B0v0/c.

The dimensional constant for distribution functions f0 can also be obtained.
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We utilize Eq. (1.4) and N =
R
d
3
rn to obtain f0 = n0/v

3
0 = n0c

�3
Ai0. Thus, a reduced

velocity distribution function is normalized to n0c
�2
Ai0 if one velocity dimension is

integrated out, and to n0c
�1
Ai0 if two velocity dimensions are integrated out. The

dimensional constant for temperatures is T0 = m0v
2
0/kB = mic

2
Ai0/kB where kB is

Boltzmann’s constant. This implies energy densities E have a dimensional constant

E0 = m0n0v
2
0 = min0c

2
Ai0. Dimensional constants for other derived quantities can be

similarly derived, e.g., energy per particle Ē is normalized to Ē = E0/n0 = m0v
2
0 =

mic
2
Ai0.

We discussed kinetic entropy density in Sec. 1.3.4 in preparation for discussions

done later in Chapter 6 where we will see that it is decomposed into position-space

and velocity-space entropy densities (see Eqs. (6.4a) - (6.4b)). The dimensional

constant for kinetic entropy density, position-space entropy density and velocity-

space entropy density is kBn0. Dimensional constants for other derived quantities

can be similarly calculated, e.g., kinetic entropy density flux J� given in Eq. (6.13)

is kBn0cAi0.

2.3 System setup

2.3.1 Plasma system at initialization

We note here that the initialization conditions used in the simulations in this

dissertation are the same as that of Liang et al. (2019). The simulations are initial-

ized with two current sheets, that are Lx in length and centered around Ly/4 and

3Ly/4; here Lx and Ly are horizontal and vertical lengths of the simulation domain.
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The simulation coordinates are such that the reconnection inflows are along ±ŷ and

the outflows are along ±x̂. The out-of-plane direction ẑ = x̂ ⇥ ŷ. At initialization,

we employ a double tanh magnetic field profile for the x̂ component of the magnetic

field, given by

Bx(y) = tanh

✓
y � Ly/4

w0

◆
� tanh

✓
y � 3Ly/4

w0

◆
� 1, (2.3)

where w0 is the width (also called the half thickness) over which Bx reverses direc-

tions across the current sheets (as desired in a reconnection simulation). Thus, the

asymptotic value of Bx far upstream of the current sheet is ±1. We choose this

asymptotic value as B0 for code normalization. Initially, there is no out-of-plane

(guide) magnetic field. At t = 0, plasma is neutral so ne = ni = n and there is only

one plasma population for each species with a number density profile given by

n(y) =
1

2(Te + Ti)


sech2

✓
y � Ly/4

w0

◆
+ sech2

✓
y � 3Ly/4

w0

◆�
+ nup, (2.4)

where Te and Ti are electron and ion temperatures, respectively, that are uniform

at t = 0, and nup is the far upstream number density. The maximum of the number

density minus the upstream number density at the center of the current sheet comes

out to be 1/(2(Te+Ti)). We choose the total plasma temperature, i.e., Te+Ti = 0.5,

thus making this maximum density equal 1, and we choose this as n0. At initializa-

tion, both electrons and ions have drifting Maxwellian distribution functions, given

by Eq. (1.2). There is no electric field at initialization; using Eqs. (2.2c) and (2.3),
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we find only out-of-plane current density exists (since @/@z ! 0) and it is given by

Jz(y) = �@Bx

@y
= � 1

w0


sech2

✓
y � Ly/4

w0

◆
� sech2

✓
y � 3Ly/4

w0

◆�
. (2.5)

This current density is sustained by the bulk flow of the plasma along the ẑ direction,

which we discuss next.

It has been shown that a 1-D kinetic equilibrium current sheet solution to the

Vlasov equation exists (Harris, 1962). A constraint relating temperature and bulk

flow velocity of species in order to maintain charge neutrality of plasmas was later

discovered (Biskamp, 2000). This condition is given by ue/Te = �ui/Ti where ue

and ui are bulk flow velocities of electrons and ions, respectively. These velocities

are only along ẑ direction at t = 0, thus giving ue,z/Te = �ui,z/Ti. Since at t = 0,

Jz = n(ui,z � ue,z), a quick derivation gives

ue,z = � Jz(y)Te

n(y)(Te + Ti)
(2.6)

ui,z =
Jz(y)Ti

n(y)(Te + Ti)
. (2.7)

We add a small magnetic perturbation (of the forms provided below) to initiate

reconnection by seeding an X-O line pair in both upper and lower current sheets,

�Bx = �bx,pert sin
2⇡x

Lx
sin

4⇡y

Ly
, (2.8)

�By = bx,pert
Ly

2Lx
cos

2⇡x

Lx


1 � cos

4⇡y

Ly

�
. (2.9)
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� denotes the small perturbations, and bx,pert is a small (usually less than 10%)

user-defined value. Associated additions to current densities and the bulk flows are

thus small. Fig. 2.1 displays these perturbations for simulation parameters listed in

Sec. 2.3.2.

2.3.2 Simulation parameters at initialization

We choose the speed of light c to be larger than the largest speed of the system,

thus making the parameters non-relativistic (whilst p3d is relativistic) and c = 15

su�ces for the simulations used in this dissertation. As we discussed in Sec. 2.2.1,

electron mass m̃e is user selected such that electron to ion mass ratio is 0.04 and it

is su�cient for the study of the electron di↵usion region (EDR). We select a small

simulation domain of Lx⇥Ly = 12.8⇥6.4. We note here that the simulation domain

is smaller than the smallest length required for full ion recoupling downstream of the

X-line, i.e., outflowing ions do not have the space needed to recouple back to the

reconnected field, and thus reconnection proceeds in partial-ion recoupled regime

(Sharma Pyakurel et al., 2019).

We choose the grid-length � = 0.0125, which is smaller than the smallest

length-scale of the system, i.e., electron Debye length �De = 0.0176. The system

has 1024⇥512 grid-cells. We choose the time-step �t = 0.001 to be smaller than the

smallest time-scale of the system, as set by the electron plasma oscillation time-scale

!
�1
pe = 0.012. Each of the 1024⇥ 512 grid-cells is initialized with a (macro) particle

per grid (PPG) of 25,600 that are also weighted. Using particle weights ensures
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Figure 2.1: Plot of the magnetic field perturbation of the form given by Eq. (2.8)
shown in panel (a) and Eq. (2.9) shown in panel (b) that seed an X-O line pair in
lower current sheet at (x, y) = (9.6, 1.6) and upper current sheet at (x, y) = (3.2, 4.8)
when simulation is initialized, shown by a sketch in panel (c).
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Figure 2.2: Plot of the total energy density (panel (a)) and change in total energy
density (panel (b)), for the whole simulation domain, as a function of time.

good statistics since our system uses non-uniform densities at t = 0, Eq. (2.4). The

choice of PPG makes the simulations computationally costly while ensuring excellent

entropy statistics (Liang et al., 2019) by decreasing particle noise inherent to PIC

codes. These numerical parameters lead to an energy change of 0.026% by t = 14

as shown in Fig. 2.2.

The initially uniform electron and ion temperatures are set to Te = 1/12 and

Ti = 5/12, giving the maximum density at the center of the current sheets minus

nup is 1.

This concludes the information necessary for simulations discussed in Chapter

5, and we next discuss code implementation of kinetic entropy-based quantities

employed in Chapter 6 in detail.
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2.4 Kinetic entropy-based quantities

Kinetic entropy calculations, which form the basis of calculating other quanti-

ties that are subsequently utilized in Chapter 6 for understanding energy conversion

associated with changing the higher order velocity moments, have been previously

implemented in Liang et al. (2019) to which readers are referred to for further de-

tails. This algorithm implemented by Liang et al. (2019) is a direct calculation of

kinetic entropy. However, other methods exist, e.g., discussed in Jara-Almonte & Ji

(2021). We enhance Liang et al. (2019) implementation by introducing the capabil-

ity to independently select the velocity-space grid scale �v� for electrons and ions

(Argall et al., 2022).

2.4.1 Velocity-space grid optimization

As discussed in previous work (Liang et al., 2020b), we first optimize the

velocity-space grid by comparing kinetic entropy density (as defined in Eq. (1.30))

output from the code and known theoretical values at t = 0. As we employ a

single population of drifting Maxwellian distribution (Eq. (1.2)), using Eq. (1.30)

the kinetic entropy density for a Maxwellian distribution sM can be exactly written

as

sM(r, t) =
3

2
kBn(r, t)


1 + ln

✓
2⇡kBT

m[n(r, t)]2/3

◆�
, (2.10)

where we retain the dependencies on r. This shows that since number density n

is non-uniform, so is sM , whose 1-D cut is taken at the lower X-line and shown

in Fig. 2.3. We center the plot such that the origin is around the lower X-line,
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Figure 2.3: A 1-D cut (taken at the lower X-line) of the kinetic entropy density for
electron se centered around the lower X-line at t = 0 displaying its profile. In black
is shown the simulated se for �ve = 1.33, and in red dashed is shown the theoretical
profile.

i.e., (x0, y0) = (0, 0) denotes the lower X-line. Using various �ve and �vi, we

test the agreement and then choose �ve = 1.33 and �vi = 0.629, where we note

that ions are not the focus of the simulations. Our choice of optimal �ve leads to

an agreement within ±3% at the center of current sheet and within ±1% at the

asymptotic upstream as seen in Fig. 2.3.

2.4.2 Velocity-space kinetic entropy density flux

The kinetic entropy density flux J �, with its subscript � suppressed, which

we will also see in Chapter 6 as Eq. (6.13), is

J = J v � kBun ln

✓
n�3

r

N

◆
. (2.11)
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Here, J v is the velocity-space kinetic entropy density flux given by

J v = �kB

Z
vf ln

✓
f
�3

v

n

◆
d
3
v. (2.12)

We implement Eq. (2.12) in p3d since its validation against a known distribu-

tion function is simpler, which we explain next. For a single population drifting

Maxwellian distribution, we calculate J v using Eqs. (1.2) and (2.12) to get

J v,M(r) =
3

2
kBu(r)n(r)


1 + ln

✓
2⇡kBT

(�3v)2/3m

◆�
. (2.13)

Here, the M subscript on J v,M denotes the value for a Maxwellian distribution.

Since the simulation is initialized with out-of-plane current sheets, uz is non-zero

at t = 0. (Note that the inclusion of magnetic field perturbation makes ux and uy

also non-zero but very small and the e↵ect is akin to what we discussed earlier in

Sec. 2.3.1.) Fig. 2.4 shows a 1-D cut of the simulated Jv,z taken and centered around

the lower X-line and it is compared with the theoretical prediction in Eq. (2.13).

We observe that simulated Jv,M,z agrees well with the theory.
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Figure 2.4: A 1-D cut (taken at the lower X-line) of the z-component of velocity-
space kinetic entropy density flux Jv,z for electrons centered around the lower X-line
at t = 0 displaying its profile. In black is shown the simulated curve and in red
dashed is shown the theoretical profile, given by Eq. (2.13).

2.4.3 Velocity-space thermal kinetic entropy density flux

We use v = v0+u and rewrite Eq. (2.12), while again suppressing the subscript

�, as

J v = �kB

Z
(v0 + u)f ln

✓
f
�3

v

n

◆
d
3
v

= J th,v + usv, (2.14)

where J th,v is the velocity-space thermal entropy density flux given by

J th,v = �kB

Z
v0
f ln

✓
f
�3

v

n

◆
d
3
v. (2.15)

In Eq. (2.14), sv is the velocity-space kinetic entropy density, given by

sv = �kB

Z
f ln

✓
f�3

v

n

◆
d
3
v, (2.16)
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which is also Eq. (6.4b), with � subscript shown explicitly.

We implement J th,v in p3d which we discuss shortly. Before doing so, we

note that J th,v is equivalent to J th utilized in Chapter 6. We observe this from

Eq. (6.15) since

J th = �kB

Z
v0
f ln

✓
f�3

r�3
v

N

◆
d
3
v

= �kB

Z
v0
f ln

✓
f�3

v

n

◆
d
3
v � kB

Z
v0
f ln

✓
n�3

r

N

◆
d
3
v (2.17)

= J th,v,

where the last term in Eq. (2.17) drops out since the argument in ln is independent

of v, and thus can be brought out of the integral, leaving
R
v0
fd

3
v which vanishes,

by definition.

We analytically calculate J th,v for a single population drifting Maxwellian

distribution. After a few simple steps that involve using Eq. (2.10), we find that

J th,v is identically zero. We compare J th,v from the simulation with the theoretical

predictions and we also use the J v implementation and Eq. (2.14) to post-process

J th,v for comparison with the code-output result. Fig. 2.5 shows a 1-D cut (taken

and centered around the lower X-line) of the z-component of J th,v, i.e., Jth,v,z in

panel (a), with panel (b) showing the post-processed version and panel (c) showing

their di↵erence. We note the apparent mismatch between the theory predictions

(red dashed line in panel (a) of Fig. 2.5) and simulated result in the current sheet,

which can be reconciled by recalling that we use weighted macroparticles in the

simulations. In the validation phase, we employ PPG = 100 simulations and we see
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Figure 2.5: 1-D cut (taken and centered around the lower X-line) of the z-compon-
ent of velocity-space thermal kinetic entropy density flux Jth,v,z for electrons at
t = 0. Panels (a) and (b) show Jth,v,z simulated from our implementation in p3d
and post-processed, respectively. The green curve in panel (a) shows the profile of
the weight of the macroparticles, the red dashed line denotes the theoretical value
and the black curves are the simulated values in panels (a) and (b). In panel (c),
the di↵erence between the simulated Jth,v,z shown in panel (a) and (b) is plotted,
where we observe less than a 1% error when comparing the two methods of obtaining
J th,v.
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similar profiles for J th,v but the noise level in the upstream and current sheet regions

(at t = 0) is approximately 16 times higher (not shown). Due to the extremely

high PPG for the PPG=25,600 simulations used in this dissertation, we see the

e↵ects of the non-uniform weight assigned to the macroparticles, which manifests

as simulated Jth,v,z having a worse agreement with the theory in the current sheet

region. To calculate weight W (a non-negative number), we utilize Eq. (B2) from

Liang et al. (2019) that gives W = Ncell/(PPG ⇥ a), where Ncell is the number

of actual particles in a spatial grid cell, which is
P

k Njk = Nj, Njk is the actual

number of particle in the jkth phase-space bin, and a is called “a factor” and it is

the ratio of actual particles per macroparticle which for the simulations used in this

dissertation is a = 1318.75. (Readers are referred to Liang et al. (2019) for details

on how “a factor” is determined.) Doing so, we obtain the profile for W denoted

by the green curve in Fig. 2.5 panel (a) where W ⇡ 0.14 in the upstream regions

and W ⇡ 0.83 at the center of the current sheet. Here, we note a direct correlation

between weight and quality of agreement between the simulated and theoretical

values. The agreement is best when W is low, which is in the upstream regions.

As W starts to increase, we observe that the agreement worsens. Thus, we can

trace the disagreement seen in the current sheet region to the usage of non-uniform

number density at initialization.
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2.4.4 Relative entropy density

Prior to delving into the forthcoming discussion, we note that the implemen-

tation of relative entropy density in p3d that we are about to discuss is recent and

was not utilized in the simulations examined in Chapter 6 of this dissertation. This

implies the simulated results we will be addressing concerning relative entropy den-

sity and relative entropy per particle are from separate simulations that are not part

of Chapter 6 of this dissertation. However, we think that this discussion will shed

new light on the outcomes presented in Chapter 6.

2.4.4.1 Implementation in p3d

We now discuss the implementation and validation in p3d of relative entropy

density sv,rel (with its � subscript suppressed) that is defined as

sv,rel = �kB

Z
f ln

✓
f

fM

◆
d
3
v. (2.18)

We note that this equation is also seen in Chapter 6 as Eq. (6.6). Here fM is

the “Maxwellianized distribution function” (Grad, 1965) given by, with � subscript

suppressed,

fM = n

✓
m

2⇡kBT

◆3/2

e
�m(v�u)2/2kBT

, (2.19)

where n, u, and T are based on f . Eq. (2.19) also appears as Eq. (6.8) in Chapter

6. As the previously implemented subroutine from kinetic entropy density (Liang

et al., 2019) creates f and fM , we use them to implement the sv,rel calculation in
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p3d according to Eq. (2.18).

For a single plasma population of drifting Maxwellian distribution we use at t =

0 in the simulations for this dissertation, Eq. (2.18) readily gives sv,rel = 0. However,

as in the case for Jth,v,z seen in Fig. 2.5, a comparison of the simulated result with the

theoretical prediction leads to interesting findings. In order to understand them, we

first note that sv,rel for any arbitrary non-Maxwellian distribution is negative. Panel

(a) of Fig. 2.6 shows a 1-D cut of sv,rel for electrons taken and centered at the lower

X-line where we again overlay the non-uniform particle weight (shown in green).

In doing so, we again notice that 1) the simulated signal is noisier in the current

sheet where the weight is higher than in the background where the weight is lower,

2) the profile of the simulated quantity aligns well with that of the weight which

implies that the cause of non-uniform simulated signal can be traced back to the

non-uniform number density profile. However, looking at the 1-D cut of sv,rel/n, i.e.,

the relative entropy per particle shown in panel (b), we note that this issue with non-

uniform number density disappears. However, we now clearly observe the mismatch

between the theoretical prediction of sv,rel/n (red dashed line) and the simulated

result. This disagreement originates from using a finite number of macroparticles in

the simulations and is at the noise level inherent in PIC simulations. This is evident

from panel (c) which is the PIC simulation of the same system but with PPG =

6400, implying an increase in PIC noise by a factor of 2 due to the reduction in

PPG by a factor of 4. Moreover, in panel (d), we repeat the simulation with PPG

= 400, i.e., an increase in PIC noise by a factor of 8 due to the reduction in PPG

by a factor of 64. We observe that going from PPG = 400 to PPG = 6400, sv,rel/n
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goes from ⇠ 0.08 to ⇠ 0.013, implying a factor of ⇠ 6 decrease, which is close

to
p
6400/400 = 4. Similarly, we find that going from PPG = 6400 to PPG =

25600, sv,rel/n goes from ⇠ 0.013 to ⇠ 0.004, implying a factor of ⇠ 3 decrease,

which is close to
p

25600/6400 = 2. This discussion indicates that the apparent

mismatch seen in panel (b) is physical using the initial conditions employed in the

PIC simulation and that it can be traced back to PIC simulations not creating f

or its Maxwellianized distribution fM to absolute precision. Additionally, the fact

that the simulated sv,rel/n < 0 indicates that the initial Maxwellian distribution f

produced by p3d is not as precise as the Maxwellianized distribution fM created by

p3d.

2.4.4.2 Subtlety with relative entropy calculation

A subtlety arises in the computation of relative entropy, which becomes evident

when comparing relative entropy per particle obtained directly from the simulation

(utilizing the relative entropy implementation discussed in Sec. 2.4.4.1) and the

post-processed relative entropy per particle obtained using the expression sv,rel/n =

sv/n � sv,Ē/n. Here, sv,Ē (with � subscript suppressed) is

sv,Ē

n
=

3

2
kB


1 + ln

✓
2⇡kBT

m(�3v)2/3

◆�
. (2.20)

This appears as Eq. (6.24) in Sec. 6.5.3. The post-processed sv,rel/n can then be

readily obtained by simple subtraction.

We present a comparison of these quantities in Fig. 2.7 for electrons at time
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Figure 2.6: 1-D cut (taken and centered around the lower X-line) of relative en-
tropy for electrons at t = 0 using PPG = 25,600. Panel (a) shows relative entropy
density sv,rel and (b) shows relative entropy per particle sv,rel/n simulated from our
implementation in p3d. The green curve in panel (a) shows the the non-uniform
macroparticles weight, red dashed line denotes the theoretical value and the black
curves denote the simulated values in panels (a) and (b). Panels (c) and (d) repeat
panel (b) but for PPG = 6400 and PPG = 400 simulations, respectively.
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Figure 2.7: Plots of 1-D cuts (taken and centered around the lower X-line) for
electrons at t = 0. In black, red, and green are simulated sv/n, the simulated
sv,E/n, and the computed value of sv,rel/n, respectively.

t = 0. We present 1-D cuts centered around the lower X-line. The simulated

value of sv/n is depicted with a black line, while the simulated value of sv,E/n

is represented by a red line. Furthermore, we compute the value of sv,rel/n by

subtracting the red line from the black line, and this result is visualized using a

green line. Unlike the simulated sv,rel/n produced from p3d seen in panel (b) of

Fig. 2.6, we note that sv,rel/n is instead positive, which is not surprising given that

we observe sv,E/n < sv/n, which, according to the theory, should be equal at t = 0.

When we repeat this validation exercise for the PPG = 6400 simulation, with

di↵erent �ve and PPG = 400 with the same �ve (plots not shown here), we obtain

a post-processed sv,rel/n ⇠ 0.1, with noisier data for lower PPG simulation. This

indicates that the post-processed sv,rel/n is independent of �v, which one can show

analytically through straightforward algebraic analysis (which we omit here). An-
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alytically, it can also be shown that the post-processed sv,rel/n relies solely on the

parameters n, T , and the kinetic entropy density. This, in turn, implies that the ob-

served discrepancy in the post-processed sv,rel/n is due to the finite precision of PIC

codes, which prevents the generation of an “ideal” Maxwellian distribution during

initialization, with finite PPG as previously discussed in Sec. 2.4.4.1. This discus-

sion underscores the value of directly computing sv,rel from the p3d code rather than

relying on post-processing due to the sensitivity of sv,rel to both sv and sv,E , which

exhibit very similar signatures and are close in amplitudes. Nevertheless, as we will

elaborate in the next section, the Lagrangian time derivative d/dt = @/@t+ u� · r,

with u� representing the bulk flow of the species �, of relative entropy per particle

obtained through post-processing, while not on par with the data derived directly

from the code, can still provide valuable insights.

2.4.4.3 Lagrangian time derivative of relative entropy per particle

For the simulations used in Chapter 6, we require the Lagrangian time deriva-

tive of sv,rel and we obtain it via post-processing, i.e., we subtract o↵ the La-

grangian time derivative of sv,E/n from the Lagrangian time derivative of sv/n so

that d(sv,rel/n)/dt = d(sv/n)/dt� d(sv,E/n)/dt. To examine if post-processing leads

to numerical issues (due to what we discussed in Sec. 2.4.4.2), we compare d(sv,rel)/dt

obtained from sv,rel that is output from p3d using the relative entropy implementa-

tion discussed in Sec. 2.4.4.1 and a post-processed d(sv,rel)/dt. This is illustrated in

Fig. 2.8 panel (a) and panel (b), respectively, for electrons at t = 13 from the PPG
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= 6400 simulation. It demonstrates that the post-processing method of obtaining

d(sv,rel)/dt, whilst not ideal, yields very similar results (the 2D structures are quite

similar).

A careful examination of the 2D plots presented in Figure 2.8 reveals the pres-

ence of minor discrepancies between the two methods. They are further exemplified

by the 1-D cuts (taken and centered at the lower X-line), and shown in panels (c)

and (d) of Figure 2.8, displaying the horizontal cut and vertical cut, respectively.

Both have black curves showing the result obtained from p3d and red curves showing

the result obtained via post-processing. From both the 2D plots and 1-D cuts, we

note that post-processing overestimates values everywhere, including the EDR re-

gion, which is x�x0 2 (�2, 2), y� y0 2 (�0.35, 0.35). Quantifying this discrepancy,

we find that, e.g., at the lower X-line, post-processed data is ⇡ 36% higher relative

to the p3d data.

2.5 Dynamics of the reconnecting system

Due to the choice of the simulation domain size, the reconnecting system never

reaches steady-state and reconnection terminates when the island width becomes

equal to half the width of the simulation domain. In Fig. 2.9, we show the recon-

nection rate in black, while its time rate of change is shown in red, as a function of

time for the lower current sheet from the simulations used in Chapters 5 and 6. At

t = 13, the reconnection rate increases most rapidly. Therefore, this particular time

instant is expected to exhibit the most dynamic evolution of the system, making
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Figure 2.8: Plots of d(sv,rel)/dt for electrons at t = 13 are shown. Panel (a) and
(b) show 2D plots centered around the lower X-line, with the former displaying data
from p3d implementation of relative entropy density and the latter data obtained
via post-processing. Panel (c) and (d) show overplots of the 1-D cuts (taken and
centered at the X-line) of data shown in panel (a) (in black color) and (b) (in red
color), with former showing the horizontal cut and the latter showing the vertical
cut.
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Figure 2.9: Plot of reconnection rate E and its instantaneous time rate of change
dE/dt as a function of time in black and red, respectively, for the lower current
sheet.

it an ideal choice for investigating energy conversion parameters such as pressure-

strain interaction (as discussed in Chapter 5) and the Lagrangian time derivative of

d(sv,rel/n)/dt (as explored in Chapter 6).

In Chapter 6, the Lagrangian (or total) time derivatives of various quantities

are computed. To calculate the @/@t term, we employ a central finite di↵erence

scheme utilizing data from t = 12 and t = 14. However, given our focus on electrons

and considering that the aforementioned data are at ion time scales, we compare

the obtained results with those derived from a finite di↵erence between t = 12.96

and t = 13.04, which are time instances at the electron time scale and are obtained

by rerunning the simulation with a higher cadence of data output. We observe that

the results from the two approaches di↵er by less than 5%, which we consider to

be negligible for the purposes of our study. Then, the u� · r term is calculated at

t = 13 and added to the @/@t term and we finally obtain the d/dt term.

We employ a smoothening procedure by using a built-in “smooth” function

in IDL, that performs a boxcar average of the specified width (more on which can

be found at https://www.l3harrisgeospatial.com/docs/SMOOTH.html), to re-
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cursively smooth the raw data output by the simulation four times over four cells.

Afterward, we take the necessary spatial or temporal derivative. To ensure that the

smoothing we perform is not excessive, we try di↵erent approaches to smoothing the

data, including using a width of two cells for a varying number of iterations and a

width of four cells for a varying number of iterations. We determine our smoothing

approach by finding when we start to see clearer, sharper structures without over-

smoothing. To confirm that oversmoothing is not occurring, we compare 1-D cuts

of the unsmoothed data with the smoothed data. In Fig. 2.10, we show 1-D cuts

of electron Pi � D ⌘ ⇧e,jkDe,jk which we discussed in Sec. 1.6 and is the subject of

analysis in Chapters 3 - 5, taken at the lower X-line. The black curve represents

the raw data (a smoothing width of zero cells, iterated zero times). The other five

curves give the result of smoothing over four cells for the given number of iterations.

Our interpretation is that smoothing over four cells with two and four iterations is

reasonably similar and captures the trend of the data while using six or more iter-

ations results in oversmoothing, i.e., the smoothed data is no longer representative

of the raw data. We, therefore, opt to use four iterations over four cells, displayed

in green curves in Fig. 2.10.
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Figure 2.10: 1-D cuts of Pi � D for electrons (taken and centered at the lower X-
line), with panel (a) showing the horizontal cut and panel (b) showing the vertical
cut. In both panels, various smoothing procedures are overplotted with the raw
simulation data (black curves) and are color-coded as described in the legend.
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Chapter 3

Pressure-Strain Interaction: I. On Compression, Deformation, and

Implications For Pi-D

3.1 Introduction

Weakly collisional plasmas are important in many settings, from heliophysics

to planetary magnetospheres to astrophysics (Howes, 2017). A host of plasma phe-

nomena take place in such settings, including magnetic reconnection, plasma turbu-

lence, and collisionless shocks. The dearth of collisions in many settings of interest

implies that these plasmas can be far from local thermodynamic equilibrium (LTE).

In the study of these physical phenomena, one of the forefront research questions is

how energy is converted during each process, especially when non-LTE e↵ects greatly

a↵ect the dynamics at the micro-, meso-, and even the macro-scale (Matthaeus et al.,

2020).

We note here that unlike in the equations in Chapter 1, here we mostly suppress

the subscript � (that denotes species) for the sake of brevity. The same is applicable

to quantities discussed in chapters 4 and 5.

A quantity contributing to non-LTE energy conversion that has received in-

Phys. Plasmas, 29, 122306 (2022)
Contributing authors: Paul A. Cassak, M. Hasan Barbhuiya
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tense scrutiny over the last few years is the pressure-strain interaction, written as

�(P · r) · u, where P is the pressure tensor of a species of a fluid or plasma and

u is its bulk flow velocity (Del Sarto et al., 2016; Yang et al., 2017a,b; Del Sarto

& Pegoraro, 2018). In terms of the phase space density f (the number of particles

per unit position space volume and velocity space volume), the bulk flow velocity

is u = (1/n)
R
d
3
vvf , where v is the velocity space coordinate, n =

R
d
3
vf is the

number density, and the integrals are over all velocity space, and the elements of

the pressure tensor P are (classically and non-relativistically) Pjk = m
R
v
0
jv

0
kfd

3
v,

where j, k are indices for the spatial dimensions, m is the constituent particle mass,

and v0 = v � u is the peculiar (random) velocity.

To see why pressure-strain interaction is important for energy conversion, con-

sider the thermal (internal) energy density Eth = 3P/2 =
R
(12mv

02)fd3v, where

P = (1/3)tr(P) = (1/3)Pjj is the e↵ective pressure, using the Einstein summation

convention for repeated indices here and throughout. Its time evolution is described

by (Braginskii, 1965)

@Eth

@t
+r · (Ethu) = �(P · r) · u � r · q+ Q̇visc,coll, (3.1)

where q =
R
(1/2)mv

02v0
fd

3
v is the vector heat flux density and Q̇visc,coll is the vol-

umetric viscous heating rate via collisions, where we use the word viscous regardless

of the functional form of the collisional heating. The time evolution of the bulk
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kinetic energy density Ek = (1/2)mnu
2 is given by (Braginskii, 1965)

@Ek

@t
+r · (uEk + u · P) = (P · r) · u+ nu · F+Rcoll, (3.2)

where F is the net body force and Rcoll is the inter-species collisional drag force

power density. The pressure-strain interaction �(P · r) · u arises in each equation

with opposite signs, so it describes the rate per unit volume that energy is converted

between bulk flow and thermal. The minus sign is included in the definition so a

positive value describes a contribution towards increasing thermal energy density.

While these equations have been known for years, a watershed moment came recently

when it was emphasized that the pressure-strain interaction is key to describing

changes in thermal energy in plasmas (Del Sarto et al., 2016; Yang et al., 2017b,a;

Del Sarto & Pegoraro, 2018).

The pressure-strain interaction can be simplified by defining the strain rate

tensor ru, which can be decomposed (Batchelor, 2000; Del Sarto & Pegoraro,

2018) as ru = S + ⌦ into a symmetric (irrotational) strain rate tensor S with

elements Sjk = (1/2)(@uk/@rj + @uj/@rk) and an anti-symmetric strain rate tensor

⌦ with elements ⌦jk = (1/2)(@uk/@rj � @uj/@rk). A flow with non-zero S but zero

⌦ has “pure straining motion” (Batchelor, 2000); it strains a fluid element without

rotating it. In contrast, a flow with non-zero ⌦ but zero S is “rigid body rotation”

(Batchelor, 2000), which rotates a fluid element without changing its shape. A

further decomposition of S was introduced (Batchelor, 2000; Del Sarto et al., 2016;

Yang et al., 2017b; Del Sarto & Pegoraro, 2018) by writing S = (1/3)I(r · u) +D,
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i.e.,

Sjk =
1

3
�jk(r · u) + Djk, (3.3)

where I is the identity tensor, �jk is the Kroenecker delta and D is the traceless

strain rate tensor with elements

Djk =
1

2

✓
@uj

@rk
+
@uk

@rj

◆
� 1

3
�jk(r · u). (3.4)

Physically, (1/3)I(r ·u) describes compression/expansion, while D describes the in-

compressible deformation of a fluid element (Batchelor, 2000; Del Sarto & Pegoraro,

2018), which is a volume-preserving change of shape of the fluid element.

The pressure-strain interaction is then written in a number of equivalent ways.

In terms of the strain rate tensor, �(P ·r) ·u = �P : ru = �Pjk(@uk/@rj). Using

ru = S + ⌦, it is immediately found that P : ⌦ = 0 since P is symmetric

under interchange of indices, so rigid body rotation does not contribute to pressure-

strain interaction (Del Sarto et al., 2016). Consequently, �(P · r) · u = �P :

S = �PjkSjk, i.e., pressure-strain interaction only has contributions from the pure

straining motion portion. Further, one decomposes the pressure tensor as

P = PI+⇧, (3.5)

where ⇧ is the deviatoric pressure tensor that describes the non-isotropic part of

the pressure tensor. While the diagonal elements of P must be non-negative, all

elements of ⇧ can be either positive or negative. Using the decomposition of S in
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Eq. (3.3) with D defined in Eq. (3.4) and the pressure decomposed in Eq. (3.5), one

finds

�(P · r) · u = �P(r · u) � ⇧jkDjk, (3.6)

where the cross-terms vanish because ⇧ and D are both traceless. The benefit of

this decomposition is that the first term (including the minus sign), called pressure

dilatation, describes the power density of heating due to bulk compression (r·u < 0)

or cooling due to bulk expansion (r ·u > 0). The second term (including the minus

sign) has been called (Yang et al., 2017b) Pi � D, which is the power density due to

incompressible deformation (Del Sarto & Pegoraro, 2018). Pi � D was also called

“collisionless viscosity” because it is analogous in form to collisional viscous heating

(Yang et al., 2017a).

Much has been learned about the pressure-strain interaction and Pi � D in the

context of plasma physics. The pressure-strain interaction was studied in strongly

magnetized plasmas (Hazeltine et al., 2013), including the recognition that the gyro-

viscous contribution to the pressure-strain interaction vanishes identically. The fluid

description of the contributions to the pressure-strain interaction was studied for the

case with zero heat flux density (Del Sarto et al., 2016; Del Sarto & Pegoraro, 2018).

It was shown (Yang et al., 2017b) that for a periodic or closed domain in a purely

collisionless system, the volume average of Eq. (3.1) implies that < �(P ·r) ·u > is

the only term that can change the total thermal energy Eth =
R
d
3
rEth of the system,

where angular brackets denote a volume average. Interestingly, the same study

showed in simulations of plasma turbulence that Pi � D could be locally positive or
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negative (since elements of both ⇧ and D can be positive or negative).

Numerous studies have since investigated the pressure-strain interaction and

Pi � D using numerical simulations. Pi � D is stronger in coherent structures (cur-

rent sheets) than in the bulk in plasma turbulence (Yang et al., 2017a). The pressure-

strain interaction was highest in regions with current sheets and high vorticity (Pezzi

et al., 2019). Pi � D was found to successfully identify regions of strong energy con-

version in dipolarization fronts (Sitnov et al., 2018; Song et al., 2020). The pressure-

strain interaction dominates other energy conversion metrics at small length scales

(Yang et al., 2019b), and was shown to account for the net temperature increase

in simulations of turbulence (Pezzi et al., 2019; Yang et al., 2022). A recent study

compared the pressure-strain interaction during reconnection and turbulence, find-

ing that pressure dilatation at current sheets was more important in turbulence than

in reconnection (Pezzi et al., 2021). Pi � D increases with plasma beta for ions, but

the dependence is weak for electrons (Parashar et al., 2018). In island coalescence,

pressure-strain interaction does not depend strongly on electron mass or system size

(Du et al., 2018). It was suggested that pressure-strain interaction contributes to the

break in the turbulent spectrum at ion (Hellinger et al., 2022) and electron (Arró,

G. et al., 2022) scales, and therefore is a critical piece of the termination of the

turbulent cascade (Matthaeus et al., 2020). Importantly, Pi � D and the heat flux

divergence have similar contributions in turbulence (Du et al., 2020), and the heat

flux divergence can oppose the pressure-strain interaction (Fadanelli et al., 2021).

The pressure-strain interaction, including Pi � D, has also been studied ob-

servationally, facilitated greatly by the high resolution measurements a↵orded by
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the Magnetospheric Multiscale (MMS) mission (Burch et al., 2016a). In the tur-

bulent magnetosheath, it was found that pressure-dilatation contributed more to

the pressure-strain interaction than Pi � D (Chasapis et al., 2018), as would later

be seen in simulations (Pezzi et al., 2021). A statistical study of Pi � D in the

turbulent magnetosheath found that it is spatially concentrated near current sheets

as in the simulations, but is small within current sheets (Bandyopadhyay et al.,

2020a), as would also later be reported in simulations (Pezzi et al., 2021). A study

of magnetopause reconnection found that electrons were heated at a faster rate than

ions and pressure-dilatation dominated Pi � D (Bandyopadhyay et al., 2021). The

same study measured negative Pi � D. In a statistical study of reconnection dif-

fusion regions, it was common to see a negative Pi � D, and the pressure-strain

interaction was positive in only about half of the events (Zhou et al., 2021). They

also found that the gyrotropic portion of Pi � D was more important than the non-

gyrotropic part. In a study of 50 turbulent magnetosheath events, both positive and

negative intervals were found for both pressure dilatation and Pi � D (Wang et al.,

2021). A statistical study of 122 dipolarization fronts suggested that Pi � D is not

a significant contributor to energy conversion (Zhong et al., 2019).

Despite great advances in our knowledge about pressure-strain interaction in

general, and Pi � D in particular, there are a number of puzzling aspects of its in-

terpretation, especially Pi � D. For example, it is not understood how Pi � D is

e↵ectively a collisionless viscosity but can be negative. This Chapter is the first in

a three-part series on pressure-strain interaction. Here, we point out that the strain

rate tensor contains both normal deformation and shear deformation, as is well
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known in continuum mechanics, which therefore implies that Pi � D contains power

density due to both e↵ects. This grouping of terms complicates the interpretation

of Pi � D because it mixes stresses from normal flows and sheared flows. Because

pressure dilatation is also associated with normal flows, we suggest an alternate de-

composition of the pressure-strain interaction that groups the normal deformation

with the pressure dilatation instead of shear deformation. This separates the e↵ects

of converging/diverging flow from shear strain. We calculate the terms in this alter-

nate decomposition analytically. We then develop a physical interpretation of the

compression and normal and shear deformation using kinetic theory. This allows

us to determine the physical mechanisms that can make Pi � D negative, thereby

clarifying how to interpret such measurements. In the next part of this series (Cas-

sak et al., 2022) (Chapter 4), we write the pressure-strain interaction in magnetic

field-aligned coordinates, which further elucidates the physical contributions to the

pressure-strain interaction in a magnetized plasma. In the last part of this series

(Barbhuiya & Cassak, 2022) (Chapter 5), we display the pressure-strain interaction

and its Cartesian and magnetic field-aligned decompositions in simulations of recon-

nection. We determine the physical causes for the pressure-strain interaction during

reconnection.

The layout of this Chapter is as follows. An alternate decomposition of the

pressure-strain interaction is derived in Sec. 3.2. We then provide a kinetic theory

interpretation of the pressure-strain interaction contributions in Sec. 3.3, and discuss

the causes of Pi � D and the normal deformation being negative using kinetic theory

in Sec. 3.4. A discussion and conclusions are in Sec. 3.5.
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3.2 An Alternate Decomposition of Pressure-Strain Interaction

From the expression in Eq. (3.4), we note the important general property,

well known in continuum mechanics, that the diagonal elements of D are associated

with normal deformation while the o↵-diagonal elements are associated with shear

deformation. To picture this, consider a cubic fluid element. Normal deformation

of the fluid element results from flow parallel to the normal to the edges of the fluid

element that vary, while shear deformation results from flow in the plane of the edges

of the fluid element that vary. Thus, we decompose D into a normal deformation

tensor Dnormal and a shear deformation tensor Dshear, so that

D = Dnormal +Dshear. (3.7)

Here, Dnormal,jk = [(@uj/@rj) � (1/3)(r · u)]�jk (with no sum on j) has the same

diagonal elements as D with its o↵-diagonal elements equal to zero and isolates

normal deformation. Similarly, Dshear,jk = (1/2)(@uj/@rk + @uk/@rj) for j 6= k and

Dshear,jj = 0 (no sum on j) has its diagonal elements equal to zero and its o↵-

diagonal elements equal to those of D, which isolates shear deformation. (A related

decomposition was discussed in Refs. (Du et al., 2018; Zhou et al., 2021), but we do

not make any assumptions about gyrotropy.)

In terms of this decomposition of D, we write Pi � D as the sum of two terms,

Pi � D = Pi � Dnormal + Pi � Dshear, (3.8)
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where Pi � Dnormal = �⇧ : Dnormal and Pi � Dshear = �⇧ : Dshear. In Cartesian

coordinates, a brief calculation reveals that these are

Pi � Dnormal = � (⇧xxDxx + ⇧yyDyy + ⇧zzDzz)

= �
✓
⇧xx

@ux

@x
+ ⇧yy

@uy

@y
+ ⇧zz

@uz

@z

◆
, (3.9a)

Pi � Dshear = � (2⇧xyDxy + 2⇧xzDxz + 2⇧yzDyz)

= � Pxy

✓
@ux

@y
+
@uy

@x

◆
� Pxz

✓
@ux

@z
+
@uz

@x

◆

� Pyz

✓
@uy

@z
+
@uz

@y

◆
. (3.9b)

The terms separate the contributions due to normal deformation and shear defor-

mation, respectively.

Mirroring the decomposition of Pi � D, we revisit the pressure-strain inter-

action, which describes the full rate of conversion between bulk flow and thermal

energy density. Following Eq. (3.3), we decompose the symmetric strain rate tensor

S as

S =
1

3
I(r · u) +Dnormal +Dshear, (3.10)

Then, the pressure-strain interaction is decomposed into three pieces,

�(P · r) · u = �P(r · u) + Pi � Dnormal + Pi � Dshear. (3.11)

These three terms isolate the power density due to dilatation, normal deformation,

and shear deformation, respectively. A key point is that the normal deformation
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only depends on diagonal elements of D, i.e., on converging/diverging flow, as seen

in Eq. (3.9a). We thus argue that it may be more natural for the normal deformation

to be combined with the pressure dilatation, which also only depends on the diagonal

elements of D, than with Pi � Dshear. We therefore introduce the quantity PDU as

PDU = �P(r · u) + Pi � Dnormal (3.12a)

= �
✓
Pxx

@ux

@x
+ Pyy

@uy

@y
+ Pzz

@uz

@z

◆
(3.12b)

so that

�(P · r) · u = PDU+ Pi � Dshear. (3.13)

For an isotropic pressure with Pxx = Pyy = Pzz ⌘ P , where P is the scalar pres-

sure, Eq. (5.3a) reduces to PDU = �P (r · u), the known pressure dilatation from

fluid mechanics. For an arbitrary pressure tensor, PDU gives the power density

due to converging and diverging flows, which contains both dilatation and normal

deformation. Eq. (5.3a) is the reasonable generalization of pressure dilatation when

isotropy is not valid, as it contains contributions from dilatation in each direction

independently.

3.3 Physical Interpretation of Pressure-Strain Interaction

Here, we provide the physical interpretation of the pressure-strain interaction

contributions in the fluid and kinetic descriptions. The fluid description has partially

been addressed previously (Del Sarto et al., 2016; Del Sarto & Pegoraro, 2018). We
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(a) (b) (c)

Figure 3.1: Sketch of representative contributions to the pressure-strain interaction
in the fluid description. Black shapes are the initial fluid elements, and bold arrows
show the bulk flow directions. The dashed arrows map the change between initial
and final shapes of the fluid elements. (a) Pressure dilatation (red), showing com-
pression, (b) normal deformation (blue), and (c) shear deformation (green). Panels
(a) and (b) are essentially copies of Figure 1 from Ref. (Del Sarto & Pegoraro,
2018); panel (c) is new. Modified with permission from Figure 1 of “Shear-induced
pressure anisotropization and correlation with fluid vorticity in a low collisionality
plasma,” by Daniele Del Sarto and Francesco Pegoraro, Monthly Notices of the
Royal Astronomical Society, 475, 181 (2018).

provide simplified examples that allow for the physical interpretation to be made

clear, with the idea that they can be used to motivate analogous processes for more

general cases. While the fluid description is valid, both simulations and satellites now

regularly measure the phase space density, measuring plasma properties at scales

at and below the scales where treating a plasma as a fluid is no longer appropriate

(Shuster et al., 2019, 2021). Thus, we argue it is important to develop a fully kinetic

interpretation of the contributions to the pressure-strain interaction. As shown in

Sec. 3.4, this understanding will provide insight into what it means to have a negative

Pi � D.
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3.3.1 Fluid Description of the Pressure-Strain Interaction

We begin with the physical interpretation of pressure-strain interaction in the

fluid description. It was treated in the limit of vanishing vector heat flux density

q in Ref. (Del Sarto & Pegoraro, 2018), vividly conveyed in their Fig. 1 that con-

tains valid sketches of the e↵ects of dilatation (red) and normal deformation (blue).

However, because their analysis did not contain a vector heat flux density, the shear

deformation term in Eq. (5.3b) did not appear in their analysis. Thus, we extend

their Fig. 1 in the general case in our Fig. 3.1.

Panel (a) exemplifies pressure dilatation �P(r ·u), representing compression

of the sketched spherical fluid element. Panel (b) exemplifies normal deformation

Pi � Dnormal, represented by the volume preserving change of shape of the sketched

ellipsoidal fluid element. These two panels are modeled directly after Ref. (Del Sarto

& Pegoraro, 2018). The initial fluid element is in black, the flow profile is in the

large arrows, and the final fluid element is in color. The small colored arrows denote

the action of the fluid element due to the flow.

Panel (c) exemplifies shear deformation Pi � Dshear, which is not present in

Ref. (Del Sarto & Pegoraro, 2018). The sheared flow deforms the fluid element, as

in the standard treatment of flow shear in a fluid, except that this e↵ect is purely

collisionless. A key point is that shear deformation requires a non-zero o↵-diagonal

pressure tensor element in the plane of the varying bulk flow and its gradient for

there to be a contribution to the pressure-strain interaction [see Eq. (5.3b)]. Thus,

we draw a cubical fluid element in (c) with a feature sticking out of the box to
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denote the need for the o↵-diagonal elements. Since the o↵-diagonal pressure tensor

elements can be either positive or negative, shear deformation can lead to a positive

or negative contribution to the pressure-strain interaction. Because the pressure-

strain interaction is collisionless, any change in thermal energy due to it is formally

reversible. In contrast, collisional viscous heating is unable to lead to a decrease in

thermal energy and is irreversible.

3.3.2 Kinetic Description of PDU

Here we treat the kinetic theory interpretation of the pressure-strain interac-

tion. We do this by investigating how a phase space density evolves in time when

there is a non-zero pressure-strain interaction to illustrate kinetically why there is

a change in the thermal energy density. We first emphasize that the pressure-strain

interaction is local in space and time, and calculating it depends only on the local

pressure tensor and the bulk flow velocity profile. Thus, instantaneously, determin-

ing if there is conversion between bulk flow and thermal energy density does not

require knowledge of the presence of any body forces or collisions. In the treat-

ment that follows, we ignore body forces and collisions. Although body forces and

collisions are not needed to determine the local pressure-strain interaction, they do

impact the motion of particles and the evolution of the phase space density, so these

e↵ects would have to be considered in addition to the phase space evolution con-

sidered here. We briefly return at the end to motivate how body forces change the

pictures that follow.
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In the force-free, collisionless limit, the Boltzmann/Vlasov equation becomes

@f

@t
+ v · rf = 0. (3.14)

As is well known, this is merely a linear convection equation in position space at

every v. We will use this in the examples that follow.

As an example which isolates PDU, consider a plasma with a drifting bi-

Maxwellian phase space density fbiM aligned with a Cartesian coordinate system

so that the pressure tensor PbiM is uniform in space and its elements are given by

Pxx = Pyy = P?, Pzz = Pk, and Pjk = 0 for j 6= k. The e↵ective pressure is then

PbiM = (2P?+Pk)/3, and Eq. (3.5) reveals that the deviatoric pressure tensor ⇧biM

is

⇧biM = PbiM � PbiMI = (P? � Pk)

0

BBBBBB@

1
3 0 0

0 1
3 0

0 0 �2
3

1

CCCCCCA
. (3.15)

Using Eq. (3.4), the associated Pi � DbiM for an arbitrary bulk flow profile u is

Pi � DbiM = �⇧jkDjk = �(P? � Pk)


1

3
(r · u) � @uz

@z

�
. (3.16)

As desired, this Pi � DbiM does not depend on flow shear even if it is present. For

definiteness, we consider Pk > P?. We first treat converging flow in the parallel

direction, such that u = uz(z)ẑ, and for simplicity we treat bulk flow towards z = 0.

A sketch of the system at initial time t = t0 is in Fig. 3.2(a). The phase space
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<latexit sha1_base64="Lg6X71MHAfPG0QJU5/e4c9a4gEA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqBch6MVjRPOAZAmzk0kyZHZ2mekVw5JP8OJBEa9+kTf/xkmyB00saCiquunuCmIpDLrut5NbWl5ZXcuvFzY2t7Z3irt7dRMlmvEai2SkmwE1XArFayhQ8masOQ0DyRvB8GbiNx65NiJSDziKuR/SvhI9wSha6f7pyu0US27ZnYIsEi8jJchQ7RS/2t2IJSFXyCQ1puW5Mfop1SiY5ONCOzE8pmxI+7xlqaIhN346PXVMjqzSJb1I21JIpurviZSGxozCwHaGFAdm3puI/3mtBHuXfipUnCBXbLaol0iCEZn8TbpCc4ZyZAllWthbCRtQTRnadAo2BG/+5UVSPyl75+XTu7NS5TqLIw8HcAjH4MEFVOAWqlADBn14hld4c6Tz4rw7H7PWnJPN7MMfOJ8/2Q+NhQ==</latexit>

x = 0

<latexit sha1_base64="boZhEsj0cs676GdU/iO4MM5rYVk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXRT0GvXiMaB6QLGF20kmGzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAaj26nffEKleSQfzThGP6QDyfucUWOlh3Jw2i2W3Io7A1kmXkZKkKHWLX51ehFLQpSGCap123Nj46dUGc4ETgqdRGNM2YgOsG2ppCFqP52dOiEnVumRfqRsSUNm6u+JlIZaj8PAdobUDPWiNxX/89qJ6V/7KZdxYlCy+aJ+IoiJyPRv0uMKmRFjSyhT3N5K2JAqyoxNp2BD8BZfXiaNs4p3WTm/vyhVb7I48nAEx1AGD66gCndQgzowGMAzvMKbI5wX5935mLfmnGzmEP7A+fwBjMyNUw==</latexit>

(b)

<latexit sha1_base64="gfLEKxkdHSLkPoyr+Q5CZyerqQo=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68diC/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVw16p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmoX5art3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDzY2M8g==</latexit>

f <latexit sha1_base64="gfLEKxkdHSLkPoyr+Q5CZyerqQo=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68diC/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVw16p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmoX5art3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDzY2M8g==</latexit>

f

<latexit sha1_base64="AqmvuwfNaH39x0LUOHNCMHOlvM0=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIIQklU1ItQ9OKxgv2AtpTNZtMu3WzC7kQooX/DiwdFvPpnvPlv3LY5aOuDgcd7M8zM8xMpDLrut7O0vLK6tl7YKG5ube/slvb2GyZONeN1FstYt3xquBSK11Gg5K1Ecxr5kjf94d3Ebz5xbUSsHnGU8G5E+0qEglG0UgfJDcGeS05JgL1S2a24U5BF4uWkDDlqvdJXJ4hZGnGFTFJj2p6bYDejGgWTfFzspIYnlA1pn7ctVTTipptNbx6TY6sEJIy1LYVkqv6eyGhkzCjybWdEcWDmvYn4n9dOMbzuZkIlKXLFZovCVBKMySQAEgjNGcqRJZRpYW8lbEA1ZWhjKtoQvPmXF0njrOJdVs4fLsrV2zyOAhzCEZyAB1dQhXuoQR0YJPAMr/DmpM6L8+58zFqXnHzmAP7A+fwBukGQMQ==</latexit>

t = t0 + dt

<latexit sha1_base64="KeLPUoB0iy76ZUPY27uAZZueDDg=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4Krsq6kUoevFYwX5Au5RsNtvGZpMlyUrL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBQln2rjut7O0vLK6tl7YKG5ube/slvb2G1qmitA6kVyqVoA15UzQumGG01aiKI4DTpvB4HbiN5+o0kyKBzNKqB/jnmARI9hYqTFE1ygcdktlt+JOgRaJl5My5Kh1S1+dUJI0psIQjrVue25i/Awrwwin42In1TTBZIB7tG2pwDHVfja9doyOrRKiSCpbwqCp+nsiw7HWoziwnTE2fT3vTcT/vHZqois/YyJJDRVktihKOTISTV5HIVOUGD6yBBPF7K2I9LHCxNiAijYEb/7lRdI4rXgXlbP783L1Jo+jAIdwBCfgwSVU4Q5qUAcCj/AMr/DmSOfFeXc+Zq1LTj5zAH/gfP4AsKGOjw==</latexit>

x = dx
<latexit sha1_base64="QImAzV6zmBkC4zz5LN/hexGdfX0=">AAAB73icbVBNS8NAEJ3Ur1q/oh69LBbBiyVRUS9C0YvHCvYD2lA2m027dLOJuxtpCf0TXjwo4tW/481/47bNQVsfDDzem2Fmnp9wprTjfFuFpeWV1bXiemljc2t7x97da6g4lYTWScxj2fKxopwJWtdMc9pKJMWRz2nTH9xO/OYTlYrF4kGPEupFuCdYyAjWRmoN0TU6QcGwa5edijMFWiRuTsqQo9a1vzpBTNKICk04VqrtOon2Miw1I5yOS51U0QSTAe7RtqECR1R52fTeMToySoDCWJoSGk3V3xMZjpQaRb7pjLDuq3lvIv7ntVMdXnkZE0mqqSCzRWHKkY7R5HkUMEmJ5iNDMJHM3IpIH0tMtImoZEJw519eJI3TintRObs/L1dv8jiKcACHcAwuXEIV7qAGdSDA4Rle4c16tF6sd+tj1lqw8pl9+APr8wdx847w</latexit>

x = �dx

<latexit sha1_base64="OrO6AdwphBdUBDSOffWiXcj6P9M=">AAAB6nicdVDLSsNAFL3xWeur6tLNYBFchaRJre6KblxWtA9oQ5lMp+3QySTMTMQS+gluXCji1i9y5984fQgqeuDC4Zx7ufeeMOFMacf5sJaWV1bX1nMb+c2t7Z3dwt5+Q8WpJLROYh7LVogV5UzQumaa01YiKY5CTpvh6HLqN++oVCwWt3qc0CDCA8H6jGBtpJu0e98tFB274pVcz0eO7ZQ936sY4jvuebmMXNuZoQgL1LqF904vJmlEhSYcK9V2nUQHGZaaEU4n+U6qaILJCA9o21CBI6qCbHbqBB0bpYf6sTQlNJqp3ycyHCk1jkLTGWE9VL+9qfiX1051/yzImEhSTQWZL+qnHOkYTf9GPSYp0XxsCCaSmVsRGWKJiTbp5E0IX5+i/0mjZLuntnftF6sXizhycAhHcAIuVKAKV1CDOhAYwAM8wbPFrUfrxXqdty5Zi5kD+AHr7RPUoo4u</latexit>ux

<latexit sha1_base64="HhCnIBpPAsPcPZi6REKik9lDiN0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1ItQ9OKxgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6G7qt564NiJWjzhOuB/RgRKhYBSt1EJyQ7Dn9soVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOyEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6e+kLzRnKMeWUKaFvZWwIdWUoU2oZEPwFl9eJs2zqndZPX+4qNRu8ziKcATHcAoeXEEN7qEODWAwgmd4hTcncV6cd+dj3lpw8plD+APn8wcMao68</latexit>

t = t0
<latexit sha1_base64="da3tinSli+mZTsAVtGNxjtEX7RY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXRT0GvXiMaB6QLGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3U795hPXRkTqEccx90M6UKIvGEUrPZTZabdYcivuDGSZeBkpQYZat/jV6UUsCblCJqkxbc+N0U+pRsEknxQ6ieExZSM64G1LFQ258dPZqRNyYpUe6UfalkIyU39PpDQ0ZhwGtjOkODSL3lT8z2sn2L/2U6HiBLli80X9RBKMyPRv0hOaM5RjSyjTwt5K2JBqytCmU7AheIsvL5PGWcW7rJzfX5SqN1kceTiCYyiDB1dQhTuoQR0YDOAZXuHNkc6L8+58zFtzTjZzCH/gfP4AjlGNVA==</latexit>

(c)
<latexit sha1_base64="mTxWHEytZSxHE+BMzUVmuYxMV8k=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BItQL2VXRT0WvXisaD+gXUo2m21Ds9klyQpl6U/w4kERr/4ib/4b03YP2vpg4PHeDDPz/ERwbRznGxVWVtfWN4qbpa3tnd298v5BS8epoqxJYxGrjk80E1yypuFGsE6iGIl8wdr+6Hbqt5+Y0jyWj2acMC8iA8lDTomx0kM1OO2XK07NmQEvEzcnFcjR6Je/ekFM04hJQwXRuus6ifEyogyngk1KvVSzhNARGbCupZJETHvZ7NQJPrFKgMNY2ZIGz9TfExmJtB5Hvu2MiBnqRW8q/ud1UxNeexmXSWqYpPNFYSqwifH0bxxwxagRY0sIVdzeiumQKEKNTadkQ3AXX14mrbOae1k7v7+o1G/yOIpwBMdQBReuoA530IAmUBjAM7zCGxLoBb2jj3lrAeUzh/AH6PMHj9aNVQ==</latexit>

(d)

<latexit sha1_base64="J8Pnd6pdyyxh19yYzlyBsL/RIuE=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GnqyGW9BLx4TMAskQ+jp1CRteha6e4Qw5Au8eFDEq5/kzb+xswgq+qDg8V4VVfW8WHClCfmwMmvrG5tb2e3czu7e/kH+8KitokQyaLFIRLLrUQWCh9DSXAvoxhJo4AnoeJPrud+5B6l4FN7qaQxuQEch9zmj2khNZ5AvELtGSLV0iYldJKRcrBhSIRXi1LBjkwUKaIXGIP/eH0YsCSDUTFCleg6JtZtSqTkTMMv1EwUxZRM6gp6hIQ1Aueni0Bk+M8oQ+5E0FWq8UL9PpDRQahp4pjOgeqx+e3PxL6+XaL/mpjyMEw0hWy7yE4F1hOdf4yGXwLSYGkKZ5OZWzMZUUqZNNjkTwten+H/SLtpO1S41y4X61SqOLDpBp+gcOegC1dENaqAWYgjQA3pCz9ad9Wi9WK/L1oy1mjlGP2C9fQLRTIz3</latexit>

1<latexit sha1_base64="LyqpbNPwqb8Qa9lkoU/vJQxzIGs=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnqyGW9BLx4TMAskQ+jp9CRteha6e4Qw5Au8eFDEq5/kzb+xswgq+qDg8V4VVfW8WHClMf6wMmvrG5tb2e3czu7e/kH+8KitokRS1qKRiGTXI4oJHrKW5lqwbiwZCTzBOt7keu537plUPApv9TRmbkBGIfc5JdpIzeIgX8B2DeNq6RJhu4hxuVgxpIIr2Kkhx8YLFGCFxiD/3h9GNAlYqKkgSvUcHGs3JVJzKtgs108UiwmdkBHrGRqSgCk3XRw6Q2dGGSI/kqZCjRbq94mUBEpNA890BkSP1W9vLv7l9RLt19yUh3GiWUiXi/xEIB2h+ddoyCWjWkwNIVRycyuiYyIJ1SabnAnh61P0P2kXbadql5rlQv1qFUcWTuAUzsGBC6jDDTSgBRQYPMATPFt31qP1Yr0uWzPWauYYfsB6+wTS0Iz4</latexit>

2
<latexit sha1_base64="Zpn6jiagc/oydbOuP6kMtYNVyfA=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GnqyGW9BLx4TMAskQ+jp1CRteha6e4Qw5Au8eFDEq5/kzb+xswgq+qDg8V4VVfW8WHClCfmwMmvrG5tb2e3czu7e/kH+8KitokQyaLFIRLLrUQWCh9DSXAvoxhJo4AnoeJPrud+5B6l4FN7qaQxuQEch9zmj2kjN0iBfIHaNkGrpEhO7SEi5WDGkQirEqWHHJgsU0AqNQf69P4xYEkComaBK9RwSazelUnMmYJbrJwpiyiZ0BD1DQxqActPFoTN8ZpQh9iNpKtR4oX6fSGmg1DTwTGdA9Vj99ubiX14v0X7NTXkYJxpCtlzkJwLrCM+/xkMugWkxNYQyyc2tmI2ppEybbHImhK9P8f+kXbSdql1qlgv1q1UcWXSCTtE5ctAFqqMb1EAtxBCgB/SEnq0769F6sV6XrRlrNXOMfsB6+wTUVIz5</latexit>

3<latexit sha1_base64="J8Pnd6pdyyxh19yYzlyBsL/RIuE=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GnqyGW9BLx4TMAskQ+jp1CRteha6e4Qw5Au8eFDEq5/kzb+xswgq+qDg8V4VVfW8WHClCfmwMmvrG5tb2e3czu7e/kH+8KitokQyaLFIRLLrUQWCh9DSXAvoxhJo4AnoeJPrud+5B6l4FN7qaQxuQEch9zmj2khNZ5AvELtGSLV0iYldJKRcrBhSIRXi1LBjkwUKaIXGIP/eH0YsCSDUTFCleg6JtZtSqTkTMMv1EwUxZRM6gp6hIQ1Aueni0Bk+M8oQ+5E0FWq8UL9PpDRQahp4pjOgeqx+e3PxL6+XaL/mpjyMEw0hWy7yE4F1hOdf4yGXwLSYGkKZ5OZWzMZUUqZNNjkTwten+H/SLtpO1S41y4X61SqOLDpBp+gcOegC1dENaqAWYgjQA3pCz9ad9Wi9WK/L1oy1mjlGP2C9fQLRTIz3</latexit>

1
<latexit sha1_base64="LyqpbNPwqb8Qa9lkoU/vJQxzIGs=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnqyGW9BLx4TMAskQ+jp9CRteha6e4Qw5Au8eFDEq5/kzb+xswgq+qDg8V4VVfW8WHClMf6wMmvrG5tb2e3czu7e/kH+8KitokRS1qKRiGTXI4oJHrKW5lqwbiwZCTzBOt7keu537plUPApv9TRmbkBGIfc5JdpIzeIgX8B2DeNq6RJhu4hxuVgxpIIr2Kkhx8YLFGCFxiD/3h9GNAlYqKkgSvUcHGs3JVJzKtgs108UiwmdkBHrGRqSgCk3XRw6Q2dGGSI/kqZCjRbq94mUBEpNA890BkSP1W9vLv7l9RLt19yUh3GiWUiXi/xEIB2h+ddoyCWjWkwNIVRycyuiYyIJ1SabnAnh61P0P2kXbadql5rlQv1qFUcWTuAUzsGBC6jDDTSgBRQYPMATPFt31qP1Yr0uWzPWauYYfsB6+wTS0Iz4</latexit>

2

<latexit sha1_base64="Zpn6jiagc/oydbOuP6kMtYNVyfA=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GnqyGW9BLx4TMAskQ+jp1CRteha6e4Qw5Au8eFDEq5/kzb+xswgq+qDg8V4VVfW8WHClCfmwMmvrG5tb2e3czu7e/kH+8KitokQyaLFIRLLrUQWCh9DSXAvoxhJo4AnoeJPrud+5B6l4FN7qaQxuQEch9zmj2kjN0iBfIHaNkGrpEhO7SEi5WDGkQirEqWHHJgsU0AqNQf69P4xYEkComaBK9RwSazelUnMmYJbrJwpiyiZ0BD1DQxqActPFoTN8ZpQh9iNpKtR4oX6fSGmg1DTwTGdA9Vj99ubiX14v0X7NTXkYJxpCtlzkJwLrCM+/xkMugWkxNYQyyc2tmI2ppEybbHImhK9P8f+kXbSdql1qlgv1q1UcWXSCTtE5ctAFqqMb1EAtxBCgB/SEnq0769F6sV6XrRlrNXOMfsB6+wTUVIz5</latexit>

3

<latexit sha1_base64="36K3HZ+jEjTElh9JMSp9ORUufWE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF48Y5ZHAhswOA0yYnd3M9BLJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D+omyjRjNdYJCPdDKjhUiheQ4GSN2PNaRhI3giGt1O/MeLaiEg94jjmfkj7SvQEo2ilh1HnqVMsuWV3BrJMvIyUIEO1U/xqdyOWhFwhk9SYlufG6KdUo2CSTwrtxPCYsiHt85aliobc+Ons1Ak5sUqX9CJtSyGZqb8nUhoaMw4D2xlSHJhFbyr+57US7F37qVBxglyx+aJeIglGZPo36QrNGcqxJZRpYW8lbEA1ZWjTKdgQvMWXl0n9rOxdls/vL0qVmyyOPBzBMZyCB1dQgTuoQg0Y9OEZXuHNkc6L8+58zFtzTjZzCH/gfP4AdtyN7Q==</latexit>vx

<latexit sha1_base64="U86x+C1cDSi7V9fAkQsR0+sjlyY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF48Y5ZHAhswOA0yYnd3M9JLghk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D+omyjRjNdYJCPdDKjhUiheQ4GSN2PNaRhI3giGt1O/MeLaiEg94jjmfkj7SvQEo2ilh1HnqVMsuWV3BrJMvIyUIEO1U/xqdyOWhFwhk9SYlufG6KdUo2CSTwrtxPCYsiHt85aliobc+Ons1Ak5sUqX9CJtSyGZqb8nUhoaMw4D2xlSHJhFbyr+57US7F37qVBxglyx+aJeIglGZPo36QrNGcqxJZRpYW8lbEA1ZWjTKdgQvMWXl0n9rOxdls/vL0qVmyyOPBzBMZyCB1dQgTuoQg0Y9OEZXuHNkc6L8+58zFtzTjZzCH/gfP4AeeSN7w==</latexit>vz

<latexit sha1_base64="36K3HZ+jEjTElh9JMSp9ORUufWE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF48Y5ZHAhswOA0yYnd3M9BLJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D+omyjRjNdYJCPdDKjhUiheQ4GSN2PNaRhI3giGt1O/MeLaiEg94jjmfkj7SvQEo2ilh1HnqVMsuWV3BrJMvIyUIEO1U/xqdyOWhFwhk9SYlufG6KdUo2CSTwrtxPCYsiHt85aliobc+Ons1Ak5sUqX9CJtSyGZqb8nUhoaMw4D2xlSHJhFbyr+57US7F37qVBxglyx+aJeIglGZPo36QrNGcqxJZRpYW8lbEA1ZWjTKdgQvMWXl0n9rOxdls/vL0qVmyyOPBzBMZyCB1dQgTuoQg0Y9OEZXuHNkc6L8+58zFtzTjZzCH/gfP4AdtyN7Q==</latexit>vx

<latexit sha1_base64="U86x+C1cDSi7V9fAkQsR0+sjlyY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF48Y5ZHAhswOA0yYnd3M9JLghk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D+omyjRjNdYJCPdDKjhUiheQ4GSN2PNaRhI3giGt1O/MeLaiEg94jjmfkj7SvQEo2ilh1HnqVMsuWV3BrJMvIyUIEO1U/xqdyOWhFwhk9SYlufG6KdUo2CSTwrtxPCYsiHt85aliobc+Ons1Ak5sUqX9CJtSyGZqb8nUhoaMw4D2xlSHJhFbyr+57US7F37qVBxglyx+aJeIglGZPo36QrNGcqxJZRpYW8lbEA1ZWjTKdgQvMWXl0n9rOxdls/vL0qVmyyOPBzBMZyCB1dQgTuoQg0Y9OEZXuHNkc6L8+58zFtzTjZzCH/gfP4AeeSN7w==</latexit>vz
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Figure 3.2: Sketches showing the physical interpretation of PDU, i .e., heating via
converging flow, in kinetic theory, ignoring body forces and collisions for simplicity.
Magenta ellipses denote a 2D slice of the phase space density f in the (vx, vz) plane
given by bi-Maxwellian distributions with Pk > P?, where x is a perpendicular
direction and z is parallel. (a) Phase space densities at initial time t = t0 at three
locations at and near z = 0. The vertical bulk flow velocity uz, denoted by the
magenta arrows, is converging in the parallel direction. (b) The phase space density
at z = 0 at a slightly later time t = t0 + dt. The phase space densities labeled 1,
2, and 3 in panel (a) evolve to their associated positions labeled in panel (b). The
phase space density at this time is broader in vz, implying an increase in thermal
energy density. Note, Pi � D is positive for this case. (c) and (d) are analogous
for the same phase space density except with converging bulk flow in x. There is
an increase in the thermal energy density in the phase space density at x = 0 at
t = t0 + dt in panel (d). Interestingly, Pi � D is negative for this case.
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density fbiM is sketched as the magenta ovals in the (vx, vz) plane at three di↵erent

spatial locations, z = dz, 0, and �dz. The pressures are the same at each location,

but the phase space densities are o↵set from the origin accordingly to impose that

the bulk flow converges towards z = 0. A short time dt later, fbiM with vz < 0 at

z > 0 (labeled 1) convects down, fbiM with vz > 0 at z < 0 (labeled 3) convects

up, and fbiM near vz = 0 at z = 0 (labeled 2) does not convect far, so the phase

space density f at z = 0 at t = t0 + dt is qualitatively displayed in Fig. 3.2(b), with

the same numbering scheme to show where the particles came from at t = t0. (We

acknowledge that the precise phase space density at time t0+dt would be a↵ected by

particles from cells beyond those plotted and would smear out the final distribution,

but we do not attempt to capture this e↵ect in the sketch for simplicity.) Comparing

the phase space densities fbiM and f at z = 0 at t = t0 and at t = t0+dt, respectively,

we note that the breadth of f in the perpendicular vx direction is the same as in

fbiM (there is no perpendicular heating), but f is broader in the parallel vz direction

than fbiM . Broadening a phase space density is the kinetic manifestation of heating,

i.e., increasing the thermal energy. This gives the kinetic interpretation of PDU,

i.e., heating via converging flow in the z direction, corresponding to �Pzz(@uz/@z)

in Eq. (5.3a).

We now consider converging flow in the perpendicular direction for the same

initial phase space density, so now u = ux(x)x̂, treating bulk flow converging to-

wards x = 0 for simplicity. A sketch at the initial time t = t0 is in Fig. 3.2(c), where

the phase space density fbiM is sketched at x = �dx, 0, and dx. Since fbiM evolves

in time according to the convection equation in Eq. (3.14) in the absence of body
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forces and collisions, the phase space density f at x = 0 a short time dt later ap-

pears as sketched in Fig. 3.2(d). The phase space density f does not broaden in the

parallel vz direction, but does broaden in the vx direction. This is the kinetic mani-

festation of heating from PDU via converging flow in the x direction, corresponding

to �Pxx(@ux/@x) in Eq. (5.3a). In both examples, heating due to converging flow

contains contributions from both dilatation and normal deformation, a key point we

return to in the next section.

Finally, we return to the e↵ect of the presence of a body force F. As stated

earlier, it is clear from the expression for pressure-strain interaction that a body force

cannot contribute to it, even though the forces impact the motion of the particles.

The sketches used here can still provide information for how to interpret the terms

in the pressure-strain interaction when there is a body force present. First consider a

uniform body force, i.e., it is the same at every position. The body force F changes

the velocity of all particles of mass m at a given position by the same increment

dv = Fdt/m in a small increment in time dt, so it merely translates the phase space

density in velocity space. In the Lagrangian reference frame, this shift does not lead

to a change in the thermal energy at the point in question beyond what is shown

in the sketches in this section. If there is a force that is not uniform, a similar

procedure happens except that the shift in velocity space of the particles is di↵erent

at every location. In our example, the phase space density is uniform in space, so

the result is unchanged. In the more general case for which the phase space density

is also not uniform, it would require a detailed analysis to understand the evolution

of the particles and the associated phase space densities, which is beyond the scope
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of the present study. However, we know the result for an arbitrary force and initial

phase space density must be that the body force does not alter the pressure-strain

interaction in the Lagrangian reference frame.

3.3.3 Kinetic Description of Pi � Dshear

We next turn to the kinetic interpretation of heating via shear deformation.

As noted in the introduction (Batchelor, 2000; Del Sarto et al., 2016; Del Sarto

& Pegoraro, 2018), the symmetric strain rate tensor S needs to be non-zero for

the pressure-strain interaction to be non-zero, and the pressure-strain interaction is

independent of the anti-symmetric strain rate tensor ⌦. Moreover, from Eq. (5.3b),

the pressure tensor must have a non-zero o↵-diagonal element in order for there to

be heating via shear deformation. Consequently, we consider flow shear of a phase

space density with non-zero o↵-diagonal pressure tensor elements.

Consider flow in the xz plane; dynamics in the other planes is analogous.

Figure 3.3(a) contains sketches in a region near (x, z) = 0 at initial time t = t0,

with phase space densities sketched in (vx, vz) space at an array of spatial locations

given by x = dx, 0, and �dx and z = dz, 0, and �dz. In the kinetic picture, Pxz is

non-zero if the phase space density lacks symmetry in both the vx and vz directions

relative to the bulk flow speed (ux, uz). One way a phase space density can have

a positive Pxz is if it is elongated in the first and/or third quadrant in the (vx, vz)

plane compared to the second and/or fourth quadrants; similarly a negative Pxz is

elongated in the second and/or fourth quadrants in (vx, vz) space. Another is if f
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(a)
<latexit sha1_base64="boZhEsj0cs676GdU/iO4MM5rYVk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXRT0GvXiMaB6QLGF20kmGzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAaj26nffEKleSQfzThGP6QDyfucUWOlh3Jw2i2W3Io7A1kmXkZKkKHWLX51ehFLQpSGCap123Nj46dUGc4ETgqdRGNM2YgOsG2ppCFqP52dOiEnVumRfqRsSUNm6u+JlIZaj8PAdobUDPWiNxX/89qJ6V/7KZdxYlCy+aJ+IoiJyPRv0uMKmRFjSyhT3N5K2JAqyoxNp2BD8BZfXiaNs4p3WTm/vyhVb7I48nAEx1AGD66gCndQgzowGMAzvMKbI5wX5935mLfmnGzmEP7A+fwBjMyNUw==</latexit>

(b)

<latexit sha1_base64="xYZka1EHgeBx11XDNEAJIBtNWIk=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF4+QyCOBDZkdGhiZnd3MzBrJhi/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8Hoduo3H1FpHsl7M47RD+lA8j5n1Fip9tQtltyyOwNZJl5GSpCh2i1+dXoRS0KUhgmqddtzY+OnVBnOBE4KnURjTNmIDrBtqaQhaj+dHTohJ1bpkX6kbElDZurviZSGWo/DwHaG1Az1ojcV//Paielf+ymXcWJQsvmifiKIicj0a9LjCpkRY0soU9zeStiQKsqMzaZgQ/AWX14mjbOyd1k+r12UKjdZHHk4gmM4BQ+uoAJ3UIU6MEB4hld4cx6cF+fd+Zi35pxs5hD+wPn8AejVjQQ=</latexit>x

<latexit sha1_base64="vQHOUL9yF5numSEuJrSUpjvAShc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqBch6MVjRPOAZAmzk0kyZHZ2mekV4pJP8OJBEa9+kTf/xkmyB00saCiquunuCmIpDLrut5NbWl5ZXcuvFzY2t7Z3irt7dRMlmvEai2SkmwE1XArFayhQ8masOQ0DyRvB8GbiNx65NiJSDziKuR/SvhI9wSha6f7pyu0US27ZnYIsEi8jJchQ7RS/2t2IJSFXyCQ1puW5Mfop1SiY5ONCOzE8pmxI+7xlqaIhN346PXVMjqzSJb1I21JIpurviZSGxozCwHaGFAdm3puI/3mtBHuXfipUnCBXbLaol0iCEZn8TbpCc4ZyZAllWthbCRtQTRnadAo2BG/+5UVSPyl75+XTu7NS5TqLIw8HcAjH4MEFVOAWqlADBn14hld4c6Tz4rw7H7PWnJPN7MMfOJ8/3BuNhw==</latexit>

z = 0

<latexit sha1_base64="xF2+1Dnriudo0aLfowFKMmKS2HQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF4+QyCOBDZkdGhiZnd3MzJrghi/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8Hoduo3H1FpHsl7M47RD+lA8j5n1Fip9tQtltyyOwNZJl5GSpCh2i1+dXoRS0KUhgmqddtzY+OnVBnOBE4KnURjTNmIDrBtqaQhaj+dHTohJ1bpkX6kbElDZurviZSGWo/DwHaG1Az1ojcV//Paielf+ymXcWJQsvmifiKIicj0a9LjCpkRY0soU9zeStiQKsqMzaZgQ/AWX14mjbOyd1k+r12UKjdZHHk4gmM4BQ+uoAJ3UIU6MEB4hld4cx6cF+fd+Zi35pxs5hD+wPn8AevdjQY=</latexit>z

<latexit sha1_base64="36K3HZ+jEjTElh9JMSp9ORUufWE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF48Y5ZHAhswOA0yYnd3M9BLJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D+omyjRjNdYJCPdDKjhUiheQ4GSN2PNaRhI3giGt1O/MeLaiEg94jjmfkj7SvQEo2ilh1HnqVMsuWV3BrJMvIyUIEO1U/xqdyOWhFwhk9SYlufG6KdUo2CSTwrtxPCYsiHt85aliobc+Ons1Ak5sUqX9CJtSyGZqb8nUhoaMw4D2xlSHJhFbyr+57US7F37qVBxglyx+aJeIglGZPo36QrNGcqxJZRpYW8lbEA1ZWjTKdgQvMWXl0n9rOxdls/vL0qVmyyOPBzBMZyCB1dQgTuoQg0Y9OEZXuHNkc6L8+58zFtzTjZzCH/gfP4AdtyN7Q==</latexit>vx

<latexit sha1_base64="U86x+C1cDSi7V9fAkQsR0+sjlyY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF48Y5ZHAhswOA0yYnd3M9JLghk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D+omyjRjNdYJCPdDKjhUiheQ4GSN2PNaRhI3giGt1O/MeLaiEg94jjmfkj7SvQEo2ilh1HnqVMsuWV3BrJMvIyUIEO1U/xqdyOWhFwhk9SYlufG6KdUo2CSTwrtxPCYsiHt85aliobc+Ons1Ak5sUqX9CJtSyGZqb8nUhoaMw4D2xlSHJhFbyr+57US7F37qVBxglyx+aJeIglGZPo36QrNGcqxJZRpYW8lbEA1ZWjTKdgQvMWXl0n9rOxdls/vL0qVmyyOPBzBMZyCB1dQgTuoQg0Y9OEZXuHNkc6L8+58zFtzTjZzCH/gfP4AeeSN7w==</latexit>vz
<latexit sha1_base64="gfLEKxkdHSLkPoyr+Q5CZyerqQo=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68diC/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVw16p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmoX5art3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDzY2M8g==</latexit>

f

<latexit sha1_base64="gfLEKxkdHSLkPoyr+Q5CZyerqQo=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68diC/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVw16p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmoX5art3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDzY2M8g==</latexit>

f

<latexit sha1_base64="HcLWT5hKKcGUPqMCAf60+ctWZDU=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4Krsq6kUoevFYwX5Au5RsNtvGZpMlyQrt0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBQln2rjut7O0vLK6tl7YKG5ube/slvb2G1qmitA6kVyqVoA15UzQumGG01aiKI4DTpvB4HbiN5+o0kyKBzNMqB/jnmARI9hYqTFC1ygcdUtlt+JOgRaJl5My5Kh1S1+dUJI0psIQjrVue25i/Awrwwin42In1TTBZIB7tG2pwDHVfja9doyOrRKiSCpbwqCp+nsiw7HWwziwnTE2fT3vTcT/vHZqois/YyJJDRVktihKOTISTV5HIVOUGD60BBPF7K2I9LHCxNiAijYEb/7lRdI4rXgXlbP783L1Jo+jAIdwBCfgwSVU4Q5qUAcCj/AMr/DmSOfFeXc+Zq1LTj5zAH/gfP4AtruOkw==</latexit>

z = dz

<latexit sha1_base64="f0vKtPzhVS1Q1QusFifUVMX6Tpw=">AAAB73icbVBNS8NAEJ3Ur1q/oh69LBbBiyVRUS9C0YvHCvYD2lA2m027dLOJuxuhDf0TXjwo4tW/481/47bNQVsfDDzem2Fmnp9wprTjfFuFpeWV1bXiemljc2t7x97da6g4lYTWScxj2fKxopwJWtdMc9pKJMWRz2nTH9xO/OYTlYrF4kEPE+pFuCdYyAjWRmqN0DU6QcGoa5edijMFWiRuTsqQo9a1vzpBTNKICk04VqrtOon2Miw1I5yOS51U0QSTAe7RtqECR1R52fTeMToySoDCWJoSGk3V3xMZjpQaRr7pjLDuq3lvIv7ntVMdXnkZE0mqqSCzRWHKkY7R5HkUMEmJ5kNDMJHM3IpIH0tMtImoZEJw519eJI3TintRObs/L1dv8jiKcACHcAwuXEIV7qAGdSDA4Rle4c16tF6sd+tj1lqw8pl9+APr8wd4EY70</latexit>

z = �dz

<latexit sha1_base64="Lg6X71MHAfPG0QJU5/e4c9a4gEA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqBch6MVjRPOAZAmzk0kyZHZ2mekVw5JP8OJBEa9+kTf/xkmyB00saCiquunuCmIpDLrut5NbWl5ZXcuvFzY2t7Z3irt7dRMlmvEai2SkmwE1XArFayhQ8masOQ0DyRvB8GbiNx65NiJSDziKuR/SvhI9wSha6f7pyu0US27ZnYIsEi8jJchQ7RS/2t2IJSFXyCQ1puW5Mfop1SiY5ONCOzE8pmxI+7xlqaIhN346PXVMjqzSJb1I21JIpurviZSGxozCwHaGFAdm3puI/3mtBHuXfipUnCBXbLaol0iCEZn8TbpCc4ZyZAllWthbCRtQTRnadAo2BG/+5UVSPyl75+XTu7NS5TqLIw8HcAjH4MEFVOAWqlADBn14hld4c6Tz4rw7H7PWnJPN7MMfOJ8/2Q+NhQ==</latexit>

x = 0
<latexit sha1_base64="KeLPUoB0iy76ZUPY27uAZZueDDg=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4Krsq6kUoevFYwX5Au5RsNtvGZpMlyUrL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBQln2rjut7O0vLK6tl7YKG5ube/slvb2G1qmitA6kVyqVoA15UzQumGG01aiKI4DTpvB4HbiN5+o0kyKBzNKqB/jnmARI9hYqTFE1ygcdktlt+JOgRaJl5My5Kh1S1+dUJI0psIQjrVue25i/Awrwwin42In1TTBZIB7tG2pwDHVfja9doyOrRKiSCpbwqCp+nsiw7HWoziwnTE2fT3vTcT/vHZqois/YyJJDRVktihKOTISTV5HIVOUGD6yBBPF7K2I9LHCxNiAijYEb/7lRdI4rXgXlbP783L1Jo+jAIdwBCfgwSVU4Q5qUAcCj/AMr/DmSOfFeXc+Zq1LTj5zAH/gfP4AsKGOjw==</latexit>

x = dx
<latexit sha1_base64="QImAzV6zmBkC4zz5LN/hexGdfX0=">AAAB73icbVBNS8NAEJ3Ur1q/oh69LBbBiyVRUS9C0YvHCvYD2lA2m027dLOJuxtpCf0TXjwo4tW/481/47bNQVsfDDzem2Fmnp9wprTjfFuFpeWV1bXiemljc2t7x97da6g4lYTWScxj2fKxopwJWtdMc9pKJMWRz2nTH9xO/OYTlYrF4kGPEupFuCdYyAjWRmoN0TU6QcGwa5edijMFWiRuTsqQo9a1vzpBTNKICk04VqrtOon2Miw1I5yOS51U0QSTAe7RtqECR1R52fTeMToySoDCWJoSGk3V3xMZjpQaRb7pjLDuq3lvIv7ntVMdXnkZE0mqqSCzRWHKkY7R5HkUMEmJ5iNDMJHM3IpIH0tMtImoZEJw519eJI3TintRObs/L1dv8jiKcACHcAwuXEIV7qAGdSDA4Rle4c16tF6sd+tj1lqw8pl9+APr8wdx847w</latexit>

x = �dx

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vyvx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vyvx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vyvx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vyvx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

<latexit sha1_base64="HFjxNYpUT0GFFelfVDriRDNo4+Q=">AAAB7nicdVDJSgNBEK1xjXGLevTSGARPQ09mYvQW9OIxglkgGUJPpydp0rPQ3SOEIR/hxYMiXv0eb/6NnUVQ0QcFj/eqqKoXpIIrjfGHtbK6tr6xWdgqbu/s7u2XDg5bKskkZU2aiER2AqKY4DFraq4F66SSkSgQrB2Mr2d++55JxZP4Tk9S5kdkGPOQU6KN1M57QYiyab9UxnbNrTiuh7CNq67n1gzxsHNZrSLHxnOUYYlGv/TeGyQ0i1isqSBKdR2caj8nUnMq2LTYyxRLCR2TIesaGpOIKT+fnztFp0YZoDCRpmKN5ur3iZxESk2iwHRGRI/Ub28m/uV1Mx1e+DmP00yzmC4WhZlAOkGz39GAS0a1mBhCqOTmVkRHRBKqTUJFE8LXp+h/0qrYzrnt3nrl+tUyjgIcwwmcgQM1qMMNNKAJFMbwAE/wbKXWo/VivS5aV6zlzBH8gPX2CYxjj7s=</latexit>u

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

<latexit sha1_base64="U86x+C1cDSi7V9fAkQsR0+sjlyY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF48Y5ZHAhswOA0yYnd3M9JLghk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D+omyjRjNdYJCPdDKjhUiheQ4GSN2PNaRhI3giGt1O/MeLaiEg94jjmfkj7SvQEo2ilh1HnqVMsuWV3BrJMvIyUIEO1U/xqdyOWhFwhk9SYlufG6KdUo2CSTwrtxPCYsiHt85aliobc+Ons1Ak5sUqX9CJtSyGZqb8nUhoaMw4D2xlSHJhFbyr+57US7F37qVBxglyx+aJeIglGZPo36QrNGcqxJZRpYW8lbEA1ZWjTKdgQvMWXl0n9rOxdls/vL0qVmyyOPBzBMZyCB1dQgTuoQg0Y9OEZXuHNkc6L8+58zFtzTjZzCH/gfP4AeeSN7w==</latexit>vz

<latexit sha1_base64="36K3HZ+jEjTElh9JMSp9ORUufWE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF48Y5ZHAhswOA0yYnd3M9BLJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D+omyjRjNdYJCPdDKjhUiheQ4GSN2PNaRhI3giGt1O/MeLaiEg94jjmfkj7SvQEo2ilh1HnqVMsuWV3BrJMvIyUIEO1U/xqdyOWhFwhk9SYlufG6KdUo2CSTwrtxPCYsiHt85aliobc+Ons1Ak5sUqX9CJtSyGZqb8nUhoaMw4D2xlSHJhFbyr+57US7F37qVBxglyx+aJeIglGZPo36QrNGcqxJZRpYW8lbEA1ZWjTKdgQvMWXl0n9rOxdls/vL0qVmyyOPBzBMZyCB1dQgTuoQg0Y9OEZXuHNkc6L8+58zFtzTjZzCH/gfP4AdtyN7Q==</latexit>vx

<latexit sha1_base64="Lg6X71MHAfPG0QJU5/e4c9a4gEA=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqBch6MVjRPOAZAmzk0kyZHZ2mekVw5JP8OJBEa9+kTf/xkmyB00saCiquunuCmIpDLrut5NbWl5ZXcuvFzY2t7Z3irt7dRMlmvEai2SkmwE1XArFayhQ8masOQ0DyRvB8GbiNx65NiJSDziKuR/SvhI9wSha6f7pyu0US27ZnYIsEi8jJchQ7RS/2t2IJSFXyCQ1puW5Mfop1SiY5ONCOzE8pmxI+7xlqaIhN346PXVMjqzSJb1I21JIpurviZSGxozCwHaGFAdm3puI/3mtBHuXfipUnCBXbLaol0iCEZn8TbpCc4ZyZAllWthbCRtQTRnadAo2BG/+5UVSPyl75+XTu7NS5TqLIw8HcAjH4MEFVOAWqlADBn14hld4c6Tz4rw7H7PWnJPN7MMfOJ8/2Q+NhQ==</latexit>

x = 0

<latexit sha1_base64="vQHOUL9yF5numSEuJrSUpjvAShc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqBch6MVjRPOAZAmzk0kyZHZ2mekV4pJP8OJBEa9+kTf/xkmyB00saCiquunuCmIpDLrut5NbWl5ZXcuvFzY2t7Z3irt7dRMlmvEai2SkmwE1XArFayhQ8masOQ0DyRvB8GbiNx65NiJSDziKuR/SvhI9wSha6f7pyu0US27ZnYIsEi8jJchQ7RS/2t2IJSFXyCQ1puW5Mfop1SiY5ONCOzE8pmxI+7xlqaIhN346PXVMjqzSJb1I21JIpurviZSGxozCwHaGFAdm3puI/3mtBHuXfipUnCBXbLaol0iCEZn8TbpCc4ZyZAllWthbCRtQTRnadAo2BG/+5UVSPyl75+XTu7NS5TqLIw8HcAjH4MEFVOAWqlADBn14hld4c6Tz4rw7H7PWnJPN7MMfOJ8/3BuNhw==</latexit>

z = 0

<latexit sha1_base64="AqmvuwfNaH39x0LUOHNCMHOlvM0=">AAAB83icbVBNS8NAEJ34WetX1aOXxSIIQklU1ItQ9OKxgv2AtpTNZtMu3WzC7kQooX/DiwdFvPpnvPlv3LY5aOuDgcd7M8zM8xMpDLrut7O0vLK6tl7YKG5ube/slvb2GyZONeN1FstYt3xquBSK11Gg5K1Ecxr5kjf94d3Ebz5xbUSsHnGU8G5E+0qEglG0UgfJDcGeS05JgL1S2a24U5BF4uWkDDlqvdJXJ4hZGnGFTFJj2p6bYDejGgWTfFzspIYnlA1pn7ctVTTipptNbx6TY6sEJIy1LYVkqv6eyGhkzCjybWdEcWDmvYn4n9dOMbzuZkIlKXLFZovCVBKMySQAEgjNGcqRJZRpYW8lbEA1ZWhjKtoQvPmXF0njrOJdVs4fLsrV2zyOAhzCEZyAB1dQhXuoQR0YJPAMr/DmpM6L8+58zFqXnHzmAP7A+fwBukGQMQ==</latexit>

t = t0 + dt
<latexit sha1_base64="HhCnIBpPAsPcPZi6REKik9lDiN0=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1ItQ9OKxgv2ANpTNdtMu3WzC7kQooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYWV1b3yhulra2d3b3yvsHTROnmvEGi2Ws2wE1XArFGyhQ8naiOY0CyVvB6G7qt564NiJWjzhOuB/RgRKhYBSt1EJyQ7Dn9soVt+rOQJaJl5MK5Kj3yl/dfszSiCtkkhrT8dwE/YxqFEzySambGp5QNqID3rFU0YgbP5udOyEnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8NrPhEpS5IrNF4WpJBiT6e+kLzRnKMeWUKaFvZWwIdWUoU2oZEPwFl9eJs2zqndZPX+4qNRu8ziKcATHcAoeXEEN7qEODWAwgmd4hTcncV6cd+dj3lpw8plD+APn8wcMao68</latexit>

t = t0

<latexit sha1_base64="LyqpbNPwqb8Qa9lkoU/vJQxzIGs=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnqyGW9BLx4TMAskQ+jp9CRteha6e4Qw5Au8eFDEq5/kzb+xswgq+qDg8V4VVfW8WHClMf6wMmvrG5tb2e3czu7e/kH+8KitokRS1qKRiGTXI4oJHrKW5lqwbiwZCTzBOt7keu537plUPApv9TRmbkBGIfc5JdpIzeIgX8B2DeNq6RJhu4hxuVgxpIIr2Kkhx8YLFGCFxiD/3h9GNAlYqKkgSvUcHGs3JVJzKtgs108UiwmdkBHrGRqSgCk3XRw6Q2dGGSI/kqZCjRbq94mUBEpNA890BkSP1W9vLv7l9RLt19yUh3GiWUiXi/xEIB2h+ddoyCWjWkwNIVRycyuiYyIJ1SabnAnh61P0P2kXbadql5rlQv1qFUcWTuAUzsGBC6jDDTSgBRQYPMATPFt31qP1Yr0uWzPWauYYfsB6+wTS0Iz4</latexit>

2

<latexit sha1_base64="J8Pnd6pdyyxh19yYzlyBsL/RIuE=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GnqyGW9BLx4TMAskQ+jp1CRteha6e4Qw5Au8eFDEq5/kzb+xswgq+qDg8V4VVfW8WHClCfmwMmvrG5tb2e3czu7e/kH+8KitokQyaLFIRLLrUQWCh9DSXAvoxhJo4AnoeJPrud+5B6l4FN7qaQxuQEch9zmj2khNZ5AvELtGSLV0iYldJKRcrBhSIRXi1LBjkwUKaIXGIP/eH0YsCSDUTFCleg6JtZtSqTkTMMv1EwUxZRM6gp6hIQ1Aueni0Bk+M8oQ+5E0FWq8UL9PpDRQahp4pjOgeqx+e3PxL6+XaL/mpjyMEw0hWy7yE4F1hOdf4yGXwLSYGkKZ5OZWzMZUUqZNNjkTwten+H/SLtpO1S41y4X61SqOLDpBp+gcOegC1dENaqAWYgjQA3pCz9ad9Wi9WK/L1oy1mjlGP2C9fQLRTIz3</latexit>

1

<latexit sha1_base64="LyqpbNPwqb8Qa9lkoU/vJQxzIGs=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GnqyGW9BLx4TMAskQ+jp9CRteha6e4Qw5Au8eFDEq5/kzb+xswgq+qDg8V4VVfW8WHClMf6wMmvrG5tb2e3czu7e/kH+8KitokRS1qKRiGTXI4oJHrKW5lqwbiwZCTzBOt7keu537plUPApv9TRmbkBGIfc5JdpIzeIgX8B2DeNq6RJhu4hxuVgxpIIr2Kkhx8YLFGCFxiD/3h9GNAlYqKkgSvUcHGs3JVJzKtgs108UiwmdkBHrGRqSgCk3XRw6Q2dGGSI/kqZCjRbq94mUBEpNA890BkSP1W9vLv7l9RLt19yUh3GiWUiXi/xEIB2h+ddoyCWjWkwNIVRycyuiYyIJ1SabnAnh61P0P2kXbadql5rlQv1qFUcWTuAUzsGBC6jDDTSgBRQYPMATPFt31qP1Yr0uWzPWauYYfsB6+wTS0Iz4</latexit>

2

<latexit sha1_base64="J8Pnd6pdyyxh19yYzlyBsL/RIuE=">AAAB6HicdVDJSgNBEO2JW4xb1KOXxiB4GnqyGW9BLx4TMAskQ+jp1CRteha6e4Qw5Au8eFDEq5/kzb+xswgq+qDg8V4VVfW8WHClCfmwMmvrG5tb2e3czu7e/kH+8KitokQyaLFIRLLrUQWCh9DSXAvoxhJo4AnoeJPrud+5B6l4FN7qaQxuQEch9zmj2khNZ5AvELtGSLV0iYldJKRcrBhSIRXi1LBjkwUKaIXGIP/eH0YsCSDUTFCleg6JtZtSqTkTMMv1EwUxZRM6gp6hIQ1Aueni0Bk+M8oQ+5E0FWq8UL9PpDRQahp4pjOgeqx+e3PxL6+XaL/mpjyMEw0hWy7yE4F1hOdf4yGXwLSYGkKZ5OZWzMZUUqZNNjkTwten+H/SLtpO1S41y4X61SqOLDpBp+gcOegC1dENaqAWYgjQA3pCz9ad9Wi9WK/L1oy1mjlGP2C9fQLRTIz3</latexit>

1

Figure 3.3: Sketch illustrating the kinetic theory explanation of why Pi � Dshear

leads to heating or cooling. (a) Array of sketches at locations in position space (x, z)
near the origin at the initial time t0. Each sketch contains a phase space density
f in the (vx, vz) plane in blue and red, where blue represents relatively low f and
red represents relatively high f . Such phase space densities have Pxz < 0. The
placement of the phase space density in each axis system reveals its bulk flow u,
denoted for each f by the magenta arrow. The flow profile has a representative form
(ux, uz) = (0, x). (b) Sketch of the phase space density at the origin at a slightly
later time t = t0+dt. The portions of the phase space densities in (a) labeled 1 and
2 evolve to make up the portions of the phase space densities in (b) labeled 1 and
2, respectively. For this flow profile, there is a net displacement of particles away
from the velocity space origin, implying an increase in thermal energy density.
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weighted higher in the first and/or third quadrants than the second and/or fourth

quadrants. Figure 3.3(a) includes a phase space density with Pxz < 0 due to the

weighting of f that is uniform in space, displayed with red signifying larger f and

blue signifying smaller f . To impose a bulk velocity shear, the phase space densities

are shifted relative to the velocity space origin, with the bulk flow direction denoted

by the magenta arrows. For this illustration, we assume a profile with u = uz(x)ẑ,

where uz is positive for x > 0 and negative for uz < 0.

In the next increment in time dt, particles with vx > 0, vz < 0 at (�dx, dz)

(labeled 2) move towards the origin (in the absence of body forces and collisions),

appearing in the vx > 0, vz < 0 quadrant at the origin at t = t0 + dt (labeled 2) in

Fig. 3.3(b). This portion of the phase space density is blue, meaning f is relatively

low there. Similarly, in the phase space density at (dx,�dz), particles in the left

part of the distribution (labeled 1) have vx < 0, vz > 0, so they also move toward

the origin. At t = t0 + dt, they become the population in the vx < 0, vz > 0 portion

of the phase space density (labeled 1) in Fig. 3.3(b). The red portion in Fig. 3.3(b)

is the portion of the phase space density at t = t0 + dt with higher f values than

elsewhere in the phase space density.

To interpret this result, we note the phase space density at the origin at t =

t0 + dt e↵ectively stretches away from the velocity space origin in the second and

fourth quadrants relative to the phase space density at the origin at t = t0, and

moves closer to the velocity space origin in the first and third quadrants than at

t = t0. If f had begun at t = t0 as symmetric in (vx, vz) space (i.e., if Pxz had

been 0), this would lead to no net heating at t = t0 + dt, since there would be equal
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numbers of particles brought closer to the velocity space origin as those brought

further away. However, in this case, there are more particles in quadrant 2 than the

other quadrants at t = t0 + dt, so there are more particles further from the origin.

This is the kinetic manifestation of heating. This example provides motivation for

the kinetic theory of heating via pressure-strain interaction due to Pi � Dshear, with

the same caveat as in the previous subsection that body forces and collisions can

alter the particle trajectories and phase space density evolution, but cannot directly

impact the pressure-strain interaction. We note that Pxz < 0 and @uz/@x > 0 in

this example, so the term �Pxz(@uz/@x) in Eq. (5.3b) is positive. This is associated

with heating, consistent with the physical picture given here. A similar construction

with the higher f region in the fourth quadrant (so that Pxz is again negative) also

leads to heating. If the higher f region is in the first or third quadrant, it would lead

to cooling because there are more particles closer to the velocity space origin than

farther away from it. In this case Pxz is positive, and the Pi � Dshear contribution to

the pressure-strain interaction is negative, consistent with cooling. Thus, Pi � Dshear

can contribute to heating or cooling depending on the flow profile and the sign of

the o↵-diagonal pressure-tensor elements, and it is in principle reversible.

We conclude this subsection with a kinetic theory interpretation of why pure

straining motion leads to a contribution to the pressure-strain interaction, but rigid

body rotation does not. Figure 3.4(a) is a sketch analogous to Fig. 3.3(a) of a

hyperbolic bulk flow profile corresponding to pure straining motion with @uk/@rj =

@uj/@rk, so⌦ = 0. Analogous to Fig. 3.3(b), there is a flow of particles towards (and

away from) the origin in the next small increment in time, which serves to increase
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<latexit sha1_base64="6iPu0yaDrBKkgaecPBcwlWucqvc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXRT0GvXiMaB6QLGF20kmGzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAaj26nffEKleSQfzThGP6QDyfucUWOlhzI97RZLbsWdgSwTLyMlyFDrFr86vYglIUrDBNW67bmx8VOqDGcCJ4VOojGmbEQH2LZU0hC1n85OnZATq/RIP1K2pCEz9fdESkOtx2FgO0NqhnrRm4r/ee3E9K/9lMs4MSjZfFE/EcREZPo36XGFzIixJZQpbm8lbEgVZcamU7AheIsvL5PGWcW7rJzfX5SqN1kceTiCYyiDB1dQhTuoQR0YDOAZXuHNEc6L8+58zFtzTjZzCH/gfP4Ai0eNUg==</latexit>

(a)
<latexit sha1_base64="boZhEsj0cs676GdU/iO4MM5rYVk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXRT0GvXiMaB6QLGF20kmGzM4uM7NCWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSy4Nq777eRWVtfWN/Kbha3tnd294v5BQ0eJYlhnkYhUK6AaBZdYN9wIbMUKaRgIbAaj26nffEKleSQfzThGP6QDyfucUWOlh3Jw2i2W3Io7A1kmXkZKkKHWLX51ehFLQpSGCap123Nj46dUGc4ETgqdRGNM2YgOsG2ppCFqP52dOiEnVumRfqRsSUNm6u+JlIZaj8PAdobUDPWiNxX/89qJ6V/7KZdxYlCy+aJ+IoiJyPRv0uMKmRFjSyhT3N5K2JAqyoxNp2BD8BZfXiaNs4p3WTm/vyhVb7I48nAEx1AGD66gCndQgzowGMAzvMKbI5wX5935mLfmnGzmEP7A+fwBjMyNUw==</latexit>

(b)

<latexit sha1_base64="xYZka1EHgeBx11XDNEAJIBtNWIk=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF4+QyCOBDZkdGhiZnd3MzBrJhi/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8Hoduo3H1FpHsl7M47RD+lA8j5n1Fip9tQtltyyOwNZJl5GSpCh2i1+dXoRS0KUhgmqddtzY+OnVBnOBE4KnURjTNmIDrBtqaQhaj+dHTohJ1bpkX6kbElDZurviZSGWo/DwHaG1Az1ojcV//Paielf+ymXcWJQsvmifiKIicj0a9LjCpkRY0soU9zeStiQKsqMzaZgQ/AWX14mjbOyd1k+r12UKjdZHHk4gmM4BQ+uoAJ3UIU6MEB4hld4cx6cF+fd+Zi35pxs5hD+wPn8AejVjQQ=</latexit>x

<latexit sha1_base64="vQHOUL9yF5numSEuJrSUpjvAShc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqqBch6MVjRPOAZAmzk0kyZHZ2mekV4pJP8OJBEa9+kTf/xkmyB00saCiquunuCmIpDLrut5NbWl5ZXcuvFzY2t7Z3irt7dRMlmvEai2SkmwE1XArFayhQ8masOQ0DyRvB8GbiNx65NiJSDziKuR/SvhI9wSha6f7pyu0US27ZnYIsEi8jJchQ7RS/2t2IJSFXyCQ1puW5Mfop1SiY5ONCOzE8pmxI+7xlqaIhN346PXVMjqzSJb1I21JIpurviZSGxozCwHaGFAdm3puI/3mtBHuXfipUnCBXbLaol0iCEZn8TbpCc4ZyZAllWthbCRtQTRnadAo2BG/+5UVSPyl75+XTu7NS5TqLIw8HcAjH4MEFVOAWqlADBn14hld4c6Tz4rw7H7PWnJPN7MMfOJ8/3BuNhw==</latexit>

z = 0

<latexit sha1_base64="xF2+1Dnriudo0aLfowFKMmKS2HQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF4+QyCOBDZkdGhiZnd3MzJrghi/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8Hoduo3H1FpHsl7M47RD+lA8j5n1Fip9tQtltyyOwNZJl5GSpCh2i1+dXoRS0KUhgmqddtzY+OnVBnOBE4KnURjTNmIDrBtqaQhaj+dHTohJ1bpkX6kbElDZurviZSGWo/DwHaG1Az1ojcV//Paielf+ymXcWJQsvmifiKIicj0a9LjCpkRY0soU9zeStiQKsqMzaZgQ/AWX14mjbOyd1k+r12UKjdZHHk4gmM4BQ+uoAJ3UIU6MEB4hld4cx6cF+fd+Zi35pxs5hD+wPn8AevdjQY=</latexit>z

<latexit sha1_base64="36K3HZ+jEjTElh9JMSp9ORUufWE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF48Y5ZHAhswOA0yYnd3M9BLJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D+omyjRjNdYJCPdDKjhUiheQ4GSN2PNaRhI3giGt1O/MeLaiEg94jjmfkj7SvQEo2ilh1HnqVMsuWV3BrJMvIyUIEO1U/xqdyOWhFwhk9SYlufG6KdUo2CSTwrtxPCYsiHt85aliobc+Ons1Ak5sUqX9CJtSyGZqb8nUhoaMw4D2xlSHJhFbyr+57US7F37qVBxglyx+aJeIglGZPo36QrNGcqxJZRpYW8lbEA1ZWjTKdgQvMWXl0n9rOxdls/vL0qVmyyOPBzBMZyCB1dQgTuoQg0Y9OEZXuHNkc6L8+58zFtzTjZzCH/gfP4AdtyN7Q==</latexit>vx

<latexit sha1_base64="U86x+C1cDSi7V9fAkQsR0+sjlyY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF48Y5ZHAhswOA0yYnd3M9JLghk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D+omyjRjNdYJCPdDKjhUiheQ4GSN2PNaRhI3giGt1O/MeLaiEg94jjmfkj7SvQEo2ilh1HnqVMsuWV3BrJMvIyUIEO1U/xqdyOWhFwhk9SYlufG6KdUo2CSTwrtxPCYsiHt85aliobc+Ons1Ak5sUqX9CJtSyGZqb8nUhoaMw4D2xlSHJhFbyr+57US7F37qVBxglyx+aJeIglGZPo36QrNGcqxJZRpYW8lbEA1ZWjTKdgQvMWXl0n9rOxdls/vL0qVmyyOPBzBMZyCB1dQgTuoQg0Y9OEZXuHNkc6L8+58zFtzTjZzCH/gfP4AeeSN7w==</latexit>vz
<latexit sha1_base64="gfLEKxkdHSLkPoyr+Q5CZyerqQo=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68diC/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVw16p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmoX5art3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDzY2M8g==</latexit>

f

<latexit sha1_base64="xYZka1EHgeBx11XDNEAJIBtNWIk=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF4+QyCOBDZkdGhiZnd3MzBrJhi/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8Hoduo3H1FpHsl7M47RD+lA8j5n1Fip9tQtltyyOwNZJl5GSpCh2i1+dXoRS0KUhgmqddtzY+OnVBnOBE4KnURjTNmIDrBtqaQhaj+dHTohJ1bpkX6kbElDZurviZSGWo/DwHaG1Az1ojcV//Paielf+ymXcWJQsvmifiKIicj0a9LjCpkRY0soU9zeStiQKsqMzaZgQ/AWX14mjbOyd1k+r12UKjdZHHk4gmM4BQ+uoAJ3UIU6MEB4hld4cx6cF+fd+Zi35pxs5hD+wPn8AejVjQQ=</latexit>x

<latexit sha1_base64="xF2+1Dnriudo0aLfowFKMmKS2HQ=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF4+QyCOBDZkdGhiZnd3MzJrghi/w4kFjvPpJ3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8Hoduo3H1FpHsl7M47RD+lA8j5n1Fip9tQtltyyOwNZJl5GSpCh2i1+dXoRS0KUhgmqddtzY+OnVBnOBE4KnURjTNmIDrBtqaQhaj+dHTohJ1bpkX6kbElDZurviZSGWo/DwHaG1Az1ojcV//Paielf+ymXcWJQsvmifiKIicj0a9LjCpkRY0soU9zeStiQKsqMzaZgQ/AWX14mjbOyd1k+r12UKjdZHHk4gmM4BQ+uoAJ3UIU6MEB4hld4cx6cF+fd+Zi35pxs5hD+wPn8AevdjQY=</latexit>z

<latexit sha1_base64="36K3HZ+jEjTElh9JMSp9ORUufWE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF48Y5ZHAhswOA0yYnd3M9BLJhk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D+omyjRjNdYJCPdDKjhUiheQ4GSN2PNaRhI3giGt1O/MeLaiEg94jjmfkj7SvQEo2ilh1HnqVMsuWV3BrJMvIyUIEO1U/xqdyOWhFwhk9SYlufG6KdUo2CSTwrtxPCYsiHt85aliobc+Ons1Ak5sUqX9CJtSyGZqb8nUhoaMw4D2xlSHJhFbyr+57US7F37qVBxglyx+aJeIglGZPo36QrNGcqxJZRpYW8lbEA1ZWjTKdgQvMWXl0n9rOxdls/vL0qVmyyOPBzBMZyCB1dQgTuoQg0Y9OEZXuHNkc6L8+58zFtzTjZzCH/gfP4AdtyN7Q==</latexit>vx

<latexit sha1_base64="U86x+C1cDSi7V9fAkQsR0+sjlyY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbVqEeiF48Y5ZHAhswOA0yYnd3M9JLghk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEEth0HW/ndzK6tr6Rn6zsLW9s7tX3D+omyjRjNdYJCPdDKjhUiheQ4GSN2PNaRhI3giGt1O/MeLaiEg94jjmfkj7SvQEo2ilh1HnqVMsuWV3BrJMvIyUIEO1U/xqdyOWhFwhk9SYlufG6KdUo2CSTwrtxPCYsiHt85aliobc+Ons1Ak5sUqX9CJtSyGZqb8nUhoaMw4D2xlSHJhFbyr+57US7F37qVBxglyx+aJeIglGZPo36QrNGcqxJZRpYW8lbEA1ZWjTKdgQvMWXl0n9rOxdls/vL0qVmyyOPBzBMZyCB1dQgTuoQg0Y9OEZXuHNkc6L8+58zFtzTjZzCH/gfP4AeeSN7w==</latexit>vz
<latexit sha1_base64="gfLEKxkdHSLkPoyr+Q5CZyerqQo=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomKeix68diC/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVw16p7FbcGcgy8XJShhy1Xumr249ZGqE0TFCtO56bGD+jynAmcFLsphoTykZ0gB1LJY1Q+9ns0Ak5tUqfhLGyJQ2Zqb8nMhppPY4C2xlRM9SL3lT8z+ukJrzxMy6T1KBk80VhKoiJyfRr0ucKmRFjSyhT3N5K2JAqyozNpmhD8BZfXibN84p3VbmoX5art3kcBTiGEzgDD66hCvdQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDzY2M8g==</latexit>

f

Pure Straining Motion:  
Incompressible heating possible
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Rigid Body Rotation: 
Incompressible heating impossiblevx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vyvx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vyvx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vyvx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vyvx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

<latexit sha1_base64="HFjxNYpUT0GFFelfVDriRDNo4+Q=">AAAB7nicdVDJSgNBEK1xjXGLevTSGARPQ09mYvQW9OIxglkgGUJPpydp0rPQ3SOEIR/hxYMiXv0eb/6NnUVQ0QcFj/eqqKoXpIIrjfGHtbK6tr6xWdgqbu/s7u2XDg5bKskkZU2aiER2AqKY4DFraq4F66SSkSgQrB2Mr2d++55JxZP4Tk9S5kdkGPOQU6KN1M57QYiyab9UxnbNrTiuh7CNq67n1gzxsHNZrSLHxnOUYYlGv/TeGyQ0i1isqSBKdR2caj8nUnMq2LTYyxRLCR2TIesaGpOIKT+fnztFp0YZoDCRpmKN5ur3iZxESk2iwHRGRI/Ub28m/uV1Mx1e+DmP00yzmC4WhZlAOkGz39GAS0a1mBhCqOTmVkRHRBKqTUJFE8LXp+h/0qrYzrnt3nrl+tUyjgIcwwmcgQM1qMMNNKAJFMbwAE/wbKXWo/VivS5aV6zlzBH8gPX2CYxjj7s=</latexit>u

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vyvx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

vx

vy

uy< 0 uy= 0 uy> 0

(a) t = 0 (b) t > 0

vx

vy

<latexit sha1_base64="HFjxNYpUT0GFFelfVDriRDNo4+Q=">AAAB7nicdVDJSgNBEK1xjXGLevTSGARPQ09mYvQW9OIxglkgGUJPpydp0rPQ3SOEIR/hxYMiXv0eb/6NnUVQ0QcFj/eqqKoXpIIrjfGHtbK6tr6xWdgqbu/s7u2XDg5bKskkZU2aiER2AqKY4DFraq4F66SSkSgQrB2Mr2d++55JxZP4Tk9S5kdkGPOQU6KN1M57QYiyab9UxnbNrTiuh7CNq67n1gzxsHNZrSLHxnOUYYlGv/TeGyQ0i1isqSBKdR2caj8nUnMq2LTYyxRLCR2TIesaGpOIKT+fnztFp0YZoDCRpmKN5ur3iZxESk2iwHRGRI/Ub28m/uV1Mx1e+DmP00yzmC4WhZlAOkGz39GAS0a1mBhCqOTmVkRHRBKqTUJFE8LXp+h/0qrYzrnt3nrl+tUyjgIcwwmcgQM1qMMNNKAJFMbwAE/wbKXWo/VivS5aV6zlzBH8gPX2CYxjj7s=</latexit>u

Figure 3.4: Sketch illustrating the kinetic theory explanation of why (a) symmetric
shear (pure straining motion) can lead to heating/cooling, while (b) anti-symmetric
shear (rigid body rotation) cannot. In each sketch, the grid in x and z denotes
physical positions in the environment of the origin (x, z) = (0, 0). Each red and
blue box denotes a phase space density f with a negative Pxz in the (vx, vz) plane at
the location in question. The local bulk flow u is denoted for each f with a magenta
arrow. The flow profiles are (a) (ux, uz) = (z, x) and (b) (ux, uz) = (z,�x).

the thermal energy density at the origin at t = t0 + dt. In contrast, Fig. 3.4(b)

shows a similar sketch, but for rigid body rotation for which @uk/@rj = �@uj/@rk,

so S = 0. In this case, the flow profile imposes that the particles in the phase space

densities surrounding the origin predominantly go around the origin rather than

changing the phase space density at the origin, leaving the thermal energy density

at the origin unchanged. This is the kinetic explanation for why rigid body rotation

does not contribute to the pressure-strain interaction.
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3.4 Kinetic Interpretation of Normal Deformation and Implications

for the Sign of Pi � D

It has been shown numerically and observationally that Pi � D, i.e., collision-

less viscous heating, can be positive or negative, which has been puzzling because

collisional viscous heating must be non-negative. We use the present results to inter-

pret the sign of Pi � D within the kinetic description. We emphasized in Sec. 3.2 that

Pi � D contains both normal deformation and shear deformation. Consequently, it

is not a well-posed question to ask what a negative value of Pi � D means physi-

cally because it is ambiguous; it could have contributions from either term. The

physics of Pi � Dshear was discussed in Sec. 3.3.3, including what it means physically

for it to be positive or negative. The example of heating due to converging flow in

Sec. 3.3.2 explained the sign only for PDU, i.e., the sum of the dilatation and normal

deformation terms, so we reconsider the example given there to isolate the normal

deformation and explain the kinetic interpretation of its sign.

Consider again the bi-Maxwellian distribution fbiM with Pxx = Pyy = P? and

Pzz = Pk with Pk > P? discussed in the previous section. For the two bulk flow

profiles in Fig. 3.2, analytic expressions for Pi � Dnormal are readily calculated from

Eq. (3.9a). For parallel converging flow u = uz(z)ẑ, we get

Dnormal = D =
@uz

@z

0

BBBBBB@

�1
3 0 0

0 �1
3 0

0 0 2
3

1

CCCCCCA
, (3.17)
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so that

Pi � Dnormal = Pi � D =
2

3

@uz

@z
(P? � Pk). (3.18)

A similar derivation reveals that if u = ux(x)x̂ for perpendicular converging flow,

Pi � Dnormal = Pi � D = �1

3

@ux

@x
(P? � Pk). (3.19)

Importantly, Pi � Dnormal for parallel and perpendicular converging flow have oppo-

site signs.

For the flow profiles in Fig. 3.2, Pi � Dnormal is positive for parallel converging

flow but negative for perpendicular converging flow. We know the net dilatation

plus normal deformation due to converging flow leads to heating as quantified by

PDU for converging flow in either direction. Thus, it may not be surprising that

Pi � Dnormal > 0 for parallel converging flow. However, it is counterintuitive that

Pi � Dnormal < 0 for perpendicular converging flow because negative Pi � D has been

referred to as “cooling.”

The resolution of this apparent paradox is to consider Pi � Dnormal in the

context of pressure dilatation �P(r · u). For the perpendicular converging flow

case,

�P(r · u) = �P @ux

@x
= �

✓
2P? + Pk

3

◆
@ux

@x
. (3.20)

This quantity is non-negative for converging flow, which reflects that there is heating.

The sum of dilatation and normal deformation from Eqs. (3.19) and (3.20) to get
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PDU is

PDU = �P?
@ux

@x
, (3.21)

as expected from Eq. (5.3a). This is positive for converging flow, corresponding to

a net heating, as expected.

This simple example suggests the kinetic theory interpretation of Pi � Dnormal.

The quantity PDU describes the total volumetric heating rate due to converging

flow. Pressure dilatation describes the volumetric rate of compressible heating if

the system was in equilibrium with a (scalar) pressure P since it has the form

�P(r · u). Kinetically, pressure dilatation describes the heating that would take

place if the phase space density f were replaced by a Maxwellian distribution fM

with the density n =
R
fd

3
v and with its pressure P given by the e↵ective pressure

P found from the local phase space density f . The phase space density fM is known

as the Maxwellianized distribution of f . The contribution from Pi � Dnormal, then,

describes the correction to the total of the volumetric heating rate due to converging

flow due to the phase space density f not being the Maxwellianized distribution fM .

In the example of the bi-Maxwellian distributions with Pk > P? in Fig. 3.2(a),

the Maxwellianized distribution fM of the phase space density fbiM is round in

velocity space, so it is cooler in the parallel direction and hotter in the perpendicular

direction than f . Compression of fM in the perpendicular x direction would heat

the plasma, making the phase space density at t = t0+dt broader in the vx direction

than it would be due to compression of fbiM . This means there would be a higher

volumetric heating rate of fM than there would be of fbiM since Pk > P?. Therefore,
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Pi � Dnormal is negative in this example because it represents the correction to the

volumetric heating rate of the actual phase space density fbiM because it is not

the Maxwellianized distribution fM ; in this case, the correction is negative. Thus,

Pi � Dnormal < 0 during converging flow does not represent physical cooling, because

when combined with �P(r · u) to form PDU, the volumetric heating rate into

thermal energy is positive, as is expected for converging flow. This is in contrast to

Pi � Dshear, which necessarily contributes to cooling when it is negative.

Similar reasoning holds for parallel converging flow. As shown in Fig. 3.2(b),

the result of converging parallel flow is to generate a phase space density at the

origin that is even more elongated than fbiM at t = 0. In this case, pressure di-

latation is again positive because there is converging flow, but here Pi � Dnormal is

also positive. This is because the Maxwellianized distribution fM is narrower in the

parallel direction than fbiM , so the heating of fM is less than the heating of fbiM .

The contribution from Pi � Dnormal is positive to make up for the part of the heating

omitted from the converging flow acting on fM .

Thus, simply knowing that Pi � D is negative is insu�cient to know if it is

caused by normal deformation or shear deformation, and it is insu�cient to know

if there is overall cooling via the pressure-strain interaction. If Pi � D < 0 and

Pi � Dshear dominates, there is a contribution towards cooling. However, if Pi � D <

0 and is dominated by Pi � Dnormal, one cannot know if there is heating or cooling

due to converging or diverging flow because �P(r·u) can have either sign depending

on whether there is converging or diverging flow. It is PDU that must be measured

to assess if heating/cooling due to converging/diverging flow is taking place.
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3.5 Discussion and Conclusions

The pressure-strain interaction, including Pi � D, has undergone intense scrutiny

in the past few years because it concisely describes the rate that energy density

is converted between bulk flow and thermal. Pressure dilatation is the portion of

pressure-strain interaction associated with compression and expansion, while Pi � D

is the portion associated with incompressible heating (Del Sarto & Pegoraro, 2018)

and has been described as collisionless viscosity (Yang et al., 2017a). Despite the

scrutiny, fundamental questions about the physical interpretation of the pressure-

strain interaction and Pi � D have persisted, including what it means for Pi � D to

be negative.

In this Chapter, we use the fact that Pi � D contains both normal deformation

and shear deformation to propose an alternate decomposition of the pressure-strain

interaction with the PDU and Pi � Dshear terms, which separate the pressure-strain

interaction into the power densities associated with converging/diverging flow and

flow shear, respectively. The PDU term is a combination of the dilatation and

normal deformation terms, and gives the reasonable generalization of dilatation for

systems not in local thermodynamic equilibrium. In the large magnetic field limit,

it was shown (Hazeltine et al., 2013) that the Pi � Dshear term (�⇡gv : U in their

notation) vanishes to low order in the strong magnetic field expansion. This is

because the magnetic field dominates all other collisionless physics in the limit in

question, and the magnetic field itself does not directly contribute to the pressure-

strain interaction [see Eq. (3.1) and Ref. (Del Sarto et al., 2016)]. Outside of this
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limit, as shown here, Pi � Dshear need not vanish.

Using these results, we provide a physical understanding of the contributions

to the pressure-strain interaction both from a fluid perspective, with one modifica-

tion from previous work on the subject that ignored the vector heat flux density

(Del Sarto & Pegoraro, 2018), and fully in the kinetic picture at the phase space

density-level. We use the results to explain kinetically why pure straining motion

(a symmetric strain rate tensor) can lead to a change in thermal energy but rigid

body rotation (an asymmetric strain rate tensor) cannot. We finally use these re-

sults to give the physical mechanisms that cause Pi � D, including giving a new

kinetic theory interpretation for the normal deformation term. We further show

the counterintuitive result that while converging flow must contribute to a positive

pressure-strain interaction, it can contribute to a negative Pi � D for systems not

in LTE.

We emphasize a number of consequences of this study that may be of use to

the field:

1. As has been recognized elsewhere (Yang et al., 2017b; Matthaeus et al., 2020;

Yang et al., 2022), the pressure-strain interaction �(P ·r) ·u is the most rele-

vant quantity to determine the rate of change of bulk flow energy density into

thermal energy density (heating or cooling), rather than Pi � D in isolation.

2. It is correct that the pressure dilatation �P(r · u) describes the volumetric

rate of heating/cooling due to compression/expansion, but it is not the full

description of energy conversion in converging or diverging flow. Similarly,
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Pi � D is the measure of incompressible heating, but contains both normal

deformation and shear deformation. In contrast, PDU gives the e↵ect of con-

verging/diverging flows, and Pi � Dshear gives the e↵ect of flow shear. We

believe both decompositions have merit for analyzing the energy conversion in

physical processes and provide complementary information. We envision that

keeping all three terms – pressure dilatation, Pi � Dnormal, and Pi � Dshear –

may also prove useful in some circumstances.

3. A local measurement of a negative Pi � D does not imply there is cooling. If

Pi � D is negative due to normal deformation, the net e↵ect of normal defor-

mation and dilatation in the total pressure-strain interaction is still positive if

the flow is converging. Meanwhile, a negative Pi � D could also be the result

of shear deformation, so there is no way to unambiguously identify the key

physical processes at play from the sign of Pi � D alone.

4. The physical interpretation of the normal deformation portion of Pi � D in

kinetic theory is the di↵erence between the rate of compressional heating and

the rate of compressional heating of the same process were the phase space

density replaced by a Maxwellian distribution of the same e↵ective pressure.

5. The introduction of the traceless strain-rate tensor D, which has been car-

ried into plasma physics following a long history in the study of neutral fluids

(Batchelor, 2000), is only advantageous to study the rate of heating/cooling

that is compressible vs. incompressible. However, it is not useful for distin-

guishing the heating between converging/diverging flows and flow shear. While
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the di↵erence may be negligible in neutral fluids that are near local thermo-

dynamic equilibrium, they can be very di↵erent in plasmas that are far from

local thermodynamic equilibrium.

6. It bears noting that the pressure-strain interaction is rigorously the quantity

that describes the rate of conversion between bulk flow and thermal energy

density, but it is not the only term that determines the local thermal energy

density. In particular, thermal energy density flux and/or heat flux can also

change the local thermal energy density (Du et al., 2020; Song et al., 2020),

even though these terms do not contribute to changes in the net thermal energy

in a closed or isolated system (Yang et al., 2017b).

7. The thermal energy density describes the random energy in a phase space den-

sity, i.e.,
R
(1/2)mv

02
fd

3
v. However, other forms of energy such as

R
(1/2)mv

0
xv

0
y

fd
3
v or higher order moments are not contained in the thermal energy density,

yet represent a possible energy channel during a physical process. We treat the

energy going into channels beyond thermal energy density in a later Chapter

(Chapter 6) (Cassak et al., 2023).

In Chapter 4, we derive the pressure-strain interaction in magnetic field-aligned

coordinates. In Chapter 5, we display the pressure-strain interaction in Cartesian

and magnetic field-aligned coordinates in PIC simulations and use the results to

determine the mechanisms that contribute to the pressure-strain interaction dur-

ing collisionless reconnection. For future work, it would be interesting to employ

the decomposition of the pressure-strain interaction discussed here more broadly in
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simulation data and observational data to separate converging/diverging flow e↵ects

from shear flow e↵ects. Example systems where such studies would be interesting

include collisionless reconnection, plasma turbulence, and collisionless shocks.

Also, we again point out from Eqs. (3.1) and (3.2), the presence of collisions

and body forces such as electric, magnetic, or gravitational forces, enters directly

into the bulk flow energy density equation but not directly into the pressure-strain

interaction. Body forces are quantified by the nu ·F term in Eq. (3.2), which for the

electromagnetic force is qnu·E for a species of charge q. This quantity, including the

version summed over species given by J ·E, has also been under intense scrutiny in

the study for describing the conversion between bulk flow energy and electromagnetic

energy (Zenitani et al., 2011; Klein & Howes, 2016; Burch et al., 2016b; Wilder et al.,

2018; Chen et al., 2019; Afshari et al., 2021). A better understanding of how body

forces impact thermal energy should remain a topic of future work (Howes, 2017).

110



Chapter 4

Pressure-Strain Interaction: II. Decomposition in Magnetic

Field-Aligned Coordinates

4.1 Introduction

The pressure-strain interaction describes the rate of the direct conversion of

energy between bulk flow and thermal (internal) energy density in neutral fluids

or plasmas (Batchelor, 2000). It is written as �(P · r) · u (with the minus sign),

where P is the pressure tensor and u is the bulk flow velocity. It was underutilized

as a quantity of merit in plasma physics until recently (Del Sarto et al., 2016;

Yang et al., 2017b,a; Del Sarto & Pegoraro, 2018). Since then, it has been the

subject of intense scrutiny, primarily because it can be reliably measured using

Magnetospheric Multiscale (MMS) mission (Burch et al., 2016a) satellites. This has

made the observational study of energy conversion into thermal energy in systems

out of local thermodynamic equilibrium accessible (Chasapis et al., 2018; Zhong

et al., 2019; Bandyopadhyay et al., 2020a, 2021; Wang et al., 2021; Zhou et al., 2021).

The pressure-strain interaction has also been studied in numerical simulations of

magnetic reconnection (including magnetotail dipolarization fronts) and magnetized

Phys. Plasmas, 29, 122307 (2022)
Contributing authors: Paul A. Cassak, M. Hasan Barbhuiya, H. Arthur Weldon
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plasma turbulence (Del Sarto et al., 2016; Sitnov et al., 2018; Del Sarto & Pegoraro,

2018; Du et al., 2018; Parashar et al., 2018; Pezzi et al., 2019; Yang et al., 2019b;

Song et al., 2020; Du et al., 2020; Fadanelli et al., 2021; Arró, G. et al., 2022; Yang

et al., 2022; Hellinger et al., 2022).

This Chapter is the second in a three-part series on the pressure-strain inter-

action. In Chapter 3, it was shown that while the commonly-used decomposition of

the pressure-strain interaction into the pressure dilatation and the term known as

Pi � D separates the compressible and incompressible energy conversion (Batchelor,

2000), it does not separate the e↵ects of converging/diverging flow from flow shear.

A di↵erent decomposition was derived that does separate these e↵ects. A kinetic

description of the terms making up the pressure-strain interaction was provided.

In this Chapter, we present a decomposition of the pressure-strain interaction

in a coordinate system with an axis aligned with the local magnetic field. The

motivation is that the magnetic field often organizes the dynamics in magnetized

plasmas, and therefore the magnetic field-aligned coordinate system can give a more

direct indication of the physics at play (see also Ref. (Yuen & Lazarian, 2020)).

The only other studies we are aware of that organized pressure-strain interaction

relative to the magnetic field was a decomposition of the deviatoric pressure into a

“gyrotropic” and “non-gyrotropic” part in MMS observations (Zhou et al., 2021) and

studies on energy conversion in a strongly magnetized plasma (e.g., Refs. (Hazeltine

et al., 2013; Hazeltine & Waelbroeck, 2018)). The result of the present Chapter

is eight sets of terms that can contribute to the pressure-strain interaction due to

compression/expansion and flow shear, with the additional result that they can be
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caused either by a direct strain of the bulk flow relative to the magnetic field or

by a strain of the bulk flow caused by the geometry of the magnetic field. (We

emphasize that the contribution to pressure-strain interaction due to the geometry

of the magnetic field does not imply that the magnetic field itself is the direct cause of

heating (Del Sarto et al., 2016)). We discuss the physical causes of each mechanism,

which should be useful for interpreting measurements in simulations and satellite

observations. (In what follows, we refrain from referring to a contribution to the

pressure-strain interaction as “heating” or “cooling” because there are a number of

e↵ects beyond the pressure-strain interaction that can cause a change to the thermal

energy density.) In Ref. (Barbhuiya & Cassak, 2022) (Chapter 5), we display the

terms making up the pressure-strain interaction in both Cartesian and field-aligned

coordinates for a particle-in-cell simulation of two-dimensional reconnection. We

use the results to identify the physical causes of the conversion of bulk flow energy

to thermal energy during the reconnection process.

The layout of this Chapter is as follows. A derivation of the pressure-strain

interaction in magnetic field-aligned coordinates is provided in Sec. 4.2. The physical

explanation of each term is provided in Sec. 4.3. Section 4.4 includes a discussion

and conclusions.
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4.2 Theory

4.2.1 Pressure-Strain Interaction in Magnetic Field-Aligned Coordi-

nates

Consider a magnetized plasma with magnetic field B. If the magnetic field is

straight everywhere, the coordinate system can be chosen with a cardinal direction

along the field, and the pressure-strain interaction can be decomposed in Cartesian

coordinates as discussed in Chapter 3. If the magnetic field is not straight every-

where, we employ a local magnetic field-aligned orthonormal coordinate system, also

used in Ref. (Yuen & Lazarian, 2020).

We define the unit vectors of the field-aligned coordinate system as the parallel

direction b̂, the curvature direction ̂, and the binormal direction n̂. (In di↵erential

geometry, these vectors are referred to as the tangent t̂, normal n̂, and binormal

b̂ directions, respectively; our notation facilitates the identification of the magnetic

field direction.) The parallel unit vector b̂ = B/B is along the local magnetic

field, where B = |B| is the magnitude of B. The magnetic field curvature vector

 = (b̂ · r)b̂ = rkb̂ is defined in the standard way (Yang et al., 2019a), where

rk = b̂ · r is the gradient in the parallel direction. The unit vector ̂ in the

direction of the curvature is defined as ̂ = /, where  = || = 1/R and R is the

local radius of curvature of the magnetic field line. As is known, b̂ · ̂ = 0, which

follows because 0 = rk(b̂ · b̂) = 2b̂ · rkb̂ = 2b̂ · . The right-handed coordinate

system is completed by defining n̂ = b̂ ⇥ ̂, which is normal to both the magnetic
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field and the curvature.

We now calculate the pressure-strain interaction �(P · r) · u in field-aligned

coordinates. We let Greek indices ↵, �, . . . refer to the b,, n directions, and we

let e↵ be the unit vector in the ↵ direction. The quantities in the pressure-strain

interaction are written in terms of their elements in field-aligned coordinates as

P = P↵�e↵e�, r = e↵r↵, and u = e�u�. Then, the pressure-strain interaction

(using the Einstein summation convention) is

�(P · r) · u = �[(P↵�e↵e�) · (e�r�)] · (e�u�) (4.1a)

= �P↵�(r↵u�) � P↵�u�[e� · (r↵e�)] (4.1b)

since e↵ · e� = �↵�, where �↵� is the Kroenecker delta. The first term includes

compression/expansion and shear in the standard sense of being related to gradients

of the bulk flow with respect to the cardinal directions of the coordinate system,

while the second term represents what we call geometrical compression/expansion

and geometrical shear because they are caused by gradients of the bulk flow due to

the geometry of the magnetic field. We discuss each in turn in what follows, grouping

them into eight sets of terms we call �PSj (with the minus sign) for j = 1, . . . , 8.

For the first term �P↵�(r↵u�), ↵ = � and ↵ 6= � are treated separately.

There are three terms with ↵ = �, given by

�PS1 = �Pk(rkuk), (4.2)
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where Pk = Pbb = b̂ ·P · b̂ = Pklbkbl is the diagonal pressure element in the parallel

direction and k and l are indices in Cartesian coordinates and uk = ub, and

�PS2 = �P(ru) � Pnn(rnun). (4.3)

�PS1 describes compression/expansion in the parallel direction, while �PS2 de-

scribes compression/expansion in the plane normal to the parallel direction. For

↵ 6= �, we collect two of the six terms as

�PS3 = �Pb(ruk) � Pnb(rnuk), (4.4)

and the other four are

�PS4 = �Pb(rku) � Pbn(rkun) � Pn(run) � Pn(rnu). (4.5)

�PS3 describes bulk flow velocity shear of the parallel flow in either perpendicular

direction; �PS4 describes bulk flow velocity shear of the flow perpendicular to the

field that varies in either the parallel (first two terms) or perpendicular (last two

terms) direction.

Finally, we need to simplify the geometric term in Eq. (4.1b), which depends

on directional derivatives of unit vectors e� · (r↵e�) and is related to the Christo↵el

symbol in di↵erential geometry. We first consider parallel gradients of each of the

unit vectors. These are given by the Frenet-Serret formulae from di↵erential geom-

etry (Struik, 1961; Patrikalakis & Maekawa, 2002; Yuen & Lazarian, 2020), which
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in our notation are

rkb̂ = ̂, (4.6a)

rk̂ = ⌧ n̂ � b̂, (4.6b)

rkn̂ = �⌧ ̂, (4.6c)

where ⌧ = �̂ · rkn̂ is the torsion, which is a measure of the degree to which the

magnetic field line is not confined to a plane. While  is non-negative by definition,

⌧ can be positive, negative, or zero. The first relation follows by definition of . To

get the form of the second, one notes 0 = rk(̂ · ̂) = 2̂ · rk̂, so rk̂ can only

have components in the b̂ and n̂ directions. The third then follows from writing

rkn̂ = rk(b̂⇥̂) = b̂⇥rk̂ and using Eq. (4.6b). Finally, taking rk̂ = rk(n̂⇥b̂)

and simplifying gives Eq. (4.6b). A key point is that the local geometry of the

magnetic field is determined fully from the curvature  and the torsion ⌧ . Using

the Frenet-Serret formulae provides all the directional derivatives in the parallel

direction; the four non-zero ones are

̂ · rkb̂ = �b̂ · rk̂ = , (4.7a)

n̂ · rk̂ = �̂ · rkn̂ = ⌧, (4.7b)

and the other five combinations all vanish.

We also need the directional derivatives in the direction of ̂ and n̂. To find

them, define the path length along the magnetic field line as s. Then, the coordinates
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of the magnetic field line can be parametrized by x(s), y(s), and z(s). The derivative

of any function f(s) of s in an arbitrary Cartesian direction is given by the chain

rule as @f(s)/@rj = (@s/@rj)(df/ds). This allows us to calculate the directional

derivatives of f(s) as

rkf(s) = b̂ · rf(s) =
df(s)

ds
, (4.8a)

rf(s) = ̂ · rf(s) = (̂ · rs)
df(s)

ds
, (4.8b)

rnf(s) = n̂ · rf(s) = (n̂ · rs)
df(s)

ds
. (4.8c)

Each is proportional to df(s)/ds, and its coe�cient is purely geometrical depending

on the trajectory of the magnetic field line. Defining the vector W with components

Wb = b̂ · rs = 1,W = ̂ · rs, and Wn = n̂ · rs, we find the gradients in the

curvature and binormal direction are

r = Wrk, (4.9a)

rn = Wnrk. (4.9b)

Using these results and the parallel derivatives given in Eqs. (4.7a) and (4.7b), all

of the remaining directional derivatives [e� · (r↵e�)] can be calculated in terms of

the curvature  and torsion ⌧ . For example, ̂ · rb̂ = ̂ · Wrkb̂ = W and

̂ · rnn̂ = ̂ · Wnrkn̂ = �Wn⌧ . Continuing in this manner for all the directional

derivatives in the geometrical term in Eq. (4.1b), we group terms with like factors
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of the components of u and the geometrical factors  or ⌧ to give

�PS5 = u

�
Pk + PbW + PnbWn

�
 = uPb↵W↵, (4.10a)

�PS6 = �u (Pbn + PnW + PnnWn) ⌧ = �uPn↵W↵⌧, (4.10b)

�PS7 = �uk (Pb + PW + PnWn) = �ukP↵W↵, (4.10c)

�PS8 = un (Pb + PW + PnWn) ⌧ = unP↵W↵⌧, (4.10d)

where we consolidated terms using the vectorW = e↵(e↵·r)s = (b̂b̂+̂̂+n̂n̂)·rs.

We note that each of these terms depend on both diagonal and o↵-diagonal pressure

tensor elements. We show in Sec. 4.3 that the terms proportional to u (�PS5 and

�PS6) represent geometrical compression/expansion, while the terms proportional

to uk and un (�PS7 and �PS8) represent geometrical shear. We emphasize that

the dependence on bulk velocity without a spatial derivative in these expressions

does not imply a velocity gradient is not needed to have a non-zero pressure-strain

interaction; rather, these terms contribute to the pressure-strain interaction because

of the geometry of the magnetic field.

4.2.2 Example of Torsion for a Helical Magnetic Field

In preparation for explaining the physical manifestation of each term in the

pressure-strain interaction, we present a simple example displaying the physical

meaning of the torsion ⌧ . Consider a circular helical magnetic field BH given in
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Cartesian coordinates by

BH = �B0
yp

x2 + y2
x̂+B0

xp
x2 + y2

ŷ +Bgẑ, (4.11)

where B0 � 0 is the magnitude of the in-plane magnetic field (which is uniform

in this case) and Bg is the magnitude of the constant and uniform out-of-plane

magnetic field. Then, B = |BH | = (B2
0 + B

2
g)

1/2, and straight-forward calculations

reveal the unit vectors are

b̂ = �b0
yx̂ � xŷp
x2 + y2

+ bgẑ, (4.12a)

̂ =
�xx̂ � yŷp

x2 + y2
, (4.12b)

n̂ = bg
yx̂ � xŷp
x2 + y2

+ b0ẑ, (4.12c)

where b0 = B0/B and bg = Bg/B. We note for future reference that the direction

of the curvature is in the xy plane (radially in, �r̂) for this magnetic field, but the

parallel and binormal directions have both an in-plane (azimuthal ✓̂) and out-of-

plane (ẑ) component.

A brief derivation reveals that the curvature and torsion for this magnetic field

are  = b
2
0/r? and ⌧ = b0bg/r?, where r? =

p
x2 + y2 is the perpendicular distance

from the z axis. This exemplifies that ⌧ is positive for a right-handed helix (Bg > 0)

and negative for a left-handed helix (Bg < 0). If Bg = 0, then ⌧ = 0, and the

magnetic field lines are confined to planes. For this particular magnetic field, the

torsion is proportional to the current helicity density through B ·J = (cB2
/4⇡)⌧ (in
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cgs units), where J = (c/4⇡)r ⇥ B is the current density, but this simple relation

does not hold for general magnetic field profiles.

4.3 Physical Picture of the Pressure-Strain Interaction in Field-Aligned

Coordinates

We now turn to the physical description of the contributions to the pressure-

strain interaction in field-aligned coordinates. The analysis from the previous section

showed that there are eight groups of terms. Sketches of representative examples of

the general terms are given for each in Fig. 4.1. In each case, the magnetic field B

is sketched using black arrows, while the bulk flow u is represented by red arrows.

The curvature and binormal directions are depicted in green and blue, respectively.

We treat each term in turn. The fluid description of the Cartesian analogue of

the terms that arise in the absence of a heat flux was treated in Refs. (Del Sarto

et al., 2016; Del Sarto & Pegoraro, 2018). We emphasize the kinetic description

of each term, which complements the fluid description and makes no assumptions

about the presence or absence of a heat flux. In so doing, when describing compres-

sion/expansion, we phrase it in terms of compression and analogous arguments can

be used to describe expansion. We stress that the sketches are intended to give the

simplest examples of the terms to illustrate the fundamental mechanism, while not

intending to represent the general case.
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(a)

(b)

(c)

(d)

(g)

(e)

(f)

(h)

Flow Compression

Flow Shear

Geometrical Compression

Geometrical Shear

X

X

Figure 4.1: Representative sketches of the eight sets of terms in the decomposition
of the pressure-strain interaction in field-aligned coordinates. Black arrows represent
the magnetic field B. Green and blue arrows denote the curvature and binormal
directions, respectively. Red arrows denote the bulk flow u. The eight sketches
represent (a) parallel flow compression �PS1, (b) perpendicular flow compression
�PS2, (c) shear of parallel flow in the perpendicular direction �PS3, (d) shear
of perpendicular flow in the perpendicular and/or parallel directions �PS4, (e)
perpendicular geometrical compression �PS5, (f) torsional geometrical compression
�PS6, (g) parallel geometrical shear �PS7, and (h) torsional geometrical shear
�PS8.
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4.3.1 Parallel Flow Compression/Expansion: �PS1 = �Pk(rkuk)

For �PS1 = �Pk(rkuk), the term describes compression due to a converging

flow in the magnetic field direction b̂. A converging flow (rkuk < 0) is associated

with a positive contribution to the pressure-strain interaction, while a diverging flow

(rkuk > 0) is associated with a negative contribution. It is largely as expected from

a fluid treatment, but the departure is that the term only depends on the parallel

pressure Pk. This is sketched in Fig. 4.1(a), showing it for a straight magnetic field

line and oppositely directed converging flows. However, this mechanism operates

even for curved magnetic field lines provided there are converging/diverging flows in

the parallel direction. Also, converging/diverging flows can occur without a change

of direction of the flow.

Kinetically, this term describes a fluid or plasma with an arbitrary phase space

density, but only the parallel diagonal pressure element of its pressure contributes.

The mechanism is analogous to parallel compressional heating in a Cartesian coordi-

nate system, as displayed in Fig. 1(a) of Chapter 3. Briefly, the phase space density

at a point where there is converging flow elongates in the parallel direction, which

is the kinetic manifestation of heating, due to the o↵set of the nearby distributions

from the bulk flow at the point of interest.
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4.3.2 Perpendicular Flow Compression/Expansion: �PS2 = �P

(ru) � Pnn(rnun)

For �PS2 = �P(ru) � Pnn(rnun), the two terms describe compression

of the bulk flow in the plane perpendicular to the magnetic field. This again is as

expected from a fluid treatment, but again shows that only the diagonal component

of the pressure tensor parallel to the converging flow contributes. This is sketched

in Fig. 4.1(b), showing it for a straight magnetic field line. This e↵ect also occurs

regardless of the shape of the magnetic field line provided there are converging flows

across it. The flows need not go to zero at the field line; they only need to converge

or diverge. This mechanism is analogous to perpendicular compressional heating in

a Cartesian coordinate system, for which the kinetic interpretation was displayed

in Fig. 1(b) of Chapter 3. As with parallel compression (�PS1), diagonal elements

of P are non-negative, so compression necessarily has a positive contribution to the

pressure-strain interaction and expansion necessarily has a negative contribution.

4.3.3 Parallel Flow Sheared in the Perpendicular Direction: �PS3 =

�Pb

�
ruk

�
� Pbn

�
rnuk

�

For �PS3 = �Pb

�
ruk

�
� Pbn

�
rnuk

�
, these terms describe a parallel flow

that varies in the plane normal to the magnetic field. A sketch exemplifying this

term is given in Fig. 4.1(c). This mechanism does not require a curved magnetic

field and depends on flow gradients, so it describes a bulk flow shear similar to

expectations from a fluid picture. The key kinetic aspect is that this mechanism
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is non-zero only if there is a non-zero o↵-diagonal pressure tensor element in the

direction of the magnetic field. Kinetically, this e↵ect is analogous to flow shear

in a Cartesian coordinate system, as displayed in Fig. 2 of Chapter 3, i.e., it is

associated with collisionless viscosity, so it can be positive or negative and is in

principle reversible. This figure explains why the necessary o↵-diagonal pressure

tensor elements need a component along the magnetic field. In a weakly collisional

or collisionless plasma, the o↵-diagonal pressure tensor elements can be positive or

negative, which determines whether a given flow profile has a positive or negative

contribution to the pressure-strain interaction.

4.3.4 Perpendicular Flow Shear: �PS4 = �Pb

�
rku

�
�Pbn

�
rkun

�
�

Pn(run + rnu)

For �PS4 = �Pb

�
rku

�
�Pbn

�
rkun

�
�Pn(run+rnu), the mechanisms

are of two related varieties. They are similar to the heating mechanism in the

previous subsection in that they do not rely on any curvature of the magnetic field,

and as with �PS3 they require a shear in the bulk flow velocity. The first two terms

describe a bulk flow in the plane perpendicular to the magnetic field that varies in

the parallel direction. A representative sketch is given in the top of Fig. 4.1(d). The

second two terms describe a flow perpendicular to the magnetic field that varies in

the orthogonal perpendicular direction, as sketched in Fig. 4.1(d) on the bottom.

As with �PS3, these terms correspond to the kinetic notion of collisionless

viscosity, requiring o↵-diagonal pressure tensor elements. In each case, the o↵-
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diagonal pressure tensor element must have a component in the direction of the

gradient of the flow. As with �PS3, whether a given term leads to a positive or

negative contribution to the pressure-strain interaction depends on the flow shear

and the sign of the o↵-diagonal pressure tensor element in question. Kinetically, the

heating mechanism is analogous to the Cartesian coordinate system result displayed

in Fig. 2 of Chapter 3, which explains why the particular o↵-diagonal pressure-tensor

elements in the expressions are needed for this term to be non-zero.

4.3.5 Perpendicular Geometrical Compression/Expansion: �PS5 =

uPb↵W↵

For �PS5 = uPb↵W↵, the contribution to the pressure-strain interaction

requires a curved magnetic field (planar or not) and takes place in the plane of the

curvature and the magnetic field. The bulk flow is in the direction of the curvature,

which is perpendicular to the magnetic field lines. A simple example is shown in

Fig. 4.1(f), with a positive u that need not vary as one traverses along the magnetic

field. This mechanism is a form of geometrical compression, which results from the

red arrows denoting the flow converging in the direction of the curvature, which

is the cause of compression in the fluid sense. Unlike the four terms discussed in

the previous subsections, this mechanism does not require a gradient in the bulk

velocity component in field-aligned coordinates; instead the flow shear arises due to

the curvature of the magnetic field.

There is an important aspect of this mechanism: it requires at least one of the
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pressure tensor elements in the b̂ direction to be non-zero since it is proportional to

Pb↵. The reason for this is that if the plasma were perfectly cold in the b̂ direction,

then all motion would be perpendicular to the magnetic field, so it would be in the

direction of the flow. This would not cause any mixing in the direction normal to

the flow, so there is no contribution to the pressure-strain interaction for such flow.

If there is random particle motion in the b̂ direction, mixing can occur that spreads

the phase space density in the b̂ direction, which is therefore associated with a non-

zero contribution to the pressure-strain interaction. More specifically, particles with

positive or negative vk and positive v on the outer magnetic field line move inward

to the middle field line in time, providing a population with non-zero vk > 0 and

v > 0. Particles on the inner magnetic field line with non-zero vk and negative v

move outward to the middle field line, providing a population with non-zero vk and

v < 0. This changes the spread in the distribution at the middle field line, which

is the kinetic manifestation of a change to the thermal energy. This mechanism

for geometrical compression can lead to a positive or negative contribution to the

pressure-strain interaction depending on the phase space density of the plasma, in

contrast to bulk flow compression �PS1 or �PS2 which necessarily makes a positive

contribution to the pressure-strain interaction.

4.3.6 Torsional Geometrical Compression: �PS6 = �uPn↵W↵⌧

For �PS6 = �uPn↵W↵⌧ , the mechanism is related to perpendicular geomet-

rical compression discussed in the previous subsection, but it requires a non-planar
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magnetic field, i.e., a magnetic field with a non-zero torsion. The key is that in

the absence of torsion, having a bulk flow in the curvature direction u means that

the flow converges in the plane of the curvature and magnetic field, as shown in

Fig. 4.1(e) for �PS5. Thus, all the plasma that is converging comes from the same

plane initially.

As an example of this mechanism in a magnetic field that has non-zero torsion,

consider the simple case of a helical right-handed torsional magnetic field of the

type discussed in Sec. 4.2.2. The oblique view in Fig. 4.1(f) shows the magnetic

field twisting out of the plane, with the dashed line representing the xy plane that

contains the curvature vector . If the flow in the  direction is converging, the

particles in the xy plane that end up in the region of converging flow originate

from regions of the magnetic field that are separated in the binormal n̂ direction.

If the plasma is perfectly cold in the n̂ direction, the phase space density in the

region of converging flow does not broaden and thus there is no contribution to

the pressure-strain interaction due to shear [although there can be a contribution

due to the b̂ direction from �PS5, as sketched in Fig. 4.1(e)]. If, however, there

are any particles with random velocity in the n̂ direction, there is mixing in that

direction and a compressional e↵ect gives a non-zero contribution to the pressure-

strain interaction. This mechanism is purely due to the geometry of the magnetic

field, so we call it torsional geometrical compression. This term is not positive

definite as with the other geometrical terms, so it can be associated with positive

or negative contributions to the pressure-strain interaction.
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4.3.7 Parallel Geometrical Shear: �PS7 = �ukP↵W↵

For �PS7 = �ukP↵W↵, the mechanism requires a magnetic field line with

curvature (planar or not) when there is a bulk flow with a component parallel or

anti-parallel to the magnetic field. An example of this for a circular magnetic field

line with uk > 0 is sketched in Fig. 4.1(g). In the fluid sense, this mechanism leads

to shear because the inner field lines are shorter than the outer field lines, so a flow

profile with uniform uk implies that there is a shear due to the plasma traversing

the shorter curved field line further in azimuthal angle than along the longer field

lines.

To understand this mechanism in kinetic theory, first suppose none of the

particles have any velocity component in the ̂ direction, i.e., the plasma is perfectly

cold in the ̂ direction. This implies that all the motion of the particles is confined to

the magnetic surfaces. In this case, in the next small increment in time, the particles

remain confined to the magnetic surfaces. Therefore, there is no mixing of particles

between di↵erent magnetic surfaces, and there is no contribution to pressure-strain

interaction. This is why �PS7 is proportional to P↵, i.e., why random motion in

the ̂ direction is necessary for this mechanism to occur.

Now consider a phase space density such that there is a non-zero P, which

means that particles have some random motion in the direction perpendicular to

the magnetic surfaces. Consider the time evolution of a phase space density at the

middle of the three magnetic field lines in Fig. 4.1(g). As the particles go around

the curve in the magnetic field lines, particles with negative velocity v on the inner
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field line in Fig. 4.1(g) move outward in the next increment in time, showing up as

a positive v population at the middle field line. Similarly, particles with positive

v on the outer field line move inward, showing up as a negative v population at

the middle field line. This broadens the phase space density at the middle field line

in the ̂ direction, which is associated with an increase in thermal energy in the

kinetic sense. This is an e↵ective shear due to the geometry of the magnetic field,

so we refer to it as parallel geometric shear. We note as an application that this

mechanism is important for a plasma in a magnetic mirror configuration.

There are analogous mechanisms for distributions with non-zero Pb and Pn.

Since these o↵-diagonal pressure tensor elements can be positive or negative, shear

due to field line geometry can contribute to a positive or negative contribution to

the pressure-strain interaction.

4.3.8 Torsional Geometrical Shear: �PS8 = unP↵W↵⌧

For �PS8 = unP↵W↵⌧ , the mechanism relies on the magnetic field having

torsion, but the flow is in the binormal direction. We again appeal to the simple

example of the right-handed circular helical field discussed in Sec. 4.2.2. To isolate

the e↵ect of the torsion, we consider a flow with uniform un. (If it were not uniform,

there would be a perpendicular flow shear as in �PS4 in addition to the geometrical

shear.) A sketch of this is in Fig. 4.1(h). It was pointed out in Sec. 4.2.2 that the

binormal direction n̂ has components both in the axial ẑ and azimuthal ✓̂ directions.

This can be seen from the red arrows in the sketch. The component of the bulk
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flow in the ẑ direction does not introduce shear because un is the same on all

magnetic field lines in this configuration. Thus, the axial part is not associated with

a contribution to the pressure-strain interaction.

However, the component in the ✓̂ direction describes flow in the azimuthal

direction. As with �PS7, the geometry of the curved magnetic field lines imposes

that there is a shear e↵ect on the plasma because fluid elements with the same

u✓ on di↵erent magnetic surfaces traverse the circular cross-section of the magnetic

surface more rapidly for smaller magnetic surfaces than larger magnetic surfaces.

If the phase space densities are perfectly cold in the ̂ direction, then all particles

are confined to the magnetic surfaces, and therefore there is no mixing and no

contribution to the pressure-strain interaction. If, however, there are particles with

a random v, particles on di↵erent magnetic surfaces mix according to a flow shear-

like mechanism in the kinetic description, so there is a change to the thermal energy

density. This is why �PS8 is proportional to P↵. We refer to this as torsional

geometrical shear. It can be positive or negative depending on the torsion, pressure

tensor elements, and the flow direction.

4.4 Discussion and Conclusions

In this study, we derive an expression for the pressure-strain interaction, the

term describing the rate of conversion of energy between bulk flow and thermal

energy density, in magnetic field-aligned coordinates for use in magnetized plasmas.

As expected, there are contributions related to compression/expansion and bulk flow
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shear. However, in field-aligned coordinates, each e↵ect has contributions directly

from the spatial dependence of the bulk velocity itself as well as contributions from

velocity shear caused by the geometry imposed by the path of the magnetic field

line. It is important to stress that the magnetic field itself and magnetic forces do

not cause the pressure-strain interaction to be non-zero (Del Sarto et al., 2016),

it is simply the flow pattern relative to the magnetic fields that contribute. The

geometric compression/expansion and geometric shear are parametrized in terms of

the magnetic field curvature  and torsion ⌧ . The former is well-known in plasma

physics; the latter is borrowed from di↵erential geometry and is much less employed

in plasma physics (Yuen & Lazarian, 2020), and describes the extent to which the

local magnetic field deviates from lying in a plane.

We provide a picture of the physical e↵ects contributing to the pressure-strain

interaction using the kinetic theory description for each of the sets of terms �PS1

through �PS8 that arise from the analysis. The fluid description for plasmas in the

absence of a heat flux was previously provided (Del Sarto et al., 2016; Del Sarto &

Pegoraro, 2018). We emphasize that the two descriptions complement each other

and must agree with each other when the same approximations are made in both pic-

tures. The kinetic approach discussed here makes no assumptions about the presence

of a heat flux. The physical mechanism of the parallel and perpendicular compres-

sion/expansion �PS1 and �PS2, and the shear in the bulk flow �PS3,�PS4,a, and

�PS4,b are analogous to compression/expansion and bulk velocity shear in Carte-

sian coordinates (Del Sarto & Pegoraro, 2018; Cassak & Barbhuiya, 2022). In the

kinetic description, the physical mechanism for geometric compression and geomet-
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ric shear is random motion in the direction perpendicular to the flow in �PS5

through �PS8, which causes mixing of particles that gives rise to a pressure-strain

interaction contribution.

We expect these results, especially the simple sketches of the physical contri-

butions to pressure-strain interaction in Fig. 4.1, will be useful in studying energy

conversion in weakly collisional and collisionless magnetized plasmas. Physical sys-

tems where the pressure-strain interaction has been used to study energy conversion,

and where the present results may be useful, include plasma turbulence and mag-

netic reconnection. We expect it to also be useful for the study of collisionless shocks.

The quantities derived here can be readily calculated in kinetic simulations (particle-

in-cell and Vlasov/Boltzmann in particular) of these phenomena. Moreover, recent

observational studies (Cozzani et al., 2019; Qi et al., 2019; Bandyopadhyay et al.,

2020b; Huang et al., 2020; Rogers et al., 2021) using the MMS satellites have di-

rectly measured the magnetic field curvature , so this quantity of importance for

the present study is accessible to measurement. We are unaware of any calculations

of the magnetic field line torsion ⌧ using satellite data, but it is a simple extension

of calculating the magnetic field and curvature directions, so it should be able to be

calculated.

We make three important points about the present results. First, the pressure-

strain interaction �(P ·r) · u is a scalar quantity, meaning it is invariant in di↵er-

ent coordinate systems. Thus, whether the pressure-strain interaction is calculated

in Cartesian coordinates (Chapter 3) or field-aligned coordinates, it remains the

same. However, there is mixing between compression/expansion and flow shear
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when changing coordinate systems. Second, the results here rigorously provide the

pressure-strain interaction contributions in field-aligned coordinates for applications

to magnetized plasmas. However, we stress there are settings in magnetized plas-

mas where particles become demagnetized, and the direction of the magnetic field

no longer organizes the dynamics (Servidio et al., 2012; Burch et al., 2016b; Egedal

et al., 2018). Thus, caution is necessary to not assume the magnetic field direction

is necessarily the direction that best organizes a general pressure tensor. Finally,

the decomposition in field-aligned coordinates presented here does not use any prop-

erties of the magnetic field itself. Thus, if an application arises for which there is

a di↵erent preferred direction other than the magnetic field, the analysis presented

here remains valid with b̂ simply becoming the preferred direction. This under-

scores the key point that the magnetic field and magnetic forces themselves do not

give rise to the pressure-strain interaction, it is only the bulk flow gradients relative

to the geometry set up by the magnetic field that gives rise to the pressure-strain

interaction.

In Chapter 5, we use the results obtained here and in Chapter 3 to analyze

the mechanisms by which the pressure-strain interaction describes the conversion of

bulk flow energy density to thermal energy density during magnetic reconnection

using two-dimensional particle-in-cell simulations. For future work, it would be

interesting to employ the decomposition of the pressure-strain interaction discussed

here in observational data, especially using the MMS satellites. Applications of the

results to plasma turbulence and collisionless shocks, as well as other manifestations

of reconnection including three-dimensional systems, would also be very interesting.
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Chapter 5

Pressure-Strain Interaction: III. Particle-in-Cell Simulations of

Magnetic Reconnection

5.1 Introduction

The pressure-strain interaction has garnered significant attention in the past

few years because it describes the rate of conversion between bulk flow and thermal

energy density [see Ref. (Cassak & Barbhuiya, 2022) and references therein]. The

pressure-strain interaction is written equivalently as

�(P · r) · u = �P : S, (5.1)

where P is the pressure tensor, u is the bulk flow velocity, S is the symmetric

strain rate tensor, and the minus sign is included so that a positive value denotes

a contribution to increasing the thermal energy density. The symmetric strain rate

tensor can be decomposed into the bulk flow divergence (1/3)I(r · u) describing

compression and D describing incompressible flow (Del Sarto & Pegoraro, 2018),

where I is the identity tensor and D is the traceless strain rate tensor with elements

Phys. Plasmas, 29, 122308 (2022)
Contributing authors: M. Hasan Barbhuiya, Paul A. Cassak
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Djk = (1/2)(@uj/@rk+@uk/@rj)�(1/3)�jk(r ·u), where �jk is the Kroenecker delta.

The pressure-strain interaction is then decomposed as (Del Sarto et al., 2016; Yang

et al., 2017b,a; Del Sarto & Pegoraro, 2018)

�(P · r) · u = �P(r · u) � ⇧ : D, (5.2)

where P = (1/3)Pjj is the e↵ective pressure and ⇧ = P � PI is the deviatoric

pressure tensor. The first and second terms in Eq. (5.2), including the minus signs,

are the pressure dilatation and the term dubbed Pi � D, respectively (Yang et al.,

2017b). Pi � D is the collisionless analogue of the viscous heating rate (Yang et al.,

2017a).

In the first part of a three part series (Cassak & Barbhuiya, 2022) (Chapter

3), we introduced an alternate decomposition to Eq. (5.2). Rather than isolating

compressible and incompressible heating/cooling, it isolates the e↵ect of flow conver-

gence/divergence in a term we call PDU and flow shear in a term we call Pi � Dshear.

Analytically, �P : S = PDU+ Pi � Dshear, where (in Cartesian coordinates)

PDU = �
✓
Pxx

@ux

@x
+ Pyy

@uy

@y
+ Pzz

@uz

@z

◆
, (5.3a)

Pi � Dshear = � Pxy

✓
@ux

@y
+
@uy

@x

◆
� Pxz

✓
@ux

@z
+
@uz

@x

◆

� Pyz

✓
@uy

@z
+
@uz

@y

◆
. (5.3b)

Equation (5.3a) is a sum of pressure dilatation (compression/expansion) and

normal deformation (the part of Pi-D coming from the diagonal elements of D
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describing an incompressible change of shape of a fluid element), while Eq. (5.3b) is

the part of Pi � D coming from the o↵-diagonal elements of D related to bulk flow

shear.

In the second part in the series (Cassak et al., 2022) (Chapter 4), we calcu-

lated the decomposition of the pressure-strain interaction in magnetic field-aligned

coordinates, finding eight sets of terms:

�PS1 = �Pk(rkuk), (5.4a)

�PS2 = �P(ru) � Pnn(rnun), (5.4b)

�PS3 = �Pb(ruk) � Pnb(rnuk), (5.4c)

�PS4 = �Pb(rku) � Pbn(rkun) � Pn(run) � Pn(rnu), (5.4d)

�PS5 = u

�
Pk + PbW + PbnWn

�
 = uPb↵W↵ (5.4e)

�PS6 = �u (Pbn + PnW + PnnWn) ⌧ = �uPn↵W↵⌧ (5.4f)

�PS7 = �uk (Pb + PW + PnWn) = �ukP↵W↵ (5.4g)

�PS8 = un (Pb + PW + PnWn) ⌧ = unP↵W↵⌧, (5.4h)

where the b and k subscripts denote the component parallel to the magnetic field

B, the  subscript denotes the component in the direction of the magnetic field line

curvature  = b̂·rb̂, where b̂ = B/|B|, and the n subscript denotes the component

in the binormal direction n̂ = b̂⇥ ̂, where ̂ = /||. The quantities  = || = |b̂ ·

rb̂| and ⌧ = �̂·rkn̂ are the magnetic field line curvature and torsion, respectively.

The quantity W is a vector with components Wb = 1,W = (̂ · rb̂)/, and
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Wn = �(̂ · rnn̂)/⌧ . These components are the prefactors linking gradients in the

curvature and binormal directions to the parallel direction such that r = Wrk,

and rn = Wnrk. It was shown in Ref. (Cassak et al., 2022) that these eight

terms correspond physically to parallel flow compression (�PS1), perpendicular flow

compression (�PS2), shear of parallel flow in the perpendicular direction (�PS3),

shear of perpendicular flow in the parallel and/or perpendicular directions (�PS4),

perpendicular geometrical compression (�PS5), torsional geometrical compression

(�PS6), parallel geometrical shear (�PS7), and torsional geometrical shear (�PS8).

Here and in what follows, we simplify the wording by using compression to mean

positive (compression) or negative (expansion) e↵ects.

In this Chapter, we calculate the terms in the decomposition of the pressure-

strain interaction in Cartesian and magnetic field-aligned coordinates in two-dimensi

-onal particle-in-cell (PIC) simulations of anti-parallel symmetric magnetic reconnec-

tion. The purposes for this Chapter are two-fold. First, we demonstrate a roadmap

for using the analytical results in Chapters 3 and 4 to study the pressure-strain in-

teraction in weakly collisional or collisionless plasmas, using magnetic reconnection

as an example. Second, understanding the rate of conversion between bulk flow and

thermal energy density during reconnection is of intrinsic interest, and has been the

subject of numerical and observational studies (Sitnov et al., 2018; Chasapis et al.,

2018; Bandyopadhyay et al., 2021; Pezzi et al., 2021). An outcome of the present

Chapter is a map of an electron di↵usion region identifying where energy conversion

via pressure-strain interaction occurs and the physical causes of it in each location.

Since Pi � D has been a significant topic of research, including the realization that it
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can be negative (Yang et al., 2017b; Zhou et al., 2021), we also identify its physical

cause during reconnection.

The layout of this Chapter is as follows. Section 5.2 gives the details of the nu-

merical simulation setup. Sections 5.3 and 5.4 give the numerical results in Cartesian

and magnetic field-aligned coordinates, respectively. Section 5.5 includes a discus-

sion and conclusions.

5.2 Numerical Simulation Setup

To calculate the contributions to the pressure-strain interaction in a numerical

simulation, we use the particle-in-cell code p3d (Zeiler et al., 2002) to simulate

symmetric anti-parallel magnetic reconnection. The simulations are 2.5D in position

space and 3D in velocity-space. The particles are stepped forward in time using the

relativistic Boris particle stepper (Birdsall & Langdon, 1991), while electromagnetic

fields are stepped forward using the trapezoidal leapfrog (Guzdar et al., 1993). The

time step for the fields is half the time step for the particles. The multigrid method

(Trottenberg et al., 2000) is used to clean the electric field E every 10 particle time-

steps to enforce Poisson’s equation. The boundary conditions are periodic in both

spatial directions.

Quantities produced by the simulation are in normalized units. The initial

asymptotic reconnecting magnetic field strength is B0, and n0 is the plasma number

density at the center of the current sheet minus the ambient background plasma

density. Lengths, velocities, times, and temperatures are normalized to the ion
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inertial scale di0 = c/!pi0, the Alfvén speed cA0 = B0/(4⇡min0)1/2, the inverse

ion cyclotron frequency ⌦�1
ci0 = (eB0/mic)�1, and mic

2
A0/kB, respectively, where

!pi0 = (4⇡n0e
2
/mi)1/2 is the ion plasma frequency, e is the ion charge, mi is the

ion mass, and c is the speed of light. Consequently, power densities making up the

pressure-strain interaction are in units of ⌦ci0(B2
0/4⇡).

The speed of light is c = 15, which is su�cient for the purposes of the present

study. The electron to ion mass ratio is me/mi = 0.04, which is relatively high. We

expect this choice could influence the amplitude and spatial size of structures in the

electron di↵usion region (Ricci et al., 2002; Jun & Quan-Ming, 2007), but we do

not expect it to a↵ect the qualitative structure (Du et al., 2018). The scaling of the

results with electron mass is discussed further in Secs. 5.4.3 and 5.5. The simulation

domain size is Lx ⇥ Ly = 12.8 ⇥ 6.4. We use 1024 ⇥ 512 grid cells, and initially

use 25,600 weighted particles per grid. The grid scale is � = 0.0125, smaller than

the smallest length-scale of the system, the electron Debye length �De = 0.0176.

The time-step is �t = 0.001, smaller than the smallest time-scale of the system, the

inverse electron plasma frequency !�1
pe = 0.012.

The initial conditions are a standard double tanh magnetic field. The initial

magnetic field profile is

Bx(y) = tanh

✓
y � Ly/4

w0

◆
� tanh

✓
y � 3Ly/4

w0

◆
� 1, (5.5)

where w0 = 0.5 is the initial half-thickness of the current sheet. There is no initial

out-of-plane (guide) magnetic field. The electrons and ions are initially drifting
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Maxwellian distributions with density profiles given by

n(y) =
1

2(Te + Ti)


sech2

✓
y � Ly/4

w0

◆
+ sech2

✓
y � 3Ly/4

w0

◆�
+ nup, (5.6)

where nup = 0.2 is the initial plasma density far from the current sheet. The tem-

perature of the background plasma is initially uniform, with electron temperature

Te = 1/12 and ion temperature Ti = 5/12. A magnetic perturbation B̃ = �ẑ ⇥ r ̃

is used to initiate reconnection, where

 ̃ = �B̃Ly

4⇡
sin

✓
2⇡x

Lx

◆
1 � cos

✓
4⇡y

Ly

◆�
, (5.7)

and the perturbation amplitude is B̃ = 0.05.

All simulation data are shown from the lower current sheet at t = 13, when

the reconnection rate is most rapidly increasing from zero to its maximum value,

i.e., it is not in the steady state. To reduce PIC noise, we recursively smooth

the raw simulation quantities four times over a width of four cells, then we take

the necessary spatial derivatives, and finally the results are recursively smoothed

four times over four cells again. This level of smoothing is decided on by trying a

number of di↵erent options for the number of cells and how many recursions, while

confirming that smoothing does not greatly alter the signal structure. We focus on

the electrons for this study; in what follows, the e subscript denoting electrons is

suppressed for simplicity except where needed for clarity.
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Figure 5.1: Two-dimensional profiles of the (a)-(f) six independent elements of
the electron pressure tensor P, (g)-(i) three components of bulk electron velocity u,
(j)-(l) three components of the magnetic field B, and (m)-(r) six non-zero elements
of the strain-rate tensor ru, as labeled in each panel. Representative magnetic
field projections in the xy plane are in black. [Associated dataset available at http:
//dx.doi.org/10.5281/zenodo.7117619].

5.3 Simulation results - Cartesian Coordinates

5.3.1 Overview

The 2D profiles of the quantities that go into the calculation of the pressure-

strain interaction in Cartesian coordinates and the magnetic field are provided in

Fig. 5.1. It contains the (a)-(f) six independent elements of the electron pressure

tensor P, (g)-(i) three components of bulk electron velocity u, (j)-(l) three com-

ponents of the magnetic field B, and (m)-(r) six non-zero elements of strain rate
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tensor ru (since @/@z = 0 for this 2D simulation). Representative magnetic field

projections in the xy plane are included in black for perspective. The plots represent

only a portion of the computational domain centered at the X-line location (x0, y0)

from |x� x0| < 3 and |y � y0| < 1.5. This encompasses the electron di↵usion region

(EDR) which is approximately |x � x0| < 2, |y � y0| < 0.35.

5.3.2 Decomposition of Pressure-Strain Interaction in Cartesian Co-

ordinates

The pressure-strain interaction and two decompositions in Cartesian coordi-

nates are shown in Fig. 5.2. The color bars have red values for positive and blue for

negative, and their ranges are di↵erent for the di↵erent plots. In this subsection, we

largely focus on a qualitative comparison of the pressure-strain interaction and the

decompositions in question. In the subsequent one, we extract the physical causes.

The pressure-strain interaction �P : S is shown in Fig. 5.2(a). The pressure-strain

interaction at the X-line is negative, i.e., in isolation it would lead to a decrease in

thermal energy. We reiterate that although the thermal energy flux and heat flux

must integrate to zero over the whole periodic domain, they are not necessarily zero

locally. Thus, one cannot conclude that there is a net decrease in thermal energy at

the X-line simply because �P : S is negative, only that the pressure-strain interac-

tion by itself would lead to a decrease in thermal energy. (Indeed, in Chapter 6, we

show that the thermal energy at the X-line is increasing at the time shown.) The

edges of the EDR indicate a net positive pressure-strain interaction. The down-
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Pressure dilatation and Pi-D

PDU and Collisionless viscous heating
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Pressure-Strain Interaction 

Figure 5.2: Pressure-strain interaction for electrons in a reconnection simulation.
(a) The pressure-strain interaction �P : S. (b) Pressure dilatation �P(r · u) and
(c) Pi � D, giving the compressible and incompressible parts. (d) PDU and (e)
Pi � Dshear, giving the flow converging/diverging and flow shear parts. The dotted-
line in (a) is the path along which 1D cuts are taken in Figs. 5.3 and 5.6. [Associated
dataset available at http://dx.doi.org/10.5281/zenodo.7117619].
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stream region |x � x0| ' 2 reveals a positive pressure-strain interaction near the

neutral line y = y0, immediately surrounded by a region of negative pressure-strain

interaction out to about |y � y0| ' 0.5.

The pressure dilatation �P(r · u) and Pi � D are shown in Figs. 5.2(b) and

(c), respectively. The pressure dilatation gives the contribution due to compres-

sion/expansion, while Pi � D is due to incompressible e↵ects. They have previously

been plotted in 2D simulations of reconnection (Pezzi et al., 2021) (see their Fig. 2).

We believe the present data look sharper because it is zoomed in closer, we employ

more particles per grid and smoothing, and our data is plotted during the phase

when the reconnection rate is increasing most rapidly rather than after the reconnec-

tion rate reaches its maximum value. We see a coherent region of negative �P(r·u)

and Pi � D near the downstream edge of the EDR at |x�x0| ' 2, |y�y0| ' 0.35, not

seen in Ref. (Pezzi et al., 2021), as will be discussed further in the next subsection.

The decomposition of �P : S into PDU and Pi � Dshear, defined in Eqs. (5.3a)

and (5.3b), respectively, are plotted in Figs. 5.2(d) and (e). While the pressure

dilatation and Pi � D each have similar overall structure to �P : S, we find PDU

and Pi � Dshear have qualitative dissimilarities compared to the structure of �P : S.

In PDU, the entire inner part of the EDR is negative, as opposed to only a small

region near the X-line in �P : S. Perhaps most importantly, the region of highest

pressure-strain interaction, the downstream edge of the EDR, shows up entirely in

PDU, and it is essentially zero in Pi � Dshear. This shows the contribution to pos-

itive pressure-strain interaction is due entirely to the converging flows at the edge

of the EDR. The decomposition given by pressure-dilatation and Pi � D reveal that
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the converging flow is associated with both compression and incompressible defor-

mation. A similar example is in the upstream region, where there is weak positive

pressure-strain interaction. Similar structure is seen in PDU, while Pi � Dshear is

nearly zero everywhere upstream of the EDR. Since Pi � D is non-zero upstream of

the EDR, we can conclude that incompressible normal deformation is the cause of

this contribution to the pressure-strain interaction. We similarly note that there is

a relatively strong positive pressure-strain interaction at the upstream edges of the

EDR (the horizontal red bands), and it is caused nearly completely by flow shear.

The cause of this positive pressure-strain interaction is more ambiguous in the pres-

sure dilatation and Pi � D decomposition, where both compressible and incompress-

ible e↵ects contribute. These three examples imply that PDU and Pi � Dshear can

be useful to help separate out the key physical cause of the pressure-strain inter-

action in these three regions of interest. In summary, both decompositions provide

useful information about the causes of the pressure-strain interaction, and using the

di↵erent decompositions together can help identify the key physical causes of the

pressure-strain interaction.

5.3.3 Largest Contributions to Pressure-Strain Interaction in Carte-

sian Coordinates

Here, we discuss the regions of most significant contributions to the pressure-

strain interaction and use the decompositions to understand their physical causes.

The region of the highest contribution to the pressure-strain interaction is the down-
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stream edge of the EDR, 1 < |x�x0| < 2 and |y�y0| < 0.3, as seen in Fig. 5.2(a). As

discussed briefly in the previous subsection, the cause of this is the converging flow

when the electron jet from the EDR impacts the magnetic island [see Figs. 5.1(a)

and (m) and Fig. 5.2(d)]. Both compression and (incompressible) normal defor-

mation are taking place in this region, which is why both pressure-dilatation and

Pi � D are non-zero in this region [Fig. 5.2(b) and (c)].

In the ion di↵usion region (IDR) significantly upstream of the EDR |x�x0| <

1, 0.35 < |y � y0| < 2.24, electrons decouple from the ions at the upstream edge of

the IDR and then accelerate towards the X-line due to the Hall electric field. This

leads to expansion, associated with cooling. This shows up as the weakly blue region

in �P(r · u) and PDU outside |y � y0| ' 0.8, with the inflow gradient profile in

Fig. 5.1(p). Then, the electrons slow down upon reaching the upstream edge of the

EDR, |y � y0| < 0.35 [Fig. 5.1(p)], which causes compression and is associated with

heating. This shows up in PDU but not Pi � Dshear, meaning both compression and

normal deformation are taking place. The normal deformation describes the change

of shape of the phase space density, which are known to elongate in the parallel

direction due to electron trapping (Egedal et al., 2013). This is to be contrasted

with the decomposition in terms of the pressure dilatation and Pi � D, where this

e↵ect shows up in Pi � D because normal deformation is one of the two terms within

Pi � D.

Surrounding the X-line at |x � x0| < 0.7, |y � y0| < 0.2, there is a region of

negative pressure-strain interaction [Fig. 5.2(a)]. This is caused by the acceleration

of electrons into the exhaust jet; the ux flow increases in magnitude away from the
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X-line [Fig. 5.1(m)], which is an expansion of the plasma. This shows up as the

negative region near the origin in �P(r · u) and PDU. Since Pi � D is small near

the X-line, we immediately conclude that compression is the most important e↵ect

here.

There are two other regions of significant pressure-strain interaction [Fig. 5.2(a)],

namely the positive region at the upstream edge of the EDR (|x � x0| < 1.5, 0.2 <

|y � y0| < 0.35), and the negative region at the downstream edge of the EDR

just inside the separatrices (1 < |x � x0| < 2, |y � y0| ' 0.5). For the positive

region at the upstream edge of the EDR, Pi � Dshear provides the physical cause.

As there is no comparable signal in PDU, we conclude it is caused solely by flow

shear. The plots of �P(r · u) and Pi � D both show signals in this region, which

implies that both compression and normal deformation are playing a role but are

actually nearly canceling out. Two e↵ects lead to the bulk flow shear that leads

to this positive pressure-strain interaction. First, the rapid drop-o↵ of the out-of-

plane flow uz in the inflow direction [Fig. 5.1(i)] gives rise to a significant bipolar

@uz/@y [Fig. 5.1(r)]. This is in the same location as a bipolar pressure anisotropy

Pyz [Fig. 5.1(f)], which conspires with the flow shear to give a positive Pi � Dshear

in the region |x � x0| < 1. In addition, the outflow ux [Fig. 5.1(g)] rapidly changes

in the inflow direction, leading to a quadrupolar @ux/@y [Fig. 5.1(n)]. There is

a quadrupolar Pxy [Fig. 5.1(d)], which conspires with the flow to give a positive

Pi � Dshear in the region 0.5 < |x � x0| < 1.5.

To see the contributions more clearly, we plot the profiles of the pressure-strain

interaction �P : S (black), PDU (red), and Pi � Dshear (blue) in Fig. 5.3 along the
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Figure 5.3: Pressure-strain interaction along the 1D path shown in Fig. 5.2(a).
L0 is the distance along the dotted path from the left. �P : S is in black, PDU
is in red, and Pi � Dshear is in blue. The shading marks the regions of negative
(blue) and positive (red) pressure-strain interaction. [Associated dataset available
at http://dx.doi.org/10.5281/zenodo.7117619].

cut displayed as the black dotted path in Fig. 5.2(a). This path goes through the

region of negative pressure-strain interaction in the exhaust and positive pressure-

strain interaction along the upstream edge of the EDR. The distance along the path

starting from the left is L0. The plot shows that the region of positive pressure-strain

interaction at the upstream edge of the EDR, shaded in red, is due to Pi � Dshear,

as inferred from the 2D plots in Fig. 5.2.

Finally, for the region of negative pressure-strain interaction shaded in blue,

closer to the X-line the dominant contribution is diverging flow (PDU), which occurs

as the electron exhaust gets deflected around the island and accelerates away from

the neutral line. Further from the X-line, bulk flow shear due to the localized

electron beam going around the island becomes equally important. This region of

negative pressure-strain interaction is not seen in the simulations in Ref. (Pezzi et al.,
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2021). It is possibly due to the expansion caused by the separatrix opening out in

time as reconnection onsets in our simulations, which would not have been seen in

Ref. (Pezzi et al., 2021) because their data were from a time after the maximum in

the reconnection rate. Further work would be necessary to confirm or refute this

possibility.

Since the negativity of Pi � D has been an important topic of consideration in

the recent literature, we also discuss it here. By taking cuts of the deformation and

shear parts of Pi � D along the same black dotted path in Fig. 5.2(a) (not shown), we

find that the region of negative Pi � D in the downstream region (centered around

|x � x0| ⇡ 2, |y � y0| ⇡ 0.3) is due to flow shear rather than normal deformation.

5.4 Simulation Results - Magnetic Field-Aligned Coordinates

5.4.1 Overview

Figure 5.4 displays 2D profiles of the plasma quantities, analogous to those

in panels Fig. 5.1(a)-(l) except the electron pressure tensor P [panels (a)-(f)] and

the electron bulk flow velocity u [panels (g)-(i)] are in field-aligned coordinates with

subscripts b,, and n. The magnetic field components [panels (j)-(l)] are repeated

from Fig. 5.1 for convenience.

The curvature direction is mostly in the ±x direction along y = y0 and the

±y direction along x = x0. There is an abrupt change in the direction of ̂ in the

upstream region where the direction of the curvature of the magnetic field lines flips,

which is particularly evident in Figs. 5.4(h) and (i). The magnetic field curvature 
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Figure 5.4: For the same data as in Fig. 5.1, 2D profiles of the (a)-(f) six in-
dependent elements of the electron pressure tensor P and (g)-(i) three compo-
nents of bulk electron velocity u in field-aligned coordinates. The magnetic field
B is plotted again in (j)-(l) for convenience. Representative magnetic field pro-
jections in the xy plane are in black. [Associated dataset available at http:
//dx.doi.org/10.5281/zenodo.7117619].
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is highest in the exhaust region near y = y0 due to the curvature of the reconnected

field lines. The binormal direction is mostly in the ±z direction except in the region

of the out-of-plane Hall magnetic field where n̂ develops an in-plane component

because the Hall e↵ect bends the reconnecting magnetic field out of the reconnection

plane within the di↵usion region (Sonnerup, 1979; Mandt et al., 1994), as seen in

Fig. 5.4(l). (There would be torsion in the upstream region if there was an initial

out-of-plane guide magnetic field.) There is also a strong torsion where ̂ abruptly

switches signs in the upstream region, since this causes an abrupt change in the

n̂ direction and ⌧ = �̂ · rkn̂. However, the contribution to the pressure-strain

interaction associated with this strong ⌧ in the upstream region is weak. The torsion

due to the Hall magnetic field has the same sign in the first and third quadrants

relative to the X-line, and the opposite sign in the second and fourth quadrants. In

our simulations, it is negative in the first quadrant close to the X-line (x�x0 < 0.2),

then becomes positive from 0.2 < x � x0 . 0.6, and negative again further out in

the EDR.

For the spatial structure of the plasma properties in field-aligned coordinates,

the diagonal elements of the electron pressure tensor broadly have similarities in the

Cartesian and field-aligned coordinate system, but the o↵-diagonal elements look

very di↵erent. The bulk flow profiles are largely as expected. The parallel bulk

flow uk [Fig. 5.4(g)] is field aligned or anti-field aligned in the exhaust between the

separatrices due to the change of direction of the magnetic field [Fig. 5.4(j)], with

a similar pattern with reversed polarity due to the inflow outside the separatrix.

This gives rise to an overall octupolar structure around the X-line. The flow in
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the direction of the curvature u is negative in the upstream region where the flow

opposes the magnetic field curvature and positive in the exhaust where it is along the

curvature [Fig. 5.4(h)]. The out-of-plane velocity uz [Fig. 5.1(i)] is slightly negative

in the IDR and mostly positive in the EDR, so the sign flips within those regions

in the binormal component of the velocity un [Fig. 5.4(i)] are due to the changing

direction of n̂.

5.4.2 Decomposition of Pressure-Strain Interaction in Field-Aligned

Coordinates

We plot the contributions to the pressure-strain interaction in field-aligned

coordinates in Fig. 5.5. We briefly discuss each term in turn and relate their most

significant structures to the physics of the reconnection process as an example of

the utility of the method.

We start with bulk flow compression. Parallel flow compression [�PS1, panel

(a)], is largest along y = y0. There, electrons are accelerated in the exhaust and

obtain a component of flow parallel to the reconnected magnetic field that is positive

in the first and third quadrants and negative in the second and fourth. At y = y0,

the magnetic field is mostly in the y direction, so this abrupt change in uk getting

faster in the direction of the flow is expansion, so this is associated with a nega-

tive contribution to the pressure-strain interaction. Perpendicular flow compression

[�PS2, panel (b)] is extremely large along a portion of the separatrix within a local-

ized region near the X-line. This arises because the magnetic field lines are strongly
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Figure 5.5: Decomposition of the pressure-strain interaction �(P · r) · u for elec-
trons in field-aligned coordinates classified according to their physical causes. Bulk
flow compression in the (a) parallel �PS1 and (b) perpendicular �PS2 directions.
Bulk flow shear for (c) parallel flow varying in the perpendicular direction �PS3,
(d) perpendicular flow varying in the perpendicular direction �PS4,a, and (e) per-
pendicular flow varying in the parallel direction �PS4,b. Geometrical compression
terms due to (f) perpendicular flow �PS5 and (g) torsion �PS6. Geometrical shear
terms due to (h) parallel flow �PS7 and (i) torsion �PS8. [Associated dataset
available at http://dx.doi.org/10.5281/zenodo.7117619].
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kinked at the separatrices, accelerating electrons into the outflow jet normal to the

magnetic field. This expansion is associated with a negative contribution to the

pressure-strain interaction.

Next, we treat the bulk flow shear. The shear of the parallel flow in the

perpendicular directions [�PS3, panel (c)] is relatively weak within the EDR. It

is most significant downstream of the exhaust at y � y0 ' 0, where the jet enters

the larger magnetic island. Within the EDR but near the downstream edge, there

is parallel flow in the ±y direction, that slows down with distance away from the

X-line in the ̂ ' ±x̂ direction. Due to the structure of Pb [Fig. 5.4(d)] this term

contributes to relatively weak positive pressure-strain interaction. Within the EDR

but closer to the separatrices in the exhaust, the same parallel flow speeds up in

the ̂ direction, which is expansion. Since Pb has the same sign in this region as

the downstream EDR edge, this contributes to very weak negative pressure-strain

interaction. Parallel shear of the perpendicular flow [�PS4,a, panel (d)] is strongest

in the EDR region in the exhausts just inside the separatrices. This is caused

by un, which has a component in the outflow direction because of the bending of

the reconnected field by the Hall e↵ect, that changes along the magnetic field in

a region of non-zero Pbn. This contribution to pressure-strain interaction is rather

weak; there is stronger heating downstream of the EDR near y = y0. Perpendicular

shear of the perpendicular flow [�PS4,b, panel (e)] is strongest in the separatrix

region near the X-line, where the terms due to the outflow mostly in u and the

current sheet flow mostly in un contribute a comparable amount. This leads to

a contribution towards positive pressure-strain interaction. Also, at the upstream
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edge of the EDR, un is predominantly in the out-of-plane (ẑ) direction and varies

in the inflow (±ŷ) direction, which is opposite to the curvature direction in this

region. This conspires with the negative Pn to give a negative contribution to the

pressure-strain interaction.

Turning to the geometrical terms, perpendicular geometrical compression [�PS5,

panel (f)] has its dominant signal near y = y0, where the strongly curved field lines

drive the outflow jet in the direction of the magnetic curvature, i.e., the bulk flow

in the exhaust has a strong positive perpendicular component u [Fig. 5.4(h)]. Pre-

dominantly due to the diagonal element Pk [see Fig. 1(e) in Chapter 4], this gives a

positive contribution to the pressure-strain interaction. As emphasized in Chapter

4, no contribution to the pressure-strain interaction is due to direct heating by the

magnetic field; rather the flows relative to the curve of the magnetic field line in this

case are convergent, leading to geometrical compression. In the regions upstream of

the X-line within the EDR, the bulk flow is in the opposite direction to the curvature,

so it contributes towards negative pressure-strain interaction but much more weakly

than in the exhaust. Torsional geometrical compression [�PS6, panel (g)] has a sig-

nificant contribution towards positive pressure-strain interaction at the separatrix

near the X-line, which is due to the torsion generated by the in-plane magnetic field

lines being dragged out of the page due to the Hall e↵ect. It is strongest at the

separatrices where the inflow is initially accelerated into the outflow, generating a

positive u [see Fig. 5.4(h)]. The Pnn term leads to the strongest contribution to

positive pressure-strain interaction. Next is parallel geometrical shear [�PS7, panel

(h)]. It is strongest downstream of the EDR, but also has positive signal inside the
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EDR in the outflow edges confined within the separatrices and away from y = y0.

This occurs because there is a diagonal pressure tensor element P coinciding with

a parallel velocity uk in the curved magnetic fields of the exhaust, and this leads to

a contribution towards positive pressure-strain interaction [see Fig. 1(g) of Chapter

4]. Finally, torsional geometrical shear [�PS8, panel (i)] describes a positive con-

tribution to pressure-strain interaction localized to the separatrix near the X-line,

as with the other torsional geometrical term �PS6 [panel (g)]. This occurs because

there is a flow due the projection of the out-of-plane electron flow in the binormal

direction, which conspires with P to contribute to give a positive contribution to

the pressure-strain interaction.

5.4.3 Largest Contributions to the Pressure-Strain Interaction in Field-

Aligned Coordinates

Having treated the terms individually, now we discuss the terms that domi-

nate the regions where we see the most important features of the pressure-strain

interaction. Consider first the region immediately surrounding the X-line, where

Fig. 5.2(a) shows that there is a local negative contribution at the X-line that ex-

tends in the outflow direction. The physical cause of this feature is that the outflow

ue,out accelerates from rest to the peak outflow speed over a distance Le in the out-

flow direction. Thus, the perpendicular flow u [see Fig. 5.4(h)] is expanding in the

direction it is pointing, which is associated with cooling from �PS2.

We perform a scaling analysis of this term to estimate its contribution quanti-
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tatively. The  term of �PS2, namely �P(ru), scales like �PS2 ⇠ �P(ue,out/Le).

For P, this is Pxx in the EDR, and for scaling purposes we take this to be the

upstream electron pressure Pe,up [which is justified by Fig. 5.4(b)]. For the out-

flow speed, we expect that during steady state reconnection, it scales as the elec-

tron Alfvén speed cA,eup based on the magnetic field strength Be,up upstream of

the EDR. For the length of the EDR in the outflow direction, it scales as approx-

imately 5 de, where de is the electron inertial scale. Putting these together and

using cAe,up/de = ⌦ce,up, the electron cyclotron frequency based on Be,up, we get

�PS2 ⇠ �0.2Pe,up⌦ce. We expect this to hold in the steady state, but our simula-

tion data is taken during the onset phase instead. To test the scaling, we therefore

use the empirically measured ue,out ' u ' 0.8 from Fig. 5.4(h). With simulation

parameters Pe,up = neTe,up = 0.017 and Le = 5 de = 2.2, we get �PS2 ' �0.006.

This is in reasonable agreement with the simulated value of 0.009 for �(P · r) · u

at the X-line in Fig. 5.2(a).

Further away from the X-line in the outflow direction along y�y0 = 0 line, the

pressure-strain interaction becomes strongly positive. In field-aligned coordinates,

this happens because the outflow jet has a significant component parallel to the

curvature direction leading to perpendicular geometrical compression �PS5. The

associated contribution scales as �PS5 ' uPk ⇠ ue,outPe,up/de ⇠ Pe,up⌦ce,up. The

gradient scale in this case is de, the thickness of the EDR in the y direction, since

that is the gradient that comes into the calculation of the curvature , and we

similarly take Pk ⇠ Pe,up. This heating rate is 5 times higher than the cooling rate

near the X-line discussed in the previous paragraph. For the simulations, this gives
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�PS5 ' 0.03. This is in good agreement with the measured value of �(P · r) · u

in this region of 0.05, as seen in Fig. 5.2(a).

The other main regions of non-zero pressure strain are the upstream edges of

the EDR and the region of cooling at 1.5 < |x � x0| < 2.5 and |y � y0| ' 0.35. To

investigate the dominant terms, we take a cut along the dotted path in Fig. 5.2(a),

the same path used to make Fig. 5.3. The result is shown in Fig. 5.6, with panel

(a) showing the pressure-strain interaction in black, and the nine terms �PSj (with

separate lines for �PS4,a and �PS4,b) in red (compression terms) and blue (shear

terms) lines. Panel (b) again shows the pressure-strain interaction in black, but here

the sum of all of the terms dependent on uk are given in blue, while the sum of all the

terms dependent on u and un are given in red. We consider three di↵erent regions

on this plot: immediately upstream of the X-line (2.7 < L0 < 3.0, shaded pink),

between this region and the separatrix in the upstream region (1.5 < L0 < 2.7,

shaded red), and the region of negative pressure-strain interaction (0.7 < L0 < 1.5,

shaded blue).

Immediately upstream of the X-line (or more appropriately for the present

purposes, the stagnation point), the contribution to positive pressure-strain inter-

action is caused by electrons slowing down from their inflow speed to a speed of 0

at the stagnation point, which is a convergent (compressional) perpendicular flow.

Thus, �PS2 is the dominant contributor to the observed pressure-strain interac-

tion, appearing as the red region near x = x0 in Fig. 5.5(b), and showing up as

the dominant contribution in the range 2.7 < L0 < 3.0 as the dashed red line in

Fig. 5.6(a). We find that the dominant contribution to �PS2 is �Pnn(rnun) (not
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Figure 5.6: Pressure-strain interaction along the 1D cut shown as the dotted path
in Fig. 5.2(a). L0 is the distance from the left along the dotted path. In both
panels, the pressure-strain interaction �P : S is in black. (a) Contribution due to
each �PSj term, with compression terms in red and shear terms in blue. (b) The
pressure-strain interaction contribution �P : Suk dependent on uk (blue) and the
pressure-strain interaction contribution �P : Su? dependent on u and un (red).
[Associated dataset available at http://dx.doi.org/10.5281/zenodo.7117619].
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shown). To estimate this term with a scaling analysis, we again take Pnn ⇠ Pe,up,

so �PS2 ⇠ Pe,upun/Ln, where un is the characteristic binormal speed and Ln is

the gradient scale in the n direction. In this region, the magnetic fields bend out

of the plane because of the Hall e↵ect (Sonnerup, 1979; Mandt et al., 1994), so

the n̂ direction has components in the ẑ and the ±ŷ directions. Since the Hall

Bz field strength scales as (Mandt et al., 1994) the reconnecting field strength

Bx, the angle ✓ that n̂ makes with the reconnection plane scales as 45�. Then,

we estimate un knowing that the dominant bulk flow in this region is the current

sheet flow in the ẑ direction. A scaling analysis using Ampère’s law gives (in cgs

units) uz ⇠ c(@Bx/@y)/4⇡ene ⇠ cBe,up/4⇡enede ⇠ cAe,up. Projecting this into the

n direction gives un ⇠ uz cos ✓ ⇠ cAe,up cos ✓. Similarly, we estimate Ln by not-

ing the primary direction of variation is y. This gives Ln ⇠ Ly cos ✓ ⇠ de cos ✓.

Putting it all together, we get �PS2 ⇠ Pe,up⌦ce,up cos2 ✓. With ✓ ⇠ 45�, this term

scales as approximately half the value of �PS5 in the exhaust. For the simula-

tions, we use the empirically determined uz ' 2 to get a scaling prediction of

�PS2 ⇠ Pe,up(uz/de) cos2 ✓ ' 0.04. This is a factor of two lower compared to the

heating rate of 0.09 given by the dashed red line at L0 = 3.0 in Fig. 5.6(a), which

reflects the significant assumptions made in our estimates.

In the region of positive pressure-strain interaction 1.5 < L0 < 2.7 leading

up to the separatrix, Fig. 5.6(a) reveals that a complicated mixture of terms play

a role, with significant cancellation in parts. Figure 5.6(b) makes an assessment

of the contributions more transparent, showing that the terms associated with the

parallel flow are the main contributors. In the region of interest, a positive pressure-
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strain interaction occurs due to �PS1 because the parallel velocity of the inflowing

electrons changes direction at the upstream edge of the EDR [Fig. 5.4(g)] which is a

flow convergence and is therefore contributes to positive pressure-strain interaction.

To quantify this with a scaling analysis, �PS1 ' Pk�ue,ink/Lk, where �ue,ink is

the change in parallel inflow speed at the upstream edge of the EDR, and Lk is

the length-scale over which ue,ink changes directions. It is di�cult to estimate the

change in flow and the gradient scale in terms of the upstream parameters, so we

use values empirically determined from the simulations. Using Lk ⇠ de ⇠ 0.45 and

�ue,ink ' 0.4 from Fig. 5.4(g), and Pk ⇠ Pe,up ⇠ 0.017, we get �PS1 ' 0.015.

This is in reasonable agreement with the values of �PS1 in the region of interest

in Fig. 5.6(a), where the dotted red curve varies from 0 to ' 0.07 with an average

of ' 0.03. This is less than the heating rate due to �PS5 in the exhaust, and we

expect it would also be smaller than �PS5 for a realistic system.

Finally, at the location where the pressure-strain interaction is negative (0.7 <

L0 < 1.5), we see from both panels of Fig. 5.6 that parallel flow compression �PS1

is the dominant term. This is consistent with the hypothesis in Sec. 5.3.3 that this

negative pressure-strain interaction is caused by the separatrix opening out while

reconnection is getting faster during its onset phase. To estimate the amplitude

via a scaling analysis, it is �PS1 ⇠ Pk�ue,outk/Lout,k, where �ue,outk is the parallel

speed in the exhaust region at the location of interest and Lout,k is the length scale

over which it changes, i.e., the distance to the X-line. This is again di�cult to

estimate in terms of the upstream parameters, but the empirical simulation results

are ue,outk ' �0.5 and Lout,k ' 2, so �PS1 ' �0.004. Fig. 5.6(a) gives a value
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of -0.025, about a factor of 6 higher, which again reflects the roughness of the

estimation.

5.5 Discussion and Conclusions

This Chapter concerns using the pressure-strain interaction to study the rate of

conversion between bulk flow and thermal energy density during magnetic reconnec-

tion. Using two-dimensional particle-in-cell simulations of anti-parallel symmetric

reconnection and the analyses in Chapters 3 and 4, we calculate decompositions of

the pressure-strain interaction in Cartesian and magnetic field-aligned coordinates

in and around the EDR.

One purpose of this Chapter is to demonstrate how to use the results of Chap-

ters 3 and 4 to analyze a physical system. In so doing, we plot the decomposition

of the pressure-strain interaction in terms of the pressure dilatation and Pi � D

(compressible and incompressible contributions, respectively), and compare it to

the decomposition from Chapter 3 with PDU and Pi � Dshear terms (flow conver-

gence/divergence and flow shear, respectively). We find their structure is noticeably

di↵erent. Both decompositions have their merit in isolating particular physical ef-

fects. For the present study of reconnection, we find that a number of features

of the most prominent contributions to the pressure-strain interaction are better

isolated by employing PDU and Pi � Dshear, and significant insights are gained by

using the two decompositions in tandem. We similarly calculate the decomposition

of pressure-strain interaction in magnetic field-aligned coordinates. As desired, this
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Figure 5.7: Sketch of the physical mechanisms contributing to the pressure-strain
interaction in a magnetic reconnection region electron di↵usion region (EDR) during
the reconnection onset phase. In-plane projections of the magnetic field B are
in black and gray, and the in-plane electron bulk flow ue is in red. The green
rectangle denotes the EDR. The ellipses in the red color palette denote regions of
positive pressure-strain interaction (a contribution to heating), and the blue ellipses
denote negative pressure-strain interaction (a contribution to cooling). The colored
dashed arrows illustrate the physical mechanism causing the non-zero pressure-strain
interaction in each location.

decomposition facilitates a physical interpretation of the mechanisms for heating

relative to the ambient magnetic field, and allows for quantitative estimates of the

energy density conversion rate from scaling analyses.

A second purpose of this Chapter is to better understand the conversion of

energy between bulk flow and thermal energy density during magnetic reconnection.

The result of this analysis is summarized by a map in Fig. 5.7 of where the di↵erent

e↵ects are most important near the EDR in our simulations during the onset phase

of reconnection. It contains a sketch of a region around a reconnection X-line, with

projections of the magnetic field in the reconnection plane in black, electron flow
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lines in red, and the EDR shaded green. Ellipses denote regions for which the

pressure-strain interaction is most appreciable, with colors in the red color palette

denoting a contribution to positive pressure-strain interaction and blue denoting

negative pressure-strain interaction. Each set of regions has an arrow pointing to it

describing the physical mechanism causing the positive or negative pressure-strain

interaction as a result of the analysis in Sec. 5.4.3:

1. �PS2 causes positive pressure-strain interaction at the upstream edges of the

EDR above and below the X-line due to perpendicular compression as the

electron inflow slows down.

2. �PS1 causes positive pressure-strain interaction at the upstream edge of the

EDR out to the separatrices due to parallel compression as the inflow of elec-

trons slow down as they approach the EDR.

3. �PS2 causes negative pressure-strain interaction at and in the near vicinity

of the X-line because electrons experience expansion as they are accelerated

in the outflow direction.

4. �PS5 causes positive pressure-strain interaction at the downstream edge of

the EDR due to perpendicular geometrical compression since the outflow has

a component in the direction of the magnetic curvature.

5. �PS1 causes negative pressure-strain interaction in the downstream region

due to expansion of the parallel flow, which is presumably associated the

outflow jets being redirected in the vertical direction and speeding up while
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the separatrix opens out during the onset phase.

It bears repeating that, in isolation, positive and negative pressure-strain interaction

would be associated with a local increase and decrease in thermal energy density,

respectively, i.e., heating and cooling, but there are other terms that can locally

change the thermal energy density so one cannot conclude there is local heating or

cooling just from the sign of the pressure-strain interaction. Also, as a reminder, the

present simulations were carried out with relatively high electron mass; we expect

the structures would look qualitatively similar for a more realistic mass ratio, but

likely with sharper features and higher amplitudes. This should be tested in future

work.

To apply these results to steady-state reconnection, we expect that mechanisms

#1-4 carry over relatively unchanged from the results here during reconnection

onset. However, the downstream negative pressure-strain interaction in #5 is not

likely to occur close to the EDR in steady-state reconnection. Instead, we expect it

would occur in natural systems far downstream where the magnetic island grows.

This is consistent with the absence of a coherent negative pressure-strain interaction

in Fig. 2 of Ref. (Pezzi et al., 2021) for steady-state reconnection. This raises

the possibility that the presence of negative pressure-strain interaction near the

downstream edge of the EDR could be used as a signal of reconnection being amidst

its onset phase, but it would take further work beyond a single simulation to confirm

or refute this possibility.

A key result of the present Chapter is quantifying the expected scale of pressure-
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strain interaction in the EDR during magnetic reconnection. A simple scaling anal-

ysis reveals that the natural scale that describes heating via the pressure-strain in-

teraction �(P ·r) ·u in an anti-parallel reconnection EDR is ±Pe,upcAe,up/(1� 5de)

during the steady-state reconnection phase. In writing this, we use that the pressure

in the EDR scales with the electron pressure Pe,up upstream of the di↵usion region,

the bulk flow velocity scales with the electron Alfvén speed cAe,up based on the mag-

netic field Be,up at the upstream edge of the EDR, and the gradient scale is either

1 or 5 de, depending on if the gradient is in the inflow or outflow direction, since

5de is an expected relevant scale for the length of the EDR in the outflow direction.

This implies

�P : Se ⇠ ±(0.2 � 1)Pe,up⌦ce,up, (5.8)

where ⌦ce,up = cAe,up/de is the electron cyclotron frequency based on Be,up.

This prediction should be useful for quantitative comparisons of the pressure-

strain interaction during magnetic reconnection in space and the laboratory. We

treat a single case study as an example. The pressure-strain interaction was studied

(Bandyopadhyay et al., 2021) during a magnetosheath reconnection event (Wilder

et al., 2018). Using plasma parameters of Bi,up ' 40 nT for the asymptotic (ion

scale) reconnecting magnetic field, n ' 10 cm�3 for the electron number density, and

Te,up ' 70 eV for the upstream electron temperature, and assuming the magnetic

field at the electron layer scales as (Liu et al., 2022) Be,up ' (me/mi)1/4Bi,up, we

find Pe,up ' 0.112 nPa, ⌦ce,up ' 1.07⇥103 rad/s, and therefore (0.2�1)Pe,up⌦ce,up '

24 � 120 nW/m3. We expect a similar scaling relation as Eq. (5.8) to hold for ions
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except that the length scale in the outflow direction scales as 10 di, so we expect

�P : Si ⇠ ±(0.1 � 1)Pi,up⌦ci,up. (5.9)

For the same event (Wilder et al., 2018), Ti,up ' 800 eV and ni ' ne, so Pi,up '

1.28 nPa and ⌦ci,up ' 3.8 rad/s which implies (0.1�1)Pi,up⌦ci,up ' (0.49�4.9) nW/m3.

The measured pressure-strain interaction terms for electrons and ions peaked in the

30-40 nW/m3 range and just above 2 nW/m3, respectively (Bandyopadhyay et al.,

2021). The ratio of the electron heating rate to the ion heating rate scales as

(Te,up/Ti,up)(Be,up/Bi,up)(mi/me) ⇠ (Te,up/Ti,up)(mi/me)3/4. For the MMS event,

this is ' 25, compared to the measured ratio of about 20. Thus, the present scaling

predictions are in good agreement with the observations of this event, both for the

absolute scale for electrons and ions, and for the ratio between the electron and ion

heating rates.

The research presented here reveals some important insights. The pressure-

strain interaction is independent of the coordinate system in use, whether in a

Cartesian coordinate system or one in which the coordinate system is curved. We

have confirmed this for the simulations presented here (not shown).

However, the contributions to the pressure-strain interaction from compres-

sion/expansion and bulk flow shear are strongly dependent on the coordinate sys-

tem, as anticipated in Chapter 4. Thus, the physical mechanism leading to the

dominant pressure-strain interaction need not be the same in di↵erent coordinate

systems. This is vividly seen for the example of magnetic reconnection treated here,

168



with the plots shown in Figs. 5.3 and 5.6 in Cartesian coordinates and field-aligned

coordinates, respectively. We find in the region 0.7 < L0 < 1.5 that the negative

pressure-strain interaction has contributions in Cartesian coordinates from both

PDU and Pi � Dshear, with PDU being the dominant contributor; the mechanism

in magnetic field-aligned coordinates is parallel flow expansion. This is the same

physical mechanism, although it is not possible to identify from the Cartesian decom-

position that the expansion is largely in the parallel direction. (This also illustrates

one benefit of employing the magnetic field-aligned coordinate system.) However,

for the positive pressure-strain interaction contribution (1.5 < L0 < 2.7), it was

found in Cartesian coordinates that the dominant contribution is Pi � Dshear, i.e.,

bulk flow shear, while the magnetic field-aligned coordinate result is parallel flow

compression. This exposes a potential pitfall in analyzing decompositions of the

pressure-strain interaction contributions: the physical mechanisms in a Cartesian

coordinate system may be di↵erent in a magnetic field-aligned coordinate system.

A second pitfall could arise in determining the dominant contribution to the

pressure-strain interaction. If one wants to find the term in the decomposition that

leads to the highest values, one might find the �PSj terms that are the largest

and identify them as the most important. If we were to do that in the present

study of reconnection, we would find that �PS2 [Fig. 5.5(b)] is the largest due to

its contribution at the separatrix region near the X-line. However, in this region

the perpendicular flow shear [�PS4,b, Fig. 5.5(e)], torsional geometrical compres-

sion [�PS6, Figs. 5.5(g)], and torsional geometrical shear [�PS8, Figs. 5.5(i)] are

also important. By comparing amplitudes individually and with the pressure-strain
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interaction [�(P · r) · u, panel (a)], we see that perpendicular flow compression

is more than 40 times larger the maximum value of the pressure-strain interac-

tion. Moreover, the pressure-strain interaction does not display a feature at the

separatrices near the X-line where these signals are strongest. This implies that

the four terms cancel each other nearly completely in this region, leaving relatively

weak pressure-strain interaction at the EDR separatrix. Thus, the decomposition of

pressure-strain interaction in may lead to individual terms that are much larger than

the total. Instead, finding the dominant term should be carried out by finding the

pressure-strain interaction first, then finding which terms contribute most strongly

in the region of interest.

There is a physical reason that the terms in the decomposition in field-aligned

coordinates can be significantly larger than the pressure-strain interaction itself,

with significant cancellation between terms. Field-aligned coordinates follow mag-

netic field lines. At the separatrices the flow lines are strongly kinked. The strong

kink leads to a huge velocity shear, which contributes to positive pressure-strain

interaction. But the plasma is strongly accelerated as well, leading to negative

pressure-strain interaction through expansion. For both, the gradient length scale

is set by the scale over which the flow profile changes. As seen in Fig. 5.4, the

gradient in the flow can occur on scales far below the electron inertial scale. In

our simulations, the gradient scale could be as low as the electron Debye scale or

the grid scale, both less than 0.02 in normalized units. This is about 20-40 times

smaller than de, which explains why the terms mentioned in the previous paragraph

can be 20-40 times the pressure-strain interaction in total. We do not attempt in
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this study to ascertain whether the Debye scale or grid scale sets the gradient scale

and instead leave that for future work; it can be easily studied by varying the two

scales relative to each other.

Finally, it bears repeating that the pressure-strain interaction is a local mea-

sure of the rate of energy conversion between bulk flow and thermal energy density,

but it is not the full local measure of heating or cooling. It remains true that in an

infinite or closed and isolated system, the global energy conversion is governed by the

pressure-strain interaction (Yang et al., 2017b, 2022), but thermal energy flux, heat

flux, and enthalpy flux can also change the local thermal energy density (Du et al.,

2020; Song et al., 2020). Moreover, there are other metrics for the rate of other kinds

of energy conversion in plasma processes, such as J ·E (Zenitani et al., 2011) and its

kinetic counterpart, the field-particle correlation (Klein & Howes, 2016), which have

received a lot of attention (Burch et al., 2016b; Wilder et al., 2018; Chen et al., 2019;

Afshari et al., 2021) because they describe the volumetric rate of conversion between

the bulk flow energy and the energy in the electromagnetic fields. There have been

studies comparing these other metrics with the pressure-strain interaction (Pezzi

et al., 2021); it would be interesting to revisit such studies in light of the results

of the present series of Chapters. A second important point is that thermal energy

is merely one form of energy in a plasma not in local thermodynamic equilibrium.

The pressure-strain interaction does not provide information about energy conver-

sion into other forms of energy, such as
R
(1/2)mv

0
xv

0
yfd

3
v or higher order moments.

A measure of the energy conversion associated with moments of the phase space

density other than the thermal energy density is treated in Chapter 6.
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Chapter 6

Quantifying Energy Conversion in Higher Order Phase Space

Density Moments in Plasmas

6.1 Introduction

Energy conversion is largely well understood for systems with initial and final

states in or near local thermodynamic equilibrium (LTE) (Chapman & Cowling,

1970; Jou et al., 2010). However, energy conversion in systems far from LTE, such as

weakly collisional or collisionless plasmas endemic to many space and astrophysical

environments, remains a forefront research area (Howes, 2017; Matthaeus et al.,

2020).

For a species � not in LTE, internal moments of the phase space density f�

are defined as f� multiplied by powers of components of v0
� and integrated over all

velocity space. Here, the random velocity is v0
� = v�u�, velocity space coordinate is

v, bulk flow velocity is u� = (1/n�)
R
f�vd3v, and number density is n� =

R
f�d

3
v.

A standard approach to study energy conversion in plasmas (Yang et al., 2017b;

Chasapis et al., 2018; Zhong et al., 2019; Bandyopadhyay et al., 2020a, 2021; Wang

Phys. Rev. Lett. 130, 085201 (2023)
Contributing authors: Paul A. Cassak, M. Hasan Barbhuiya, Haoming Liang, Matthew R.
Argall
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et al., 2021; Zhou et al., 2021; Del Sarto et al., 2016; Sitnov et al., 2018; Del Sarto

& Pegoraro, 2018; Du et al., 2018; Parashar et al., 2018; Pezzi et al., 2019; Yang

et al., 2019b; Song et al., 2020; Du et al., 2020; Fadanelli et al., 2021; Arró, G. et al.,

2022; Yang et al., 2022; Hellinger et al., 2022; Cassak & Barbhuiya, 2022; Cassak

et al., 2022; Barbhuiya & Cassak, 2022) centers on the first few internal moments.

Compressional work describes changes to n�, i.e., the zeroth internal moment of f�,

described by the continuity equation (Yang et al., 2017b; Braginskii, 1965). The

internal energy per particle Ē�,int = (3/2)kBT�, i.e., the second internal moment of

f� divided by n�, can change due to compressional heating by work �P�(r · u�),

incompressional heating via the remainder of the pressure-strain interaction (called

Pi-D (Yang et al., 2017b)), heat flux, or collisions, according to (Braginskii, 1965;

Jou et al., 2010; Yang et al., 2017b)

3

2
n�kB

dT�

dt
= �(P� · r) · u� � r · q� + n�Q̇�,coll,inter. (6.1)

Here, the elements of the pressure tensor P� are P�,jk = m�

R
v
0
�jv

0
�kf�d

3
v, tem-

perature tensor is T� = P�/n�kB, e↵ective pressure is P� = (1/3)tr[P�], e↵ective

temperature is T� = P�/n�kB = (m�/3n�kB)
R
v
02
� f�d

3
v, vector heat flux density is

q� =
R
(1/2)m�v

02
� v

0
�f�d

3
v, and volumetric heating rate per particle due to inter-

species collisions is Q̇�,coll,inter = (1/n�)
R
(1/2)m�v

02
�

P
�0 Cinter[f�, f�0 ]d3v, where the

inter-species collision operator is Cinter[f�, f�0 ], kB is Boltzmann’s constant, m� is

the constituent mass, and d/dt = @/@t+ u� · r is the convective derivative.

There is an energy conversion channel beyond those discussed thus far. f� has

173



an infinite number of internal moments that are all treated on equal footing. While

Eq. (6.1) includes the impact of o↵-diagonal pressure tensor elements and heat flux

on Ē�,int, any energy conversion associated with time evolution of all other internal

moments themselves is not contained in the continuity equation or Eq. (6.1).

Studies have addressed time evolution of other moments and their contribu-

tion to energy conversion. The evolution of non-isotropic pressures has been studied

(Kuznetsova et al., 1998; Yin & Winske, 2003; Brackbill, 2011; Greco et al., 2012;

Servidio et al., 2012; Egedal et al., 2013; Wang et al., 2015; Swisdak, 2016; Del Sarto

et al., 2016; Del Sarto & Pegoraro, 2018). Other approaches capture the e↵ect of

all moments of f�. Linearizing f� around its equilibrium in kinetic theory and gy-

rokinetics reveals the so-called free energy (Hallatschek, 2004; Howes et al., 2006;

Schekochihin et al., 2009), which quantifies non-LTE energy conversion into mechan-

ical or magnetic energy (Hallatschek, 2004). It is associated with the phase space

cascade of entropy which can lead to dissipation (Tatsuno et al., 2009). The velocity

space cascade has been studied without linearizing f� (Servidio et al., 2017; Pezzi

et al., 2018; Cerri et al., 2018; Pezzi et al., 2019). In another approach, changes to

bulk kinetic energy are quantified kinetically using field-particle correlations (Klein

& Howes, 2016; Howes et al., 2017; Klein et al., 2017; Klein, 2017; Chen et al., 2019;

Li et al., 2019; Klein et al., 2020; Juno et al., 2021; Verniero et al., 2021; Montag &

Howes, 2022).

In this Chapter, we use a first-principles theory to quantify energy conversion

associated with all internal moments. We show this energy conversion is physically

associated with changing the velocity space shape of f�. There are three important
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ingredients. First, the key quantity is kinetic entropy (Boltzmann, 1877; Eu, 1995;

Chan Eu, 2006; Jou et al., 2010; Eyink, 2018) rather than energy. Second, we

employ the decomposition of kinetic entropy into position and velocity space kinetic

entropy (Mouhot & Villani, 2011; Liang et al., 2019). Third, we employ the so-

called relative entropy (Grad, 1965; Eu, 1995; Chan Eu, 2006). Our analysis was

performed independently, but we found it is similar to treatments in chemical physics

of dilute gases (Eu, 1995) and quantum statistical mechanics (Floerchinger & Haas,

2020). The novelty of our analysis stems from using the decomposition of kinetic

entropy and significant di↵erences in interpretation than in previous work. We

employ a particle-in-cell (PIC) simulation of collisionless magnetic reconnection,

revealing energy conversion associated with higher order moments can be locally

significant.

6.2 Theory

We first derive an expression for the rate of energy conversion associated

with non-LTE internal moments of f�, emphasizing departures from the treatment

in Ref. (Eu, 1995). We assume a classical (non-relativistic, non-quantum) three-

dimensional (3D) system of infinite volume or in a thermally insulated domain with

a fixed number N� of monatomic particles. The kinetic entropy density s� associated

with f� is (Boltzmann, 1872)

s� = �kB

Z
f� ln

✓
f��3

r��3
v�

N�

◆
d
3
v, (6.2)
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where the integral is over all velocity space, and �3
r� and �3

v� are position space

and velocity space volume elements in phase space, respectively (Liang et al., 2019,

2020a; Argall et al., 2022). In the comoving (Lagrangian) frame, s� evolves according

to ((Eu, 1995) and Supplemental Material 6.5.1)

d

dt

✓
s�

n�

◆
+

r · J �,th

n�
=

ṡ�,coll

n�
, (6.3)

where J �,th is thermal kinetic entropy density flux and ṡ�,coll is local time rate

of change of kinetic entropy density through collisions, defined in Eqs. (6.14) and

(6.13), respectively. We note that Eq. (6.3) has no explicit dependence on body

forces including gravitational and electromagnetic forces, which implies they do not

directly change internal moments of f�. Eq. (6.1) exemplifies this for the special

case of internal energy.

In a key departure from Ref. (Eu, 1995), we decompose kinetic entropy density

s� into a position space kinetic entropy density s�p and velocity space kinetic entropy

density s�v, with s� = s�p + s�v, as (Mouhot & Villani, 2011; Liang et al., 2019)

s�p = �kBn� ln

✓
n��3

r�

N�

◆
, (6.4a)

s�v = �kB

Z
f� ln

✓
f��3

v�

n�

◆
d
3
v. (6.4b)

A direct calculation (see Supplemental Material 6.5.2-6.5.4) of the terms on the left
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side of Eq. (6.3) using Eqs. (6.4a) and (6.4b) gives

d

dt

✓
s�p

n�

◆
=

1

T�

dW�

dt
, (6.5a)

d

dt

✓
s�v

n�

◆
=

1

T�

dĒ�,int

dt
+

d

dt

✓
s�v,rel

n�

◆
, (6.5b)

r · J �,th

n�
= � 1

T�

dQ�

dt
+

(r · J �,th)rel
n�

, (6.5c)

where dW� = P�d(1/n�) is the compressional work per particle done by the sys-

tem, dĒ�,int = (3/2)kBdT� is the increment in internal energy per particle, and

dQ�/dt = [�r ·q� � (P� · r) ·u� +P�(r ·u�)]/n� is the (thermodynamic) heating

rate per particle from sources other than compression that can change the e↵ec-

tive temperature [see Eq. (6.1)]. Lastly, s�v,rel is the relative entropy density and

(r · J �,th)rel is the thermal relative entropy density flux divergence, given by

s�v,rel = �kB

Z
f� ln

✓
f�

f�M

◆
d
3
v, (6.6)

(r · J �,th)rel = �kB

Z h
r · (v0

�f�)
i
ln

✓
f�

f�M

◆
d
3
v, (6.7)

and the “Maxwellianized” phase space density f�M associated with f� is (Grad,

1965)

f�M = n�

✓
m�

2⇡kBT�

◆3/2

e
�m�(v�u�)2/2kBT� , (6.8)

where n�, u�, and T� are based on f�. (Ref. (Eu, 1995) used a more general reference

phase space density than f�M , so our choice is a special case of theirs.)

Equations (6.5a)-(6.5c) have important implications, and our interpretation
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greatly departs from Ref. (Eu, 1995). Ignoring the relative terms in Eqs. (6.5b) and

(6.5c), we see Eq. (6.3) (scaled by the e↵ective temperature) inherently contains

information about work, internal energy, and thermodynamic heat as captured by

the continuity equation and Eq. (6.1). This suggests the relative terms describe

energy conversion associated with all internal moments beyond the second moment.

We therefore define increments of relative energy per particle d
¯̄E�,rel and rela-

tive heat per particle dQ�,rel by

dĒ�,rel

dt
= T�

d(s�v,rel/n�)

dt
, (6.9a)

dQ�,rel

dt
= �T�

(r · J �,th)rel
n�

. (6.9b)

Further defining energy increments per particle in all internal moments at and above

the second moment as dĒ�,gen = dĒ�,int + dĒ�,rel and generalized heat per particle as

dQ�,gen = dQ� + dQ�,rel, Eqs. (6.3) - (6.5c), (6.9a) and (6.9b) take on the simple

form

dW�

dt
+

dĒ�,gen

dt
=

dQ�,gen

dt
+ Q̇�,coll. (6.10)

Equation (6.10) generalizes Eq. (6.1), which contains energy conversion associated

with only density and e↵ective temperature, as opposed to all internal moments of

f�. This interpretation is a significant departure from Ref. (Eu, 1995).

We now provide a physical interpretation, which requires understanding en-

ergy conversion via its impact on f�. Work per particle dW� = P�d(1/n�) changes

the zeroth moment of f�. This is depicted graphically in Fig. 6.1, where two ve-
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Initial f� Final f� Physics

Change of Density

Change of Temperature

(Work)

(Internal Energy)

Change of Shape of f�

(Relative Energy)

dW�

dt

dE�,int

dt

dE�,rel

dt

Figure 6.1: Schematic showing energy conversion channels according to their impact
on the phase space density f�. The initial f� is depicted as Maxwellian for illustrative
purposes on the left. The final f� is to their right. The descriptions of the changes
in f� are to their right.

locity space dimensions of f� are sketched. The top row shows a process taking a

Maxwellianized f� from an initial to final state. The intensification of colors denote

a change in f�, and therefore n�. Similarly, dĒ�,int is associated with changes to the

second internal moment of f�, depicted in the second row of Fig. 6.1 for a process

that increases Ē�,int, i.e., the Maxwellianized f� spreads in velocity space.

To interpret dĒ�,rel, Eq. (6.6) shows s�v,rel vanishes if f� is a Maxwellian (f� =

f�M) (Grad, 1965). Thus, dĒ�,rel describes non-LTE physics. Since a Maxwellian

is the highest kinetic entropy state for a fixed N� and Ē�,int (Boltzmann, 1877),

d(s�v,rel/n�)/dt > 0 implies f� evolves towards Maxwellianity in the comoving frame,

associated with dĒ�,rel > 0, while d(s�v,rel/n�)/dt < 0 implies f� evolves away from
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Maxwellianity and dĒ�,rel < 0. A process changing the shape of f� is depicted in the

third row of Fig. 6.1, where f� is initially Maxwellian and finally it is not.

A concrete example showing that dĒ�,rel is associated with f� changing shape

is provided in Supplemental Material 6.5.5. dĒ�,rel is calculated analytically for a

bi-Maxwellian distribution with converging flow. It is shown that the evolution of

f� is consistent with the interpretation in the previous paragraph.

Collisions directly change the shape of f�, so dĒ�,rel includes irreversible con-

tributions if collisions are present. However, since f� can change shape even in the

perfectly collisionless limit, dĒ�,rel also contains reversible e↵ects. Thus, the term is

not purely irreversible as previously suggested (Eu, 1995).

dQ� describes non-Maxwellian features of f� that cause a flux of energy per

particle that changes T� [see Eq. (6.1)]. dQ�,rel is analogous: non-Maxwellian fea-

tures in higher order internal moments produce a flux that modifies internal moments

of f� other than n� and T�. Q̇�,coll describes both intra- and inter-species collisions,

as opposed to solely inter-species arising in Eq. (6.1). This is because both collision

types can change higher order internal moments of f�, while elastic intra-species

collisions conserve energy.

6.3 Simulation Results

We demonstrate key results of the theory using simulations of reconnection.

Data are from the simulation in Chapter 5. The code and numerical aspects are

discussed there and in Supplemental Material 6.5.6. The out-of-plane current density
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Figure 6.2: Electron energy conversion in a PIC simulation of magnetic reconnec-
tion. (a) Out-of-plane current density Jz, with projections of magnetic field lines
and segments of electron velocity streamlines overplotted in black and orange, re-
spectively. (b) Electron entropy-based non-Maxwellianity M̄KP,e. Time rates of
change per particle of (c) work dWe/dt, (d) internal energy dĒe,int/dt, and (e) rel-
ative energy dĒe,rel/dt. (f) log10[|(dĒe,rel/dt)/(dĒe,int/dt)|]. 1D cuts of the terms in
panels (c)-(e) in the (g) x and (h) y directions. (i)-(l) Reduced electron phase space
density fe(vx, vz) at locations denoted by the colored x’s at the top left of the plots
corresponding to the x’s in panel (b) along a streamline.

Jz around a reconnection X-line at (x0, y0) is in Fig. 6.2(a), with reversing magnetic

field lines in black and electron streamline segments in orange, revealing typical

profiles.

We first confirm relative energy changes are related to f� evolving towards or

away from LTE. Figure 6.2(b) shows the electron entropy-based Kaufmann and Pa-

terson non-Maxwellianity M̄e,KP = (seM � se)/[(3/2)kBne] (Kaufmann & Paterson,

2009; Liang et al., 2020a), where se comes from Eq. (6.2) based on fe, while seM
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comes from Eq. (6.2) based on feM in Eq. (6.8). It is a measure of the temporally

and spatially local departure from LTE. Figure 6.2(e) is the rate of relative energy

per particle dĒe,rel/dt. Figure 6.2(i)-(l) are reduced electron phase space densities

fe(vx, vz) at the four color-coded x’s along a streamline in Fig. 6.2(b).

M̄e,KP and dĒe,rel/dt together reveal whether f� is locally in LTE [panel (b)]

and whether it is evolving towards or away from LTE [(e)]. Just upstream of the

electron di↵usion region (EDR) (|x � x0| < 1, 0.45 < |y � y0| < 1), electrons get

trapped by the upstream magnetic field (Egedal et al., 2013), so fe becomes non-

Maxwellian [dark red in (b)], with fe elongated in the parallel direction [(i)]. Thus,

in the comoving frame, as a fluid element convects towards the X-line from upstream,

fe evolves away from Maxwellianity, consistent with (e) where dĒe,rel/dt < 0. Con-

tinuing towards the X-line, fe develops striations [(j)] due to electrons becoming

demagnetized in the reversed magnetic field (Speiser, 1965; Ng et al., 2011). This is

associated with evolution away from LTE [blue in (e)]. Downstream of the X-line,

there is a red patch in (e) at |x� x0| ' 1.25, |y� y0| ' 0 where electrons thermalize

(Maxwellianize) (Shuster et al., 2014; Wang et al., 2016), which is seen in fe [(k)].

Just downstream from there (|x � x0| ' 1.8), fe evolves away from LTE where

electrons begin to remagnetize at the downstream edge of the EDR (Shuster et al.,

2014; Barbhuiya et al., 2022) [(l)]. These results confirm the sign of dĒ�,rel identifies

whether f� changes shape towards or away from LTE in the comoving frame.

Next, we demonstrate the quantitative importance of relative energy. Rates of

work and internal energy per particle are shown in Figs. 6.2(c) and (d), respectively.

Cuts of these quantities through the X-line in the horizontal and vertical directions,
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along with dĒe,rel/dt, are plotted in Figs. 6.2(g) and (h), respectively. At the X-

line, the values are 0.031, 0.027, and �0.016, respectively, in normalized code units.

Their sum, 0.042, is the total rate of energy per particle going into internal moments

of electrons. To see that relative energy is important, the standard approach using

Eq. (6.1) would say the energy rate going into changing ne and Te is 0.031+0.027 =

0.058, 38% higher than the total rate when relative energy is included, which is a

significant di↵erence.

To assess its importance in other locations, Fig. 6.2(f) shows log10[|(dĒe,rel/dt)

/(dĒe,int/dt)|], with a color bar saturated at ±2 to better reveal details. Regions

where internal and relative energy changes are comparable are white. Locations

where |dĒe,rel| exceeds |dĒe,int| are red, especially just upstream of the EDR. In the

deep blue regions, |dĒe,rel| ⌧ |dĒe,int|. In the light blue regions, including much of the

EDR and island, |dĒe,rel| is at least 20% of the magnitude of |dĒe,int|. Thus, energy

conversion associated with non-LTE internal moments in reconnection is broadly

non-negligible and can be locally significant or even dominant.

6.4 Discussion

We conclude with implications of the present results. First, the theory ap-

plies for systems arbitrarily far from LTE, so it could lead to significant advances

compared to manifestly perturbative theories (Jou et al., 2010; Chapman & Cowl-

ing, 1970; Schekochihin et al., 2009). An extensive comparison to previous work

is in Supplemental Material 6.5.7. For a physical process that changes both inter-
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Figure 6.3: Sketch illustrating energy conversion from Eq. (6.10). Arrows show
conversion channels between work (blue), heat (pink), energy (orange), and collisions
(green), with standard channels in black and relative channels in red. The light blue
dashed arrow signifies how the relative terms couple to thermodynamic terms.

nal energy and higher order moments, the theory captures both and allows each to

be calculated separately. Since the theory contains all internal moments of f�, it

overcomes the closure problem.

It is important to note that internal energy per particle Ē�,int is a state variable,

meaning it is history independent, but relative energy per particle Ē�,rel is not. Only

in special cases can relative energy per particle Ē�,rel be calculated from f� at a

particular time. Rather, only the increment dĒ�,rel has an instantaneous physical

meaning. This was pointed out in Ref. (Eu, 1995), and used as motivation to not

employ relative entropy per particle because they sought a thermodynamic theory

of irreversible processes. Our interpretation is distinctly di↵erent; we argue relative

energy per particle not being a state variable reflects the physical consequence that
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changing the shape of f� is typically history dependent. Thus, a description retaining

this history dependence is crucial for quantifying energy conversion into non-LTE

internal moments.

Our results reveal that the standard treatment of energy conversion in Eq. (6.1)

needs to be expanded to accurately describe energy conservation when not in LTE.

Since Eq. (6.1) is equivalent to the first law of thermodynamics, we argue Eq. (6.10)

is its kinetic theory generalization, which we dub “the first law of kinetic theory”.

A flow chart depicting energy conversion in non-LTE systems is in Fig. 6.3.

Black arrows denote energy conversion contained in thermodynamics, namely con-

version between heat, work, and internal energy, plus collisions. Red arrows are

for relative energy and heat associated with non-LTE internal moments of f�. The

dashed light blue arrow denotes coupling between relative energy and thermody-

namic heat through the vector heat flux density and Pi-D.

We expect the results to be useful when f� is reliably measured, such as PIC

and Vlasov/Boltzmann plasma simulations and satellite observations (Burch et al.,

2016a; Pollock et al., 2016). Satellites measure f� with spatio-temporal resolution

su�cient to take gradients (Shuster et al., 2019, 2021) and compute kinetic entropy

(Argall et al., 2022). The theory may advance e↵orts using machine learning to

parametrize kinetic corrections to transport terms in fluid models (Laperre et al.,

2022). Generalizations of the present result may be useful beyond plasma physics,

such as many body astrophysics (Aarseth & Aarseth, 2003), micro- and nano-fluidics

(Karplus & Petsko, 1990; Schaller, 2014), and quantum entanglement (Floerchinger

& Haas, 2020).
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There are limitations of the present work. Each restriction to the theory before

Eq. (6.2) could be relaxed. Relative energy describes energy conversion associated

with all non-LTE internal moments, but does not identify which of the individual

non-LTE internal moments contribute; it would be interesting to address this in

future work, likely in context of recent theories of the velocity space cascade (Servidio

et al., 2017) and/or Casimir invariants (Zhdankin, 2022a). There are settings for

which f�M is not the appropriate reference for f� (Lynden-Bell, 1967; Livadiotis,

2018); Ref. (Eu, 1995) employs a more general reference f� than we use here; it

would be interesting to generalize the results for more general plasma-relevant forms.

6.5 Supplemental Material for Quantifying Energy Conversion in

Higher Order Phase Space Density Moments in Plasmas

6.5.1 Derivation of Kinetic Entropy Evolution Equation

The evolution equation for the kinetic entropy density s� defined in Eq. (6.2)

is obtained by taking its partial time derivative and eliminating @f�/@t using the

Boltzmann equation (Boltzmann, 1872),

@f�

@t
+ v · rf� +

F�

m�
· rvf� = C[f ], (6.11)

where F� is the sum of any body forces, rv is the velocity space gradient operator,

and C[f ] is the inter- and intra-species collision operator, yielding (Eu, 1995; Jou

186



et al., 2010; Eyink, 2018)

@s�

@t
+ r · J � = ṡ�,coll, (6.12)

where J � is the kinetic entropy density flux

J � = �kB

Z
vf� ln

✓
f��3

r��3
v�

N�

◆
d
3
v (6.13)

and ṡ�,coll is the local time rate of change of kinetic entropy density through collisions,

ṡ�,coll = �kB

Z
C[f ] ln

✓
f��3

r��3
v�

N�

◆
d
3
v. (6.14)

Note, there is no term containing body forces such as the electric and magnetic forces

in Eq. (6.12) because the force term in Eq. (6.11) identically vanishes in deriving

Eq. (6.12). An equivalent form of Eq. (6.12) comes from writing v = u� + v0
� in

Eq. (6.13), which implies J � = s�u� + J �,th, where the thermal kinetic entropy

density flux J �,th is defined as

J �,th = �kB

Z
v0
�f� ln

✓
f��3

r��3
v�

N�

◆
d
3
v. (6.15)

Then, Eq. (6.12) becomes (Jou et al., 2010)

@s�

@t
+ r · (s�u� +J �,th) = ṡ�,coll. (6.16)

This equation is in the stationary (Eulerian) reference frame.
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Here, we manipulate Eq. (6.16) to derive an evolution equation for kinetic

entropy per particle s�/n� in a comoving (Lagrangian) frame [Eq. (6.3)]. Using the

convective derivative d/dt = @/@t + u� · r and dividing Eq. (6.16) by the density

n� gives

1

n�

ds�

dt
+

s�

n�
(r · u�) +

r · J �,th

n�
=

ṡ�,coll

n�
. (6.17)

Using the continuity equation dn�/dt = �n�r · u� (since N� is assumed constant),

we get

1

n�

ds�

dt
� s�

n2
�

dn�

dt
+

r · J �,th

n�
=

ṡ�,coll

n�
. (6.18)

Finally, the two terms on the left are equal to d(s�/n�)/dt, which completes the

derivation of Eq. (6.3).

We conclude this section with two important notes. First, Eq. (6.2) is the

“Boltzmann” form of kinetic entropy density s�. For collisionless systems, any

function of f� is conserved, so other entropies could be defined (Zhdankin, 2022a).

We choose the Boltzmann entropy because it reduces to the ideal fluid entropy

density for a system in LTE and, for collisional systems, the total Boltzmann entropy

S� =
R
s�d

3
r obeys an H-theorem (S� is non-decreasing in time) for a reasonably

defined collision operator (Boltzmann, 1877). Neither need be the case for other

entropies. The present analysis may be redone for other entropies for future work.

Second, the approach we use remains valid even if there is an entropy source

in the Boltzmann equation beyond collisions, such as due to boundaries of a finite

domain. Such sources can lead to non-conservation of total kinetic entropy S� =

R
s�d

3
r even in collisionless systems (Grandy, 2004), but s� is local in space and
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time and therefore remains well-defined.

6.5.2 Derivation of Generalized Work Term

Here, we derive Eq. (6.5a). Dividing both sides of Eq. (6.4a) by n� and taking

its total time derivative gives

d

dt

✓
s�p

n�

◆
= �kB

n�

dn�

dt
. (6.19)

A brief derivation reveals this is equivalent to

d

dt

✓
s�p

n�

◆
= kBn�

d(1/n�)

dt
. (6.20)

Defining V� = 1/n� as the volume per particle, and using P� = n�kBT�, the previous

equation is equivalent to

d

dt

✓
s�p

n�

◆
=

1

T�

dW�

dt
, (6.21)

where dW� = P�dV� = P�d(1/n�) is the non-LTE generalization of the work per

particle done by the system.

To physically interpret this, note s�p is associated with the number of per-

mutations of particles in position space that produce the same macrostate without

concern for their velocity (Liang et al., 2019). The argument of the natural log-

arithm in s�p/n� = �kB ln(n��3
r�/N�) is always between 0 and 1, so s�p/n� is

non-negative and is a strictly decreasing function of n�. Thus, local compression

(dW� = P�dV� < 0) increases n� and decreases s�p/n� [i.e., d(s�p/n�)/dt < 0],
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while local expansion (dW� = P�dV� > 0) decreases n� and increases s�p/n� [i.e.,

d(s�p/n)/dt > 0].

6.5.3 Derivation of Generalized Energy Term

We next derive Eq. (6.5b). We decompose the velocity space kinetic entropy

density s�v in Eq. (6.4b) as s�v = s�v,Ē + s�v,rel, where

s�v,Ē = �kB

Z
f� ln

✓
f�M�3

v�

n�

◆
d
3
v, (6.22)

s�v,rel = �kB

Z
f� ln

✓
f�

f�M

◆
d
3
v, (6.23)

where f�M is the Maxwellianized distribution of f� defined in Eq. (6.8). The relative

entropy is related to the Kullback-Leibler divergence (Kullback & Leibler, 1951) from

information theory which is a measure of the statistical di↵erence between a two

probability distributions, and has been extensively used in a variety of fields, such

as statistical mechanics, applied mathematics, chemistry, biology, quantum infor-

mation theory, and economics (Jaynes, 1963; Grad, 1965; Diperna, 1979; Dafermos,

1979; Eu, 1995; Vedral, 2002; Robertson et al., 2005; Tzavaras, 2005; Shell, 2008;

Berthelin et al., 2009; Baez & Pollard, 2016). Substituting Eq. (6.8) into Eq. (6.22)

and carrying out straight-forward manipulations gives

s�v,Ē

n�
=

3

2
kB


1 + ln

✓
2⇡kBT�

m�(�3v�)2/3

◆�
. (6.24)
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Its Lagrangian time derivative immediately gives

d

dt

✓
s�v,Ē

n�

◆
=

1

T�

dĒ�,int

dt
, (6.25)

where dĒ�,int = (3/2)kBdT� is the increment in internal energy per particle. This

reproduces Eq. (6.5b). Thus, d(s�v,Ē/n�)/dt > 0 implies the e↵ective tempera-

ture increases, while d(s�v,Ē/n�)/dt < 0 implies the e↵ective temperature decreases.

Physically, s�v is associated with the number of permutations of particles of di↵er-

ent velocities in a given position in phase space that produces the same macrostate

(Liang et al., 2019).

6.5.4 Derivation of Generalized Heat Term

We now derive Eq. (6.5c). We find it is advantageous to decompose r · J �,th

using Eq. (6.15) as

r · J �,th = (r · J �,th)W + (r · J �,th)Ē + (r · J �,th)rel, (6.26)

where

(r · J �,th)W = �kB

Z
(f�v

0
�) ·

r

ln

✓
f��3

r��3
v�

N�

◆�
d
3
v, (6.27a)

(r · J �,th)Ē = �kB

Z h
r · (v�

0
f�)
i

ln

✓
f�M�3

r��3
v�

N�

◆
d
3
v, (6.27b)
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and (r · J �,th)rel is defined in Eq. (6.7). The latter has equivalent forms of

(r · J �,th)rel = �r · (u�s�v,rel)

�kB

Z
r · (vf�) ln

✓
f�

f�M

◆
d
3
v,

= �s�v,rel(r · u�)

�kB

Z
(v0

� · rf�) ln

✓
f�

f�M

◆
d
3
v,

which may be useful in applications depending on which quantities are easiest to

measure in a given system.

We first treat (r · J �,th)W/n�. The gradient of the term in brackets in

Eq. (6.27a) is (1/f�)rf�. Using v0
� = v � u�, straight-forward manipulations give

(r · J �,th)W
n�

= �kBr · u� = �kBn�
d(1/n�)

dt
, (6.28)

where we use the continuity equation to eliminate r · u�. Therefore, this term

describes the non-LTE generalization of heating associated with compression or

expansion, with the same form as d(s�p/n�)/dt in Eq. (6.20) but with the opposite

sign. This motivates our use of the W subscript.

Turning to (r · J �,th)Ē/n�, we use Eq. (8) to write Eq. (6.27b) as

(r · J �,th)Ē
n�

= �kB

n�

Z
r · (v0

�f�)
(
ln

"✓
n��3

r��3
v�

N�

◆✓
m�

2⇡kBT�

◆3/2
#

� m�v
02
�

2kBT�

)
d
3
v.
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The term in square brackets is independent of v and hence comes out of the integral,

and the remaining part of that integral is
R

r · (v0
�f�)d

3
v = 0. Manipulations of the

remaining term after integration by parts gives

(r · J �,th)Ē
n�

=
r · (q�/T�)

n�
�

m�

2n�

Z
f�v

0
� ·

rv

02
�

T�
� v

02
� rT�

T 2
�

�
d
3
v, (6.29)

where q� is the vector heat flux density defined after Eq. (6.1). Using index notation

and the Einstein summation convention,

v0
� · rv

02
� = v

0
�j

@(v0�kv
0
�k)

@rj
= 2v0�jv

0
�k

@v
0
�k

@rj
= �2v0�jv

0
�k

@u�k

@rj
,

where we use @v0�k/@rj = @(vk�u�k)/@rj = �@u�k/@rj in the last equality. Carrying

out the remaining integrals and simplifying gives

(r · J �,th)Ē
n�

=
r · q�

n�T�
+

(P� · r) · u�

n�T�
. (6.30)

Comparing the right hand side of Eq. (6.30) with Eq. (6.1), we see both terms

appear directly in the internal energy equation with the opposite sign, motivating

the choice of the subscript Ē . This term describes heat per particle that changes

only the e↵ective temperature. A negative value of (r ·J �,th)Ē/n� drives increasing

T�, and a positive value drives decreasing T�.
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A consequence of Eq. (6.28) is that (r · J �,th)W/n� = �(P�/n�T�)r · u�, so

(r · J �,th)W
n�

+
(r · J �,th)Ē

n�
=

r · q�

n�T�
+

⇧�,jkD�,jk

n�T�

= � 1

T�

dQ�

dt
, (6.31)

where we use the known decomposition (P� · r) · u� = P�(r · u�) + ⇧�,jkD�,jk,

with ⇧�,jk = P�,jk � P��jk being elements of the deviatoric pressure tensor ⇧,

D�,jk = (1/2)(@u�j/@rk+@u�k/@rj)�(1/3)�jk(r·u�) being elements of the traceless

symmetric strain rate tensorD, and �jk being the Kroenecker delta (Jou et al., 2010;

Yang et al., 2017b). This derivation provides the expression given in Eq. (6.5c).

6.5.5 Derivation of Relative Energy Per Particle Rate for a Bi-

Maxwellian Plasma

Here we derive the rate of relative energy per particle change dĒ�,rel/dt for a

bi-Maxwellian initial phase space density. Consider a purely collisionless system in

which the initial f� is bi-Maxwellian with a converging bulk flow u(r, t). We define

z as the parallel direction k, x and y as perpendicular ? directions, and T? and

Tk as the uniform temperatures in the ? and k directions. The initial phase space

density is

fbiM = n

✓
m

2⇡kBT?

◆✓
m

2⇡kBTk

◆1/2

e
�m[(vx�ux)2+(vy�uy)2]/2kBT?e

�m(vz�uz)2/2kBTk , (6.32)
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where n is the initial number density and the constituent mass ism. The Maxwellian-

ized distribution for this system has the form of Eq. (6.8) with e↵ective temperature

T = (2T? + Tk)/3. Then,

ln

✓
fbiM

fM

◆
= ln

 
T 3/2

T?T
1/2
k

!
�

m(v02x + v
02
y )

2kB


Tk � T?

T?(2T? + Tk)

�

�mv
02
z

2kB


2(T? � Tk)

Tk(2T? + Tk)

�
,

and a straight-forward derivation using Eq. (6.6) yields

sv,rel

n
= �3

2
kB ln

"
2

3

✓
T?

Tk

◆1/3

+
1

3

✓
Tk

T?

◆2/3
#
. (6.33)

The Lagrangian time derivative of this equation, after some algebra, gives

d

dt

⇣
sv,rel

n

⌘
= kB

✓
Tk � T?

2T? + Tk

◆✓
1

T?

dT?

dt
� 1

Tk

dTk

dt

◆
. (6.34)

The thermal evolution equations in a collisionless gyrotropic system, which follow

directly from the second parallel and perpendicular moments of the collisionless

Boltzmann equation, are written in terms of parallel and perpendicular pressures as

(Chew et al., 1956; Hesse & Birn, 1992)

dPk

dt
+ Pkr · u+ 2Pk [ẑ (ẑ · r)] · u = 0, (6.35a)

dP?

dt
+ 2P?r · u � P? [ẑ (ẑ · r)] · u = 0, (6.35b)

195



where P? = nkBT? and Pk = nkBTk. Substituting these into Eq. (6.34) gives

d

dt

⇣
sv,rel

n

⌘
= kB

✓
Tk � T?

2T? + Tk

◆✓
�r? · u? + 2

@uz

@z

◆
, (6.36)

where u? = u � ẑuz. Finally, using Eq. (9a) to relate this to dĒ�,rel/dt gives

dĒ�,rel

dt
=

1

3
kB(Tk � T?)

✓
�r? · u? + 2

@uz

@z

◆
. (6.37)

To interpret this result physically, suppose Tk > T?. First consider a bulk flow

profile u = u? that is isotropically converging in the xy plane. Compression leads

to heating, but only in the perpendicular direction (Cassak & Barbhuiya, 2022).

Thus, f� becomes more Maxwellian. From Eq. (6.37), both Tk � T? and the bulk

velocity term are positive, so dĒ�,rel/dt > 0, consistent with energy going into higher

order moments making f� more Maxwellian. Now consider converging bulk flow in

the z direction. The compression heats the distribution in the parallel direction,

so f� becomes more elongated in the parallel direction, i.e., less Maxwellian. From

Eq. (6.37), Tk�T? is positive but the bulk velocity term is negative, so this evolution

away from Maxwellianity is consistent with dĒ�,rel/dt being negative. This exam-

ple illustrates general features: dĒ�,rel/dt > 0 is associated with energy conversion

making higher moments of f� evolve to become more Maxwellian, and vice-versa.
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6.5.6 Numerical Simulation Methodology

Details of the simulation in addition to what follows are available in Ref. (Barb-

huiya & Cassak, 2022). We use the massively parallel particle-in-cell code p3d

(Zeiler et al., 2002) to perform simulations that are 3D in velocity-space and 2.5D

in position-space. Periodic boundary conditions are used in both spatial directions.

The code uses the relativistic Boris particle stepper (Birdsall & Langdon, 1991) for

stepping particles forward in time, while the trapezoidal leapfrog method (Guzdar

et al., 1993) is utilized for stepping electromagnetic fields forward in time. The fields

have a time-step half of that of the particles. The multigrid method (Trottenberg

et al., 2000) is used to clean the electric field E to enforce Poisson’s equation every

10 particle time-steps.

Simulation results are presented in normalized units. The reference magnetic

field B0 is the initial asymptotic magnetic field strength. The reference number den-

sity n0 is the peak current sheet number density minus the asymptotic background

number density. Length scales are normalized to the ion inertial scale di0 = c/!pi0,

where !pi0 = (4⇡n0q
2
i /mi)1/2 is the ion plasma frequency (in cgs units), qi is the ion

charge, mi is the ion mass, and c is the speed of light. Velocities are normalized to

the Alfvén speed cA0 = B0/(4⇡min0)1/2. Times are normalized to the inverse ion cy-

clotron frequency ⌦�1
ci0 = (qiB0/mic)�1. Temperatures are normalized to mic

2
A0/kB.

Current densities are normalized to cB0/4⇡di0. Reduced phase space densities, with

one velocity dimension integrated out, are normalized to n0/c
2
A0. Energy per particle

conversion rates are given in units of ⌦ci0B
2
0/4⇡n0.
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The initial condition has two oppositely directed current sheets with drifting

Maxwellian initial distributions. The magnetic field profile is a double tanh with no

initial out-of-plane (guide) magnetic field. The current sheet thickness is w0 = 0.5,

the background density is nup = 0.2, and the electron and ion temperatures are

1/12 and 5/12, respectively. A magnetic perturbation of amplitude 0.05 seeds an

X-line/O-line pair in each of the two current sheets. The simulation system size is

Lx⇥Ly = 12.8⇥6.4, where x and y are the outflow and inflow directions, respectively.

The speed of light c is 15 and the electron-to-ion mass ratio is me/mi = 0.04. There

are 1024 ⇥ 512 grid cells initialized with 25,600 weighted particles per grid (PPG),

which is chosen to be very large to decrease particle noise. The grid-length � in

both directions is 0.0125, which is smaller than the smallest length scale which is

the electron Debye length of 0.0176. The time-step �t is 0.001, which is smaller

than the smallest time scale which is the inverse of electron plasma frequency of

0.012. Our choice of these numerical parameters results in a total energy increase

by only 0.026% by t = 14. (Note that this number was erroneously given as 0.022 %

in Cassak et al. (2023).)

All plots display data from only the lower current sheet at time t = 13, when

the rate of reconnection is increasing most rapidly in time. To reduce PIC noise

for all quantities plotted other than phase space densities, the raw quantities are

recursively smoothed four times over a width of four cells, then any temporal or spa-

tial derivatives are carried out, and then the results are again smoothed recursively

four times over four cells. For temporal derivatives, the presented data is calculated

from a finite di↵erence between t = 12 and 14 (on ion cyclotron time scales). The
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results are compared to those obtained from a finite di↵erence between t = 12.96

and 13.04 (electron time scales), and the results are found to di↵er by less than 5%;

this change is deemed inconsequential for the present purposes.

Kinetic entropy is calculated in the simulations employing the implementation

from Ref. (Argall et al., 2022). Optimization of the velocity-space grid (Liang et al.,

2020b) is done by checking the agreement between the kinetic entropy density for

electrons se calculated by the simulation for various �ve and the theoretical value at

t = 0. We find an optimal �ve of 1.33 which leads to an initial agreement to within

±1% in the upstream region and ±3% at the center of the current sheet. For plots

of reduced electron phase space densities, we use a domain of size 0.0625 ⇥ 0.0625

centered at the location of interest. Particles are binned with a velocity space bin

of size 0.1 in all velocity directions.

6.5.7 Additional Comments on the Relation to Previous Work

Here, we put our result in context of previous work on related topics.

• Energy Conversion in �f� Kinetic Theory and Gyrokinetics: We

first compare the present work with previous work on energy conversion in

linearized kinetic theory and gyrokinetics (Hallatschek, 2004; Howes et al.,

2006; Schekochihin et al., 2009; Tatsuno et al., 2009). Consider a linear ex-

pansion of the phase space density about its Maxwellianized distribution, so

that f� = f�M + �f�, and �f� ⌧ f�M . A straight-forward calculation using
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Eq. (6.23) reveals that the linearized relative entropy �s�v,rel is

�s�v,rel ' �kB

Z
(�f�)2

2f�M
d
3
v. (6.38)

Here, we assume that
R
d
3
v�f = �(

R
d
3
vf) = �n = 0 which is true because

f�M is the Maxwellianized distribution of f� and thus, by definition, has the

density identical to the density associated with f�. This assumption need not

be true if the perturbation changes n, u� or T� from the equilibrium. In linear

theory, the density and temperature in f�M are their equilibrium values, which

we call n�0 and T�0, respectively. Then, the linearized equation describing the

relative energy increment using Eq. 6.9a) is

dĒ�,rel

dt
' T�0

d(s�v,rel/n�0)

dt
. (6.39)

Since the equilibrium temperature does not change to low order in linear the-

ory, n�0 and T�0 are constant in time, so integrating Eq. (6.39) in time gives

�Ē�,rel ' T�0

n�0
�s�v,rel

' �kBT�0

n�0

Z
(�f�)2

2f�M
d
3
v, (6.40)

where we use Eq. (6.38).

In comparison, the free energy in a �f� linearized thermodynamic approach
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(Hallatschek, 2004) [int in their Eq. (7)] was derived to be

int = kBT0

Z
(�f)2

2f�M
d
3
v (6.41)

and in a gyrokinetic analysis of energy conversion (Howes et al., 2006; Schekochi-

hin et al., 2009), the comparable term from the free energy {the first term of

W in Eq. (74) from Ref. (Schekochihin et al., 2009)} is

W =

Z
d
3
r

X

�

Z
kBT0�

(�f)2

2f�M
d
3
v. (6.42)

Clearly, the linearized relative energy per particle �Ē�,rel in Eq. (6.40) is re-

lated to the free energy in the �f� thermodynamic and the gyrokinetic ap-

proaches when the aforementioned assumptions hold true. In particular, int =

�n�0�Ē�,rel and W = �
R
d
3
r
P

� n�0�Ē�,rel. [Note, the relative entropy term

di↵ers from the nonlinear term used in Ref. (Cerri et al., 2018) that reproduces

Eq. (6.41) when linearized; theirs is related to M̄KP rather than the relative

energy term.] The sign di↵erence is a result of �Ē�,rel measuring the energy go-

ing into the random energy of the particles, while int and W describe energy

going into the bulk flow energy and magnetic fields from the particles. Thus,

the present work is consistent with previous work, and generalizes these linear

approaches for phase space densities when changes to its lowest moments can

be dropped.

• Previous Schematics of Energy Conversion: We now put the sketch of
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energy conversion in Fig. 3 in the context of previous sketches about energy

conversion in plasmas. It is similar to Fig. 1 in Ref. (Yang et al., 2017b),

except theirs is averaged over a closed or periodic domain so the heat flux

does not contribute, theirs includes conversion into bulk kinetic energy and

electromagnetic energy which are omitted from the present treatment for sim-

plicity, and ours includes collisions. The key di↵erence is the additional energy

conversion channel associated with relative energy and heat that arise from

our analysis as another possible energy conversion channel.

Another related sketch is Fig. 4 in Ref. (Howes et al., 2018), which describes

energy conversion in weakly collisional turbulent plasmas. There, electromag-

netic fields play a key role in converting energy to non-thermal (non-LTE) en-

ergy in the plasma, which ultimately produce irreversible dissipation through

the collisions. The present work treats only internal moments of the phase

space density, which formally has only indirect input from body forces [which,

for example, do not appear in Eq. (6.1)]. Thus, our result is in many ways

complementary to the research done on the field-particle correlation (Klein

& Howes, 2016). It would be interesting and important to unite the two ap-

proaches in future work.

• The Velocity Space Cascade and Hermite Expansions of f�: An im-

portant approach that has previously been used to study non-LTE energy

conversion is to take a local phase space density and expand the velocity

space part in Hermite polynomials (Servidio et al., 2017; Pezzi et al., 2018,
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2019). The coe�cients in the expansion provide information about how non-

Maxwellian the system is at that location in space and time. In a weakly

collisional or collisionless system, many phase space densities develop sharp

structures in velocity space, which shows up as a cascade of power into the

higher order coe�cients in the expansion.

It would be tempting to associate the power in non-LTE modes, called the

enstrophy in Ref. (Servidio et al., 2017), with the relative energy per particle

in the present analysis, but this association is not possible. The reason is that

the enstrophy is a local quantity that can be calculated for any phase space

density, but the relative energy per particle is history dependent, so only

changes to it can be uniquely determined from the local phase space density

at a particular time. A phase space density becoming more non-Maxwellian

has an increase in enstrophy, while it corresponds to a decrease in the relative

energy per particle because the Maxwellian is the maximum entropy state.

While associating the two approaches in this manner is therefore not possible,

we do believe there are links between the two approaches which will be pursued

in future studies.

• Energy Conversion Using Other Entropies: Recent work quantified

non-LTE e↵ects using non-Boltzmann entropies for collisionless plasmas (Zh-

dankin, 2022a,b). In Ref. (Zhdankin, 2022a), energy conversion was parametrized

by moments of integer powers of f�, which are invariants in collisionless sys-

tems. In Ref. (Zhdankin, 2022b), it was shown that power law entropies are
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well-suited for describing power law tails during non-thermal particle acceler-

ation. As pointed out there, these terms provide information about the shape

of the phase space density, so there are some similarities about the aims of the

two studies despite their di↵erent approaches.

The formulation here using the Boltzmann entropy is related to these invari-

ants, as an expansion of the natural logarithm in powers of f� inside the kinetic

entropy density s� = �kB

R
f� ln(f��3

r��3
v�/N�)d3v yields integrals over all

integer powers of f�, as done in Ref. (Zhdankin, 2022a). Consequently, the

form derived here based on Boltzmann entropy without expanding the natu-

ral logarithm automatically contains the information about all of the power

law invariants for collisionless systems. Ref. (Zhdankin, 2022a) is important

for identifying how the energy is contained in di↵erent individual invariants,

which is not possible in the present formulation. However, our results can

readily be used for collisional systems even though powers of f� are no longer

invariants.

• Extended Irreversible Thermodynamics (EIT): EIT begins with the

kinetic entropy evolution equation [Eq. (6.12)] and employs a perturbative

expansion of f�, and the terms of higher order represent corrections to the

first law of thermodynamics. This is very important because the corrections

are in terms of fluid moments of f�, so a direct measurement of f� is not

necessary. The advantage of the present analysis is that all internal moments

are retained, so there is no need to be near LTE.
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We also point out that the phase space density f� inside the natural loga-

rithm in the general expression for J �,th [Eq. (6.15)] is expanded about the

Maxwellianized distribution f�M in EIT. The lowest order term in this expan-

sion is (Jou et al., 2010)

J �,q = �kB

Z
v0
�f� ln

✓
f�M�3

r��3
v�

N�

◆
d
3
v. (6.43)

A brief derivation using Eq. (6.8) reveals that J �,q = q�/T�. In the present

Chapter, instead of decomposing f� inside J �,th, we decompose f� inside r ·

J �,th as Eq. (6.26). The di↵erence here is that J �,q = q�/T� from Eq. (6.43),

so r ·J �,q contains both a (r ·q�)/T� term and a �(q� ·rT�)/T 2
� term. The

latter term is included as an entropy source term in the fluid form of EIT (Jou

et al., 2010). Eq. (6.30) reveals that �(q� · rT�)/T 2
� vanishes exactly when

all orders of non-LTE terms are retained so that it should not be retained.

• Quantum Statistical Mechanics: There are similarities and di↵erences

of our results with a recent independent analysis showing that the quan-

tum first law of thermodynamics can be obtained from the quantum rela-

tive entropy (Floerchinger & Haas, 2020). In the classical limit, the den-

sity matrix ⇢ is analogous to the distribution function f�/n� (Sakurai, 1994).

The maximally mixed state �m, which has the highest entropy, is analo-

gous to the Maxwellianized distribution function f�M/n�. The von Neu-

mann entropy S(⇢) = �tr[⇢ ln ⇢] (Von Neumann, 1927) is decomposed as

S(⇢) = Scross(⇢) � Srel(⇢), where Scross(⇢) = �tr[⇢ ln �m] is the cross-entropy
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and Srel = tr[⇢ ln ⇢� ⇢ ln �m] = �S(⇢) + Scross(⇢) is the relative entropy (Flo-

erchinger & Haas, 2020). This is similar to the decomposition done here for

the velocity space kinetic entropy per particle, so Scross(⇢) is analogous to

s�v,Ē/n� [Eq. (6.22)] and Srel(⇢) is analogous to �s�v,rel/n� [Eq. (6.6)]. In

Ref. (Floerchinger & Haas, 2020), the volume of the system was kept fixed for

simplicity, so there was no term analogous to the position space entropy term

in our analysis. Including this term, which gives rise to work in the classi-

cal case, is very straight-forward; indeed, it appears automatically when the

phase space density f� is employed instead of the distribution function f�/n�.

Undoubtedly the quantum statistical mechanical approach can be generalized

to include work done on the system using open quantum mechanics (Lidar,

2020).

For the classical case presented here, the physical interpretation of the terms

are able to be clearly ascertained. This allows us to help elucidate the physical

interpretation of the terms in the quantum statistical mechanics treatment

(Floerchinger & Haas, 2020). The time rate of change of the relative quantum

entropy is a measure of whether a system is evolving towards or away from

the maximally mixed state and the rate at which it does so. Scaling it by the

temperature of the state described by �m gives the time rate of change in the

energy associated with non-equilibrium terms.
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Chapter 7

Conclusion

7.1 Summary and discussion

In this dissertation, we discussed the non-LTE generalization of the first law

of thermodynamics, otherwise known as the time evolution equation of e↵ective

temperature (Braginskii, 1965; Jou et al., 2010; Yang et al., 2017a). We motivated

that this equation generalizes first law of thermodynamics for applications to plasma

systems inherently out of local thermodynamic equilibrium (LTE), yet it remains

incomplete. This is so because it ignores energy associated with cross terms of

peculiar (or random/thermal) velocity, i.e.,
R
d
3
vfmv

0
jv

0
k where j 6= k. Thus, while

random energy associated with j = k, i.e., internal (thermal) energy, is considered

by the non-LTE generalization of the first law, other random energies are not. We

also discussed in Chapter 1 how one such ubiquitous plasma phenomenon called

magnetic reconnection can be inherently in non-LTE, thus making the examination

of its energetics challenging. We motivated our choice of studying energy conversion

in reconnection where non-Maxwellian velocity distribution functions are routinely

observed (Egedal et al., 2013; Bessho et al., 2014; Shuster et al., 2014, 2015; Egedal

et al., 2016; Barbhuiya et al., 2022; Torbert et al., 2018; Nakamura et al., 2018,

2019; Egedal et al., 2019). The presence of non-Maxwellianity, which by definition

indicates not being in LTE, has been used for analyzing reconnection and turbulence
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(Pezzi et al., 2021).

In spite of the past few years of rigorous work around examining the pressure-

strain interaction which facilitates conversion between kinetic and thermal energy

densities and its decomposition into pressure dilatation (which is associated with

compression and expansion) and Pi � D (which is associated with incompressible

heating (Del Sarto & Pegoraro, 2018) and that has been called collisionless viscos-

ity (Yang et al., 2017a)), a kinetic understanding of these terms has been missing.

As we motivated, a kinetic picture is required for a fundamental understanding of

energy conversion in plasma systems that are not in LTE since non-Maxwellian

distributions lead to non-zero Pi � D which act as part of heat per particle in the

non-LTE generalization of the first law of thermodynamics. In Chapter 3, we pro-

pose an alternate decomposition of the pressure-strain interaction into the PDU and

Pi � Dshear terms, that capture converging/diverging flow and flow shear physics, re-

spectively. We also show that the PDU term is a valid generalization of dilatation

for systems not in local thermodynamic equilibrium (LTE). We provide a physical

understanding of the contributions to the pressure-strain interaction both from a

fluid and a kinetic perspective. We use these results to provide the underlying phys-

ical mechanisms that cause Pi � D to be non-zero, and also provide a new kinetic

theory interpretation for the normal deformation term, i.e. Pi � Dnormal. We also

show how converging flow, while contributing to a positive pressure-strain interac-

tion, can have a negative Pi � D for non-LTE systems. Depending on the situation,

both decompositions may provide valuable information about the system, in addi-

tion to a third decomposition where we write pressure-strain interaction as the sum
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of the pressure dilatation, Pi � Dnormal, and Pi � Dshear. Moreover, as Pi � D itself

can be decomposed into two terms that denote di↵erent physics, there is no way to

unambiguously identify the key physical processes at play from the sign of Pi � D

alone. In Chapter 4, by using magnetic field-aligned coordinates to decompose the

pressure-strain interaction , we find that there exist contributions from compres-

sion/expansion and bulk flow shear, as we expect. However, there are contributions

from velocity compression and shear caused by the geometry imposed by the path

of the magnetic field line. The magnetic field itself and magnetic forces do not cause

the pressure-strain interaction to be non-zero (Del Sarto et al., 2016), but the flow

pattern relative to the magnetic fields lead to these geometrical compression and

shear e↵ects. These are parametrized in terms of the magnetic field curvature 

and torsion ⌧ , where the latter is a measure of how much the local magnetic field

is 3-D. As with Chapter 3, we start with providing a picture of the physical e↵ects

contributing to the pressure-strain interaction using the kinetic theory description

for each of the sets of terms �PS1 through �PS8 that arise from the analysis. The

physical mechanism of the parallel and perpendicular compression/expansion �PS1

and �PS2, and the shear in the bulk flow �PS3,�PS4,a, and �PS4,b are anal-

ogous to compression/expansion and bulk velocity shear in Cartesian coordinates

(Del Sarto & Pegoraro, 2018; Cassak & Barbhuiya, 2022). From a kinetic perspec-

tive, we find that the mixing of particles and the pressure-strain interaction is caused

by the particle random motion in the direction perpendicular to the flow in �PS5

through �PS8. Since �(P · r) · u is a scalar quantity, it is invariant in di↵erent

coordinate systems and should be the same whether it is calculated in Cartesian co-
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ordinates (Chapter 3) or field-aligned coordinates (Chapter 4). However, we observe

mixing between compression/expansion and flow shear when changing coordinate

systems. In magnetized plasmas where particles become demagnetized and the di-

rection of the magnetic field no longer organizes the dynamics (Servidio et al., 2012;

Burch et al., 2016b; Egedal et al., 2018), caution is necessary to not assume the

magnetic field direction is necessarily the direction that best organizes a general

pressure tensor. The decomposition in field-aligned coordinates presented in Chap-

ter 4 is general because there is nothing special about b̂ and it can be some other

preferred direction determined by a particular plasma system. This furthers the key

point that the magnetic field and magnetic forces themselves do not give rise to the

pressure-strain interaction, it is only the bulk flow gradients relative to the geometry

set up by the magnetic field that gives rise to the pressure-strain interaction.

In Chapter 5, we employ the newly formulated decompositions of the pressure-

strain interaction to calculate the two formulations in Cartesian coordinates and

all eight terms in magnetic field-aligned coordinates in and around the electron

di↵usion region (EDR) of a 2-D antiparallel symmetric reconnection simulation us-

ing the particle-in-cell code p3d. We first demonstrate how to use the results of

Chapters 3 and 4 to analyze a reconnecting system. In so doing, we plot the de-

composition of the pressure-strain interaction in terms of the pressure dilatation

and Pi � D (compressible and incompressible contributions, respectively), and com-

pare it to the decomposition from Chapter 3 with PDU and Pi � Dshear terms (flow

convergence/divergence and flow shear, respectively). We find their structure is no-

ticeably di↵erent and they each have their merits in isolating particular physical
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e↵ects. For the present study of reconnection, we find that a number of features

of the most prominent contributions to the pressure-strain interaction are better

isolated by employing PDU and Pi � Dshear, and significant insights are gained by

using the two decompositions in tandem. We similarly calculate the decomposition

of pressure-strain interaction in magnetic field-aligned coordinates. As desired, this

decomposition facilitates a physical interpretation of the mechanisms for heating

relative to the ambient magnetic field, and allows for quantitative estimates of the

energy density conversion rate from scaling analyses. We summarize the result of

thorough analysis of determining the largest contributions to pressure-strain inter-

action, which in turn contributes to changing the thermal energy density, by a map

in Fig. 5.7. Figure 5.7 illustrates the region surrounding the EDR, where various

physically distinct e↵ects play significant roles in the simulations at t = 13. This

particular time represents a phase where reconnection is occurring at its most rapid

rate. The figure demonstrates how these e↵ects contribute to the generation of pos-

itive or negative pressure-strain interaction. We find that the underlying physics of

the dominant term match with known reconnection physics. �PS2 causes positive

pressure-strain interaction at the upstream edges of the EDR in the inflow regions

due to perpendicular compression as the electron inflow slows down. �PS1 causes

positive pressure-strain interaction at the upstream edge of the EDR out to the sep-

aratrices due to parallel compression as the inflow of electrons slows down as they

approach the EDR. �PS2 causes negative pressure-strain interaction at and in the

near vicinity of the X-line because electrons experience expansion as they are ac-

celerated in the outflow direction. �PS5 causes positive pressure-strain interaction
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at the downstream edge of the EDR due to perpendicular geometrical compres-

sion since the outflow has a component in the direction of the magnetic curvature.

�PS1 causes negative pressure-strain interaction in the downstream region due to

the expansion of the parallel flow, which is presumably associated with the outflow

jets being redirected in the vertical direction and speeding up while the separatrix

opens out during the onset phase. We find a key result here that leads to obtain-

ing an expected scale of pressure-strain interaction in the EDR during magnetic

reconnection. A simple scaling analysis reveals that the natural scale that describes

heating via the pressure-strain interaction in an anti-parallel reconnection EDR is

±Pe,upcAe,up/(1 � 5de) = (0.2 � 1)Pe,up⌦ce,up during the steady-state reconnection

phase. Here, Pe,up is the electron pressure upstream of the di↵usion region, cAe,up

is the bulk flow velocity that scales with the electron Alfvén speed based on the

magnetic field Be,up at the upstream edge of the EDR, the gradient scale is either 1

or 5 de (depending on if the gradient is in the inflow or outflow direction), and finally

⌦ce,up = cAe,up/de is the electron cyclotron frequency based on Be,up. This predic-

tion should be useful for quantitative comparisons of the pressure-strain interaction

during magnetic reconnection in space and the laboratory. The present scaling pre-

dictions are in good agreement with the observations (Bandyopadhyay et al., 2021)

of a magnetosheath event by MMS (Wilder et al., 2018), both for the absolute scale

for electrons and ions, and for the ratio between the electron and ion heating rates.

In this dissertation, we also confirmed that the pressure-strain interaction remains

independent of the coordinate system employed through the simulations conducted.

In Chapter 6, we transition from examining physical processes that can change
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the second internal velocity moment, i.e., the internal (thermal) energy, to develop-

ing a first-principles theory of energy conversion associated with all the higher order

internal moments. We find that this theory is applicable to systems arbitrarily far

from LTE. Unlike what has been used previously, for a physical process that changes

both internal energy and higher order moments, this theory captures both and al-

lows each to be calculated separately. Since the theory contains all internal moments

of f�, it overcomes the closure problem. We, thus, dub Eq. (6.10) “the first law of

kinetic theory”, since it is has the same form as the first law of thermodynamics and

is its kinetic theory generalization. Using the same simulations employed in Chapter

5, we measure the relative energy term in 2D anti-parallel reconnection simulation

and find that there are regions where the change relative energy can be a significant

fraction of, or even greater than the change in internal energy. We expect the re-

sults to be readily useful in the study of plasma systems using Vlasov/Boltzmann

simulations and satellite observations (Burch et al., 2016a; Pollock et al., 2016).

Beyond plasma physics, we anticipate that the present analysis may be generalized

to be useful in other branches of sciences which utilize Boltzmann transport-type

equations, such as many body astrophysics (Aarseth & Aarseth, 2003), micro- and

nano-fluidics (Karplus & Petsko, 1990; Schaller, 2014), and quantum entanglement

(Floerchinger & Haas, 2020).
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7.2 Future work and concluding remarks

We investigate the pressure-strain interaction (and its various decompositions)

and while this term quantifies the conversion rate between bulk flow and thermal

energy densities, it is not the only quantity that is responsible for changes in thermal

energy density. Heat flux density, which does not contribute to changes in the net

thermal energy in a closed or isolated system (Yang et al., 2017b), can still locally

modify the thermal energy density (Du et al., 2020; Song et al., 2020). The influence

of heat flux density on thermal energy density is currently the subject of ongoing

research.

It is worth noting that the influence of collisions and body forces, such as elec-

tric, magnetic, or gravitational forces, directly a↵ects the bulk flow energy density

equation but not the pressure-strain interaction. The electromagnetic force, repre-

sented by qnu ·E for a species with charge q, or J ·E when summed over species �,

has received significant attention in studying the conversion between bulk flow en-

ergy and electromagnetic energy (Zenitani et al., 2011; Klein & Howes, 2016; Burch

et al., 2016b; Wilder et al., 2018; Chen et al., 2019; Afshari et al., 2021). However,

the understanding of how body forces impact thermal energy is still limited and is

an area that we plan to explore in future research.

For this present dissertation work, we conduct simulations of anti-parallel mag-

netic reconnection using small simulation domains that do not reach a steady state.

For future work, we are actively pursuing simulations with larger domains where

steady-state reconnection can be achieved. These simulations allow us to investi-
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gate the time evolution of the pressure-strain interaction and its decompositions, as

well as the divergence of heat flux density. Notably, we are examining the links be-

tween these quantities and the reconnection phase. Furthermore, we are conducting

a detailed analysis of the time evolution of other terms in the thermal energy equa-

tion to understand how their contributions to changes in the e↵ective temperature

vary over time, particularly during di↵erent phases of reconnection. Additionally,

our research involves the investigation of the time evolution of J ·E and its decom-

position into Je ·E and Ji ·E, for electrons and ions, respectively. We are currently

studying how their 2D structures and amplitudes change over time, as well as how

the contributions from electrons and ions to J · E evolve over time.

We are actively pursuing the development of a term that captures the time rate

of change of relative energy and has units of power density, which will quantify the

volumetric time rate of change of energy due to changing higher order moments and

will be a better tool for comparison with the pressure-strain interaction, divergence

of heat flux density, aforementioned J · E and its kinetic counterpart, the field-

particle correlation (Klein & Howes, 2016), since these also have the dimensions

of power density. There have been previous studies comparing these other metrics

with the pressure-strain interaction (Pezzi et al., 2021) and it will be interesting to

revisit such studies in light of the results of this dissertation.

A limitation of the work conducted in Chapter 6 is that the existing formu-

lation of the “first law of kinetic theory” does not account for changes in the first

velocity moment, specifically bulk flow, and thus by extension bulk flow energy.

We are currently exploring a first-principles theory that addresses this limitation.

215



Currently, relative energy serves as the mechanism for energy conversion associated

with all non-LTE internal moments. However, it does not distinguish between the

significant and negligible contributions of individual non-LTE internal moments.

Investigating this aspect would be an intriguing direction for future studies.

By employing simulations with a high particle per grid (PPG) in this disser-

tation, we can account for all the terms in the time evolution equations of thermal,

bulk flow, and electromagnetic energy densities (Eqs. (1.34) - (1.36)). Through

this comprehensive analysis accounting of the energetics of the system, we can in-

fer the local and temporal behavior of the collisional terms, which, in the case of

p3d, originate solely from numerical e↵ects that is called “numerical dissipation”.

Furthermore, by utilizing the continuity equation for kinetic entropy density (see

Eq. (6.3)), we can establish a connection between numerical dissipation and the

observed increase in the total entropy of the simulation domain. These concepts are

currently being actively investigated.

In this dissertation, we use simulations with a relatively high electron mass.

Similar structures in the pressure-strain interaction, its decomposition, and relative

energy are expected for more realistic mass ratios, albeit with sharper features and

higher amplitudes. Further studies are needed to validate this hypothesis and ex-

pand our investigations to include ions. We are also actively exploring the energy

evolution equations and the behavior of relative energy in other non-LTE systems

such as electron-only reconnection (Sharma Pyakurel et al., 2019), and decaying

kinetic turbulence using high PPG simulations.
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Appendix A

Scaling of electron heating by magnetization during reconnection

and applications to dipolarization fronts and super-hot solar flares

A.1 Introduction

Energy conversion by magnetic reconnection, and its after e↵ects, are of signif-

icant importance in numerous magnetospheric and solar processes (Birn & Priest,

2007; Gonzalez & Parker, 2016). Two examples are solar flares, which are ener-

getic eruptions in the solar corona caused by reconnection (Priest & Forbes, 2002),

and geomagnetic storms and substorms, during which energy from the interplane-

tary magnetic field gets stored and released via reconnection in Earth’s magnetotail

(Angelopoulos et al., 2008). Some of the magnetic energy released during reconnec-

tion appears as bulk flow energy of a plasma jet. In Earth’s magnetotail, the energy

in the jet is ultimately injected into the inner magnetosphere where it can greatly

impact magnetospheric dynamics and has important space weather implications

(McPherron, 1979; Pulkkinen, 2007). Analogous dynamics takes place in magneto-

spheres of other planets (Smith et al., 2018; Xu et al., 2021) and in sunward jets

Journal of Geophysical Research: Space Physics, 127 (2022)
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that occur during solar flares (Reeves et al., 2008).

In Earth’s magnetotail, the reconnected magnetic field on the Earthward side

of the reconnection site dipolarizes as it releases its stored energy (Fu et al., 2020).

The Earthward reconnection jet impinges on the pre-existing and relatively dense

plasma sheet, which acts as an obstacle to the jet (Hesse & Birn, 1991). The jet’s ki-

netic energy compresses the reconnecting magnetic field, producing a dipolarization

front (DF) (Ohtani et al., 2004; Runov et al., 2009; Sitnov et al., 2009; Runov et al.,

2010, 2011; Sitnov & Swisdak, 2011; Hwang et al., 2011; Schmid et al., 2011; Runov

et al., 2013; Fu et al., 2012a, 2013; Sitnov et al., 2013). (It has been argued that a

more appropriate name for DFs is “reconnection jet fronts,” but we retain the name

dipolarization fronts to conform to the majority of the literature.) Characteristic

properties of DFs at the Earthward jet include a steep increase in the magnetic field

component Bz normal to the plasma sheet and a steep decrease in plasma density

as one goes in the tailward direction. Here, we use Geocentric Solar Magnetospheric

(GSM) coordinates, for which x is Sunward, y is the duskward direction normal to

x and Earth’s magnetic dipole, and z completes the right-handed coordinate system

in the northward direction. DFs have been seen in the mid-tail plasma sheets as-

sociated with bursty bulk flows (BBFs) (Angelopoulos et al., 1992). Energy in the

compressed magnetic field in DFs has been observed to convert into particle kinetic

energy (Angelopoulos et al., 2013) and particle heating (Runov et al., 2015) while

the DFs move Earthward.

One of the many consequences of DFs, and the focus of this Appendix, is that

electrons are significantly heated near the fronts. An electron temperature Te close
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to 1.8 keV was observed in a DF event by Time History of Events and Macroscale

Interactions during Substorms (THEMIS), a factor of ⇠3 higher than the electron

temperature before the spacecraft crossed the DF, with a small perpendicular tem-

perature anisotropy Te,? > Te,k, where ? and || denote the directions perpendicular

and parallel to the local magnetic field ~B (Runov et al., 2010). Later observations

revealed electron temperatures in the DFs in the range of 1–4 keV (Runov et al.,

2015). Observational studies (Fu et al., 2011; Pan et al., 2012; Ashour-Abdalla

et al., 2011; Liu & Fu, 2019) attributed such heating to adiabatic processes such

as Fermi and betatron acceleration. Moreover, observations of electron velocity

distribution functions in DFs reveal various non-isotropic electron pitch-angle dis-

tributions (PADs) (Wu et al., 2006; Fu et al., 2012b; Tang et al., 2021). So-called

pancake PADs have a perpendicular temperature anisotropy (Wu et al., 2013). They

were attributed to betatron acceleration in the compressed magnetic field of the DF

(Xu et al., 2018). Also observed are so-called rolling pin PADs, which are a combi-

nation of a cigar PAD (with particles moving parallel and antiparallel to the local

magnetic field, generated by Fermi acceleration in the bent magnetic field (Wang

et al., 2014)) and a pancake PAD (Liu et al., 2017b). Analytical theory suggests

particle distributions with a perpendicular temperature anisotropy are unstable to

wave generation, including whistler waves (Gary & Madland, 1985). Whistler waves

have been detected near DFs using satellite observations and cause non-adiabatic

electron heating through wave-particle interactions (Le Contel et al., 2009; Deng

et al., 2010; Viberg et al., 2014; Li et al., 2015; Yoo et al., 2019). A later observa-

tional study (Grigorenko et al., 2020) revealed that whistler waves heat electrons to
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1–5 keV in rolling pin PADs.

Electron dynamics in DFs have also been studied extensively in numerical

simulations. Motivated by observations, particle-in-cell (PIC) simulations have been

used to study two broad classes of DFs: (i) flux rope (FR) type DFs with multiple

X-lines, and (ii) flux bundle (FB) type DFs with a single transient X-line (Divin

et al., 2007; Sitnov et al., 2009; Lu et al., 2016). The energization mechanism for

electrons in FR-type DFs was found to be repeated reflections between the double

peaked Bz structure present when there are two X-lines, and is betatron acceleration

caused by the compressed Bz in FB-type DFs (Birn et al., 2013; Lu et al., 2016).

A strong electron temperature anisotropy with Te,? > Te,|| appears in the magnetic

flux pile-up region of FR-type DFs in their PIC simulations and this anisotropy

was shown to generate whistler waves (Fujimoto & Sydora, 2008). Electron velocity

distribution functions in the electron di↵usion region (EDR) and the downstream

region were systematically investigated using PIC simulations (Shuster et al., 2014;

Bessho et al., 2014). It was shown that the perpendicular temperature anisotropy

is associated with electron ring distributions, i.e., distributions that are toroidal in

velocity space. They suggested the ring distributions form when electron outflow

jets from reconnection get remagnetized by the stronger normal magnetic field Bz

in the DF. In subsequent studies (Shuster et al., 2015; Wang et al., 2016), it was

argued that this magnetization by the reconnected magnetic field heats the electrons

downstream of the EDR. In another PIC simulation study (Egedal et al., 2016),

electron ring distributions were found to grow in size when moving downstream

from the X-line as a result of betatron heating. Recent PIC simulations (Huang
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et al., 2021) suggest that as the DF moves downstream, first pancake PADs appear

(as a result of betatron acceleration), followed by rolling pin PADs (when particles

undergo Fermi reflections along with betatron acceleration), and culminating with

cigar PAD (when Fermi acceleration becomes the dominating heating mechanism).

Thus, electron ring distribution functions are associated with elevated temperatures,

wave generation, and subsequent heating via wave-particle interactions in the region

of DFs in Earth’s magnetotail.

In the solar corona, reconnection during solar flares produces sunward jets (“re-

connection outflows”) that have some similarities to DFs (Reeves et al., 2008). These

jets are associated with both particle acceleration and plasma heating. Solar flares

routinely exhibit temperatures of ⇠10–25 MK (⇠0.9–2.2 keV), generally thought to

result from collisional energy transfer by particles accelerated to tens or hundreds of

keV in or near the reconnection region impacting the dense chromosphere and heat-

ing the ambient plasma, whereupon it expands to fill the newly-reconnected flare

loop in a process called chromospheric evaporation (Holman et al., 2011). However,

a growing body of evidence suggests that the hottest plasmas in the flare thermal

distribution are heated directly in the corona (Fletcher et al., 2011; Cheung et al.,

2019). While this likely occurs to some extent in flares of all intensities (Warmuth

& Mann, 2016), it appears most pronounced for so-called “super-hot” flares, where

peak temperatures exceed 30 MK (⇠2.6 keV), significantly hotter than the compo-

nent heated by chromospheric evaporation. Spectroscopic imaging analyses show

that the super-hot plasma appears earlier and higher in the flare loop/arcade than

the evaporative component (Caspi & Lin, 2010; Caspi et al., 2015). The densities of
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the super-hot component are ⇠10 times smaller than the evaporative component,

but ⇠10 times larger than the background coronal plasma (Caspi & Lin, 2010), sug-

gestive of significant plasma compression. Such super-hot temperatures also appear

to be associated exclusively with strong coronal magnetic fields exceeding 100 G

(Caspi et al., 2014) and have a quasi-impulsive time profile, suggesting the mecha-

nism for the heating of the super-hot plasma is directly connected to the magnetic

reconnection process itself (Caspi & Lin, 2010). Many super-hot plasma heating

mechanisms have been suggested, including Ohmic pre-heating coupled followed by

Fermi and betatron acceleration from collapsing magnetic traps (Caspi, 2010), gas

dynamic shock heating from relaxation of the reconnected magnetic loop (Longcope

& Guidoni, 2011; Longcope et al., 2016), Fokker-Planck collisions (Allred et al.,

2020), and others [(Warmuth & Mann, 2016) and references therein], but there is

not yet a widely-accepted model.

We are not aware of any studies which give a first-principles prediction of the

temperatures of the hot electrons downstream of reconnection exhausts as a func-

tion of the upstream plasma conditions, i.e., the upstream (lobe) magnetic field,

electron temperature and density. Such a prediction requires an understanding of

the processes causing the complex electron distribution functions in reconnection

exhausts. In this Appendix, for reasons justified in what follows, we focus on elec-

tron ring distributions in the region of the dipolarization front. Our starting point

is the suggestion (Shuster et al., 2014; Bessho et al., 2014) that electron ring distri-

butions are formed by the remagnetization of electron jets from reconnection. We

quantitatively predict the major and minor radii of the ring distributions solely in
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terms of plasma parameters in the region upstream of the reconnecting region. In

particular, if the ring distributions are formed by the magnetization of electron jets,

the major radius is governed by the electron Alfvén speed of the electron outflow

jet, and the minor radius is governed by the electron thermal speed. To test the

predictions, we perform a parametric study using two-dimensional (2D) PIC simu-

lations in which the upstream density and upstream temperature are independently

varied. We find ring distributions appear in all ten simulations we perform, and the

major and minor radii depend on the upstream plasma parameters in the predicted

manner. We further show that the associated electron temperature and temperature

anisotropy largely scale according to analytical predictions of the major and minor

radii, with the perpendicular temperature in excellent agreement and the parallel

temperature being more complicated because there are counterpropagating electron

beams along the magnetic field that are not incorporated in the present model. We

find the electron ring distributions are associated with the highest electron tempera-

ture observed in the simulations, justifying their systematic study here. We confirm

that the location at which electron ring distributions appear is associated with the

location where the radius of curvature of the magnetic field exceeds the gyroradius

based on the bulk flow speed, validating the suggestion by (Shuster et al., 2014) and

(Bessho et al., 2014) that the ring distributions form as a result of remagnetization

of the electrons. We also show the ring distributions are suppressed by the presence

of a background guide field, as is expected if they are caused by remagnetization.

Moreover, we show that electron ring distributions consistently appear where there

is a plateau, or shoulder, in the profile of the normal magnetic field Bz downstream
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of the reconnection exhaust, which may be a useful signature for future observational

studies. Finally, we show that the electron temperatures predicted from the theory

are comparable to observed temperatures when applied to dipolarization fronts in

Earth’s magnetotail and super-hot solar flares in the solar corona.

This Appendix is organized as follows. Section A.2 relates the major and

minor radii of the ring distributions to upstream (lobe) plasma parameters and pro-

vides the associated analytical expressions of the temperature of ring distributions.

Section A.3 describes the PIC simulations used in this Appendix. Section A.4 shows

the simulation results, revealing ring distributions in all the simulations. Their ma-

jor and minor radii are extracted and compared to the theory. The location of the

ring distributions is related to features in the temperature and magnetic field pro-

files, and we confirm the rings are caused by remagnetization of the electron outflow

jet. We discuss applications to dipolarization fronts and super-hot solar flares in

Section A.5. We also discuss extending the theory to asymmetric reconnection for

dayside magnetopause applications, and discuss implications for direct in situ obser-

vations of ring distributions. The manuscript concludes with Section A.6, where the

key findings and limitations of our study are gathered, and future work is discussed.

A.2 Theory

We aim to relate the major and minor radii of ring distributions to macroscopic

upstream properties of the reconnection process, i.e., number density, temperature

and magnetic field. One form of an ideal ring velocity distribution function fr(v?, vk)
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is (Wu et al., 1989; Min & Liu, 2016)

fr

�
v?, vk

�
=

nr

⇡3/2v3Th⇤
e
�

v2k
v2
Th e

�(v?�v?0)
2

v2
Th , (A.1)

where nr is the number density, vk and v? are the velocity space coordinates parallel

and perpendicular to the central axis of the ring distribution, v?0 is the major

radius of the ring distribution, and vTh is the minor radius of the ring distribution,

assumed to be Gaussian and isotropic in the parallel and perpendicular directions.

The normalization factor ⇤, defined by ⇤ = r
p
⇡ erfc(�r)+ e

�r2 , enforces that nr =

R
d
3
vfr; here r = v?0/vTh and erfc(�r) = (2/

p
⇡)
R1
�r e

�z2
dz is the complementary

error function.

It was previously suggested (Shuster et al., 2014; Bessho et al., 2014) that

electron ring distributions form when the electron jet from reconnection gets mag-

netized by the strong normal (reconnected) magnetic field occurring as a result of

compression at the dipolarization front. In principle, the same e↵ect can happen for

ions, but we only see rings in our simulations for electrons so we focus on them here.

We expect the major radius of the ring distribution v?0 to be the electron outflow

speed before the beam gets magnetized, which scales as the electron Alfvén speed

cAup,e (Shay et al., 2001; Hoshino et al., 2001) based on the reconnecting magnetic

field strength Bup,e at the upstream edge of the EDR,

v?0 =
Bup,ep
4⇡menup

, (A.2)
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where me is the electron mass and nup is the density upstream of the EDR which is

comparable to the density upstream of the ion di↵usion region (IDR) and therefore

the upstream (lobe) plasma.

For the minor radius vTh, we propose that it is governed by the thermal speed

vTh of the electron upstream of the reconnection site, i.e.,

vTh =

r
2kBTe,up

me
, (A.3)

where kB is Boltzmann’s constant and Te,up is the temperature upstream of the EDR,

which is essentially the same as the (lobe) temperature upstream of the IDR at the

early times when reconnection that forms a dipolarization front takes place. This

e↵ectively assumes that the increase in temperature that takes place as electrons

flow through the EDR or across separatrices as they go into the exhaust (Shay et al.,

2014) is small. Using Eqs. (A.2) and (A.3), we write the parameter r in terms of

upstream parameters as

r =
Bup,ep

8⇡nupkBTe,up

, (A.4)

which is related to a form of the upstream electron plasma �e,up as r = �
�1/2
e,up . Using

these expressions, we have the parameters necessary to write Eq. (A.1) solely in

terms of upstream plasma parameters.

The perpendicular and parallel temperatures T? and T|| associated with the

ring distribution in Eq. (A.1) are calculated in the standard way using the sec-

ond velocity moment of fr, i.e., T? = [m/(2nrkB)]
R
d
3
v(~v? � ~u?)2fr and T|| =
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[m/(nrkB)]
R
d
3
v(v|| � u||)2fr, where ~u? and u|| are the perpendicular and parallel

components of the bulk flow velocity calculated from the first velocity moment of

the distribution function, ~u? = (1/nr)
R
d
3
v~v?fr and uk = (1/nr)

R
d
3
vvkfr. Since

both ~u? and uk are zero for fr as given in Eq. (A.1), the resulting T? and Tk are

(Wu et al., 1989)

T? = MTe,up, Tk = Te,up, (A.5)

where

M =
2e�r2 (1 + r

2) +
p
⇡r (3 + 2r2) erfc(�r)

2⇤
(A.6)

=
3

2
+ r

2 � e
�r2

2⇤
. (A.7)

A plot of M as a function of r is shown in Fig. A.1(a). The e↵ective temperature

Te↵ = (2T? + Tk)/3 is

Te↵ = Te,up

✓
2M + 1

3

◆
. (A.8)

The temperature anisotropy, defined as A? = T?/Tk � 1, is

A? = M � 1. (A.9)

Thus, Eq. (A.8) is equivalent to Te↵ = Te,up(1 + 2A?/3) for this distribution. These

expressions give the properties associated with the ring distribution in terms of

upstream parameters.

It has been shown (Shuster et al., 2014; Egedal et al., 2016) that ring-type dis-
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Figure A.1: (a) Line plot of M from Eq. (A.7) as a function of r = v?0/vTh. (b)
Contour plot of T? from Eq. (A.10) as a function of r and vTh for a ring population
plus a Maxwellian core population assuming nM = nr and vTh,M = vTh.

tributions in PIC simulations of reconnection are not always ideal like in Eq. (A.1);

some also have a Maxwellian core population. It is possible that this population is

related to the initial current sheet population in the simulations, but validating this

conjecture is not carried out for the present study. It is not clear if this population

is a numerical artifact or also present in Nature. Since it is not the focus of the

present study and has been seen in previous independent studies, we simply include

it in our analysis to give more accurate comparisons to the simulations. Thus, we

derive the temperatures associated with a distribution f = fr + fM that is the

sum of the ideal ring distribution fr from Eq. (A.1) and a Maxwellian distribution

fM = (nM/⇡
3/2

v
3
Th,M)e�v2/v2Th,M with density nM and temperature TM associated

with the thermal speed vTh,M = (2kBTM/m)1/2. The zeroth velocity moment of

this distribution gives the total local density as n = nr + nM . The temperatures

generalizing Eqs. (A.5) and (A.8) are

T? = MnrTe,up

n
+

nMTM

n
, Tk =

nrTe,up

n
+

nMTM

n
(A.10)
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Te↵ =

✓
2M + 1

3

◆
nrTe,up

n
+

nMTM

n
, (A.11)

while the temperature anisotropy in Eq. (A.9) becomes

A? =
(M � 1)nrTe,up

nrTe,up + nMTM
. (A.12)

A contour plot of T? as a function of r and vTh in the limit that nM = nr and

vTh,M = vTh is shown for reference in Fig. A.1(b). These expressions will be useful

when we analyze ring distributions in our PIC simulations.

A.3 Simulations

We use the PIC code p3d (Zeiler et al., 2002) to perform simulations of sym-

metric antiparallel magnetic reconnection that are 2.5D in position space and 3D in

velocity space. p3d employs the trapezoidal leapfrog method (Guzdar et al., 1993)

to advance electromagnetic fields in time and the particles are advanced in time us-

ing a relativistic Boris stepper (Birdsall & Langdon, 1991). The multigrid technique

(Trottenberg et al., 2000) is used to clean the divergence of the electric field every

10 particle time-steps.

In the simulations, lengths are normalized to the ion inertial scale di0 = c/!pi0

based on a reference density n0 that is the peak density of the initial current

sheet population, where !pi0 = (4⇡n0e
2
/mi)1/2, e is the ion charge, and c is the

speed of light. Magnetic fields are normalized to the initial asymptotic upstream

reconnecting magnetic field B0. Velocities are normalized to the Alfvén speed
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cA0 = B0/(4⇡min0)1/2. Times are normalized to the inverse ion cyclotron frequency

⌦�1
ci0 = (eB0/mic)�1. Temperatures are normalized to mic

2
A0/kB. Reduced velocity

distribution functions are normalized to n0/c
2
Ao.

The simulation coordinate system is defined such that reconnection outflows

are along ±x̂ and inflows are along ±ẑ, with periodic boundary conditions in both

directions. The simulations are initialized with two Harris current sheets and a

uniform background plasma population. The initial magnetic field profile is

Bx(z) = tanh

✓
z � lz/4

w0

◆
� tanh

✓
z � 3lz/4

w0

◆
� 1, (A.13)

with no initial out-of-plane guide magnetic field unless otherwise stated. Here, w0 is

the thickness of the current sheet and lz is the length of the computational domain

in the ẑ direction. The temperature and density of the background populations can

be varied independently of the current sheet population. The initial electron and

ion density profiles are

n(z) =
1

2(Te,CS + Ti,CS)


sech2

✓
z � lz/4

w0

◆
+ sech2

✓
z � 3lz/4

w0

◆�
+ nup, (A.14)

where nup is the initial density of the background plasma. The current sheet elec-

tron temperature Te,CS is uniform with a value of 1/12, and the current sheet ion

temperature Ti,CS is uniform with a value 5Te,CS.

The speed of light c is 15, and the electron to ion mass ratio is me/mi = 0.04.

There are 4096⇥ 2048 grid cells in all the simulations, initialized with 100 weighted
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Table A.1: Numerical parameters for two sets of simulations with varying (top)
upstream total temperature TTOT,up and (bottom) upstream number density nup. lx
and lz are system sizes along x̂ and ẑ, respectively, w0 is the initial current sheet
thickness, �x is the grid scale along x̂ and ẑ, and �t is the time step.

TTOT,up lx ⇥ lz w0 �x �t

0.2 51.20 ⇥ 25.60 0.50 0.0125 0.00100
0.4 51.20 ⇥ 25.60 0.50 0.0125 0.00100
0.6 51.20 ⇥ 25.60 0.50 0.0125 0.00100
0.8 51.20 ⇥ 25.60 0.50 0.0125 0.00100
1.0 51.20 ⇥ 25.60 0.50 0.0125 0.00100

nup lx ⇥ lz w0 �x �t

0.2 51.20 ⇥ 25.60 0.50 0.0125 0.00100
0.4 47.41 ⇥ 23.71 0.46 0.0116 0.00093
0.6 44.35 ⇥ 22.17 0.43 0.0108 0.00087
0.8 41.81 ⇥ 20.91 0.41 0.0102 0.00082
1.0 39.68 ⇥ 19.84 0.39 0.0097 0.00078

particles per grid (PPG). A weak initial magnetic perturbation of the form �Bx =

�Bpert sin (2⇡x/lx) sin (4⇡z/lz) and �Bz = Bpertlz/(2lx) cos (2⇡x/lx)[1�cos (4⇡z/lz)]

with Bpert = 0.025 is used to seed an X- and O-line pair in each of the two current

sheets, where lx is the computational domain size in the x̂ direction.

Two sets of five simulations are performed. Table A.1 lists relevant simulation

parameters, including the system size lx ⇥ lz, the initial current sheet half-thickness

w0, the grid scale�x in both directions, and the time step�t. In all simulations, the

ion to electron temperature ratio Ti,up/Te,up of the background plasma is initially

5. One set of simulations has varying TTOT,up = Ti,up + Te,up, while the initial

background density is kept fixed at nup = 0.2. The other set has varying nup, with

the initial background temperatures kept fixed at Te,up = 1/12 and Ti,up = 5Te,up.

The smallest length scale for each of the simulations is the electron Debye length

�De based on the total initial density at the center of the current sheet 1 + nup.
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Thus, �De decreases as nup is increased from 0.2 to 1 by a factor of (1.2/2)1/2, i.e., it

is 22.5% lower for the nup = 1 simulation than the nup = 0.2 simulation. Thus, for

the nup = 1 simulation, the system size, grid length, initial current sheet thickness,

and time step are also reduced by 22.5% (as listed in Table A.1). For other nup

values, a similar approach is used to determine their simulation parameters.

Since we use periodic boundary conditions, the minimum system size that

allows the ions to fully couple back to the reconnection process is approximately 40

di0 (Sharma Pyakurel et al., 2019). Since lx is smaller than necessary for ions to

fully couple back to the reconnected magnetic field, this study focuses on electron

dynamics. In some of the simulations, the upper current sheet develops secondary

islands which do not coalesce with the primary island by the time the system reaches

steady-state. Hence we focus on the lower current sheet. Finally, we note that the

ion and electron inertial lengths di and de based on the upstream (background)

density are related to the length scale used for normalization via di = di0/
p
nup

and de = 0.2di for the mass ratio used in the simulations. Since nup is fixed at 0.2

for the simulations with varying TTOT,up, di = 2.24 di0 and de = 0.45 di0 for those

simulations. For simulations with varying nup, the length scales change with nup;

for example, for nup = 1, we have di = di0 and de = 0.2 di0. Each simulation is

carried out long enough for the reconnection to reach a steady-state, meaning that

the reconnection rate becomes approximately constant in time.

For plotting reduced electron velocity distribution functions (rEVDFs), which

are 2D velocity distributions produced from the full 3D distributions after integrat-

ing over one of the three velocity directions, a domain of size 0.5 di0⇥0.5 di0 centered
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at the location of interest is used. A velocity space bin of size 0.1 cA0 is used in all

velocity directions.

A.4 Methods and Results

A.4.1 Presence of ring distributions

A result of this simulation study is that all ten simulations reveal electron ring

distributions beyond the downstream edge of the EDR near the region of the dipo-

larization fronts. This is ascertained by plotting rEVDFs in the plane perpendicular

to the local magnetic field. Since the magnetic field in the region of interest is pre-

dominantly in the ẑ direction, we identify x̂ ⇡ (û ⇥ b̂) ⇥ b̂ ⌘? 1, ŷ ⇡ û ⇥ b̂ ⌘? 2,

and ẑ ⇡ b̂ ⌘k, where b̂ and û are the unit vectors along the magnetic field ~B and

the bulk flow velocity ~u. Defining the X-line location as (x0, z0), the rEVDFs are

plotted along the horizontal line z = z0 as a function of x from the X-line to the

magnetic island. At the earliest times in the steady-state reconnection time interval

for all simulations, we find that rEVDFs near the X-line have striations, and they

are rotated by the reconnected magnetic field Bz as one moves in the outflow direc-

tion within the EDR. Beyond the downstream edge of the EDR, ring-like features

begin to arise in the distributions as some electrons complete at least one full gyra-

tion around Bz, leading to swirls and arcs (not shown), and finally to electron ring

distributions for which most electrons complete at least one full gyration. These

results are consistent with previous simulation studies (Bessho et al., 2014; Shuster

et al., 2014, 2015; Egedal et al., 2016)
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Figure A.2: rEVDFs in the v?1 � v?2 plane (where velocities are given in units of
the normalized Alfvén speed cA0) for simulations with (a) - (e) varying TTOT,up and
(f) - (j) varying nup. The title of each panel gives its background temperature or
density as appropriate, the position x � x0 where the rEVDF is measured relative
to the X-line, and the time t. For all panels, z � z0 = 0.
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The panels of Fig. A.2 show rEVDFs as a function of v?1 and v?2 for repre-

sentative ring distributions seen in all ten simulations, with varying TTOT,up on the

left from 0.2 to 1 in (a)-(e) and varying nup on the right from 0.2 to 1 in (f)-(j).

The title on each panel provides the locations x � x0 and times t at which each

rEVDF is plotted. The plotted rEVDFs reveal that there is a noticeable agyrotropy

in the ring distributions, but the major and minor radii are well-formed. It is likely

that the cause of the agyrotropy is that not all particles complete one full gyration,

as also seen in previous studies (Shuster et al., 2014), but we do not study this

feature further in the present Appendix. Looking at the rEVDFs in other planes

(not shown), we find that along with the ring population and the colder Maxwellian

core also seen in previous simulations studies (Shuster et al., 2014), a population

of counterstreaming beams is also present in every simulation in every rEVDF. As

elevated values of Te,|| that would be associated with parallel propagating beams are

not seen at the reconnecting magnetic field reversal region in the study by (Shay

et al., 2014) [see their Fig. 2(d)], we believe it is likely that this population is an

artifact due to our simulation size being smaller than in that previous study, leading

to accelerated electrons to be transmitted through the boundary to the location we

are measuring distributions, but we leave verifying this conjecture for future work.

These rEVDFs reveal that the ring distributions follow clear qualitative trends: with

increasing background temperature TTOT,up, the rings stay approximately the same

size but are thicker in the v?1 � v?2 plane [Fig. A.2(a)-(e)], whereas with increasing

background density nup, the rings shrink in size [Fig. A.2(f)-(j)] while maintaining

a similar thickness.
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A.4.2 Parametric dependence of ring distribution major and minor

radii

We now quantitatively investigate the parametric dependence of the ring dis-

tributions by extracting their major and minor radii from the simulations. For each

distribution in Fig. A.2, we take separate 1D cuts of the rEVDF along v?1 = 0

and v?2 = 0. For each 1D cut, we fit three Gaussians to the distribution given

by
P3

i=1 aie
�[(x�bi)/ci]2 using the Curvefit tool in MATLAB R2020a. The outer two

Gaussians are used to fit the ring portion of the distribution and the central Gaus-

sian is used to fit the core. The coe�cients ai are used to calculate nr and nM , bi

give the bulk flow of each component of the distribution and are related to v?0, and

ci give the associated thermal speeds vTh and vTh,M .

As a case study, 1D cuts and the associated fits are shown in Fig. A.3 for

the nup = 0.2 simulation from Fig. A.2(f). The black curve is the raw distribution

function and the red curve is the best fit. Because the rEVDFs are not perfectly

symmetric, the best fit coe�cients and associated major and minor radii v?0 and

vTh are di↵erent in the v?1 = 0 and v?2 = 0 cuts. We calculate average values for

v?0 and vTh and their standard deviations � derived from propagating the errors

in quadrature. The best fit procedure also provides 95% confidence bounds, which

we take as another estimate of the uncertainty of the values. The results of this

procedure for all ten simulations are listed in Table A.2.

We now compare the theoretical predictions for the major and minor radii to

the simulation results. For the theoretical predictions, we need to obtain Bup,e, nup
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(a) (b)

Figure A.3: 1D cuts of the rEVDF from Fig. A.2(f) for the simulation with nup =
0.2 (black solid curve). The red solid curve is the best fit to three Maxwellians. The
cuts are (a) f(v?1,v?2=0) and (b) f(v?1=0,v?2).

Table A.2: Data from the fitting method described in Sec. A.4.2 for all simulations.
The first column gives the value being varied, and nr, v?0, and vTh are the ring
density, major radius, and minor radius. The � values are standard deviations from
the mean from cuts in the ? 1 and ? 2 directions, and 95% err is the error calculated
using 95% confidence bounds from the fit.

TTOT,up nr v?0 �v?0
95% errv?0

vTh �vTh
95% errvTh

0.2 0.30 4.29 0.19 0.15 1.47 0.05 0.22
0.4 0.36 4.33 0.27 0.22 1.81 0.04 0.32
0.6 0.31 4.24 0.17 0.26 2.13 0.12 0.35
0.8 0.33 4.23 0.19 0.49 2.41 0.05 0.57
1.0 0.26 4.42 0.49 0.49 2.59 0.09 0.49

nup nr v?0 �v?0
95% errv?0

vTh �vTh
95% errvTh

0.2 0.28 4.26 0.32 0.12 1.99 0.23 0.17
0.4 0.46 2.93 0.32 0.19 2.11 0.19 0.19
0.6 0.91 2.52 0.29 0.19 2.08 0.15 0.17
0.8 1.17 1.99 0.13 0.35 1.99 0.07 0.28
1.0 1.28 1.89 0.07 0.12 1.94 0.11 0.12
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and Te,up to evaluate v?0 in Eq. (A.2) and vTh in Eq. (A.3). We define the upstream

edge of the EDR where the electron bulk inflow speed starts to di↵er from the

ẑ component of the ~E ⇥ ~B velocity. Then, the measured plasma parameters are

obtained by averaging quantities over 0.06 di0 centered around this location. We

find that the upstream parameters vary in time, changing between the transient

time when reconnection onset takes place and when a steady-state is reached. We

reason that the dipolarization fronts occur due to jets that arise in the transient

initial phase of reconnection. Therefore, we measure the upstream parameters at

early times when the reconnection rate starts to increase. For the simulations with

varying TTOT,up, this time is t = 5 whereas for nup simulations, the time varies from

t = 5 for nup = 0.2 to t = 10 for nup = 1 since increasing nup from 0.2 to 1 decreases

the speeds by a factor of 51/2. At the chosen time, we average the desired upstream

quantities over five code time units. We find that the data variations are small

(within 5%) during this interval. We also confirm the densities and temperatures

do not vary appreciably between the upstream value at the electron layer and the

upstream value at the ion layer. The results of this procedure are listed in Table A.3,

along with theoretical predictions of v?0 using Eq. (A.2) and vTh using Eq. (A.3).

The simulation data and theoretical predictions are plotted in Fig. A.4. The

simulation data are displayed as black dots connected by solid black lines. The

error bars are the larger of the two errors associated with each measurement given

in Table A.2. The theoretical predictions, given in the last two columns of Table

A.3, are displayed as red dots connected by red lines. The simulations with varying

upstream temperature are shown in Figs. A.4(a) and (b), displaying v?0 and vTh,
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Table A.3: Upstream plasma parameters from the simulations using the method
described in Sec. A.4.2. The first column gives the value being varied, Bup,e is
the upstream magnetic field, nup is the upstream density, and Te,up is the upstream
temperature at the EDR edge. The last two columns give the theoretical predictions
for the major radius v?0 and minor radius vTh based on the upstream values using
Eqs. (A.2) and (A.3), respectively.

TTOT,up Bup,e nup Te,up Theoretical v?0 Theoretical vTh

0.2 0.33 0.14 0.034 4.41 1.30
0.4 0.34 0.14 0.068 4.54 1.84
0.6 0.33 0.14 0.10 4.41 2.24
0.8 0.36 0.16 0.13 4.50 2.55
1.0 0.35 0.15 0.17 4.52 2.92

nup Bup,e nup Te,up Theoretical v?0 Theoretical vTh

0.2 0.35 0.15 0.084 4.51 2.05
0.4 0.36 0.32 0.086 3.18 2.07
0.6 0.38 0.51 0.087 2.66 2.08
0.8 0.36 0.69 0.086 2.17 2.07
1.0 0.37 1.01 0.083 1.84 2.04

respectively, as a function of TTOT,up. The theoretical results are within the error

bars from the simulations, confirming that v?0 is not dependent on Te,up while vTh

scales as T 1/2
e,up. Analogous results for the simulations with varying upstream density

are shown in Figs. A.4(c) and (d). The predictions again are within the error bars

from the simulations, and confirm the scaling of v?0 with n
�1/2
up and the independence

of vTh on nup. In summary, we find excellent agreement between the predicted values

of both the major and minor radii of the ring distribution and the measured values

from the ten simulations.

We now compare the electron temperatures associated with the ring distri-

butions with the analytical expressions from Section A.2 by using Eq. (A.10) and

(A.11) to find the predicted Te,?, Te,||, and Te,e↵ . For the core population param-

eters, we use the fitting results for the central Gaussian described earlier in this
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Figure A.4: Ring distribution (a) and (c) major radius v?,0 and (b) and (d) minor
radius vTh from simulations with varying (a) and (b) upstream temperature TTOT,up

and (c) and (d) upstream density nup. Data in black (with error bars) are from
the simulations as given in Table A.2, and data in red are from the theoretical
predictions in Eqs. (A.2) and (A.3). Note that the vertical axes of each panel have
a di↵erent range.
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section. We find that the core population thermal speed vTh,M values are not those

associated with the upstream electron temperatures, but a study of how the core

population parameters scale with upstream plasma parameters is beyond the scope

of this work. In the simulations, ring distributions are seen over a finite region of

space, so the presented temperature values are mean values over that range. The

error is estimated as the standard deviation of the mean.

The results are shown in Fig. A.5, with simulation results in black and theoret-

ical results in red. The perpendicular temperatures, in panel (a) for simulations with

varying TTOT,up and (d) for simulations with varying nup, show excellent agreement

between the theory and simulations. For the parallel electron temperature in panels

(b) and (e), we observe a sizable di↵erence between the simulated and predicted

values. This is attributed to our theory not accounting for the parallel propagating

counter-streaming beams mentioned in the previous subsection. However, we do

find some qualitative agreement. Since Te,|| has a smaller weight than Te,? in Te,e↵ ,

we find good qualitative agreement between simulation results and predicted values

of Te,e↵ for all ten simulations, shown in panels (c) and (f). The results for vary-

ing nup in panel (f) have very good quantitative agreement, as well. In summary,

we find that the temperature in the region where rings are present increases with

increasing upstream temperature and decreases with increasing upstream density,

and the model based on ring distributions is quite e↵ective at predicting the scaling

and the absolute perpendicular temperatures.
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Figure A.5: Comparison between predicted electron temperatures Te,?, Te,k and Te,e↵

(red lines) and the simulation results (black lines with error bars). (a)-(c) are for
the simulations with varying TTOT,up, and (d)-(f) are for varying nup. Note that the
vertical axes of each panel has a di↵erent range.
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A.4.3 Relation of ring distributions to temperature and magnetic

field profiles

We now consider the location of the electron ring distributions in relation to

the plasma parameter profiles in the region downstream of the EDR. Some plasma

parameter profiles in the downstream region are shown in Fig. A.6. Panels (a)

and (f) show 2D plots of Te,e↵ from the TTOT,up = 0.2 simulation and the nup = 0.2

simulation, both at t = 38. In both cases, the highest electron temperatures observed

in the simulation are in the dipolarization front region, between positions x � x0 of

-10 and -15. There are also high temperature regions along the separatrix, but these

are potentially impacted by the periodic boundary conditions of the simulation and

are not treated further here. From previous work (Fu et al., 2012b; Egedal et al.,

2016), we expect higher temperatures to arise from betatron acceleration of the

electrons in the compressed magnetic field. However, the rEVDFs at later times

during the steady-state time period (not shown) reveal the ring distributions do not

increase in size in our simulations. We believe we do not observe this because our

computational domain is smaller than in the previous study, preventing ions from

coupling back to the magnetic field in the exhaust region.

The rest of the panels show comparisons of horizontal cuts of various quantities

along the line z = z0 for all TTOT,up (left plots) and nup (right plots) simulations. The

times t that each profile is taken are given in panels (b) and (g). Panels (b) and (g)

show the perpendicular electron temperature Te,?, revealing similar profiles for each

upstream temperature with peak values near the dipolarization front, increasing
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Figure A.6: Profiles of plasma parameters downstream of the reconnection site.
(a) 2D plot of electron temperature Te,e↵ for the TTOT,up = 0.2 simulation at t =
38. Horizontal cuts through the X-line as a function of x � x0 of (b) perpendicular
electron temperature Te,?, (c) electron temperature anisotropy Ae,?, (d) reconnected
magnetic field Bz, and (e) horizontal velocity Vex for the simulations with varying
TTOT,up. Panels (g) to (j) repeat (b) to (e), but for the simulations with varying nup.
Panel (f) shows Te for the nup = 0.2 simulation at t = 38. The vertical blue lines
highlight the shoulder in the reconnected magnetic field Bz for the TTOT,up = 0.2
and nup = 0.2 simulations.
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with upstream temperature and decreasing with higher density. Panels (c) and (h)

show the temperature anisotropy Ae,?. We observe strong electron temperature

anisotropies with all the upstream temperature simulations having similar values.

We also find a systematic reduction in Ae,? with increasing upstream densities in

the dipolarization front region.

Panels (d) and (i) show the reconnected magnetic field Bz. The profiles have

the characteristic appearance of a dipolarization front, with a sharply peaked value

at the front that decreases towards the X-line. Importantly, in all simulations, we

observe a plateau, or shoulder, in Bz that occurs upstream of the dipolarization front.

Blue vertical lines are used to highlight the shoulder in Bz for the TTOT,up = 0.2

and nup = 0.2 simulations. We find that for all the simulations, the Bz shoulder is

spatially correlated with the regions of high Te,? and Ae,?.

Finally, panels (e) and (j) show the horizontal electron velocity Vex, showing

the characteristic increase in speed with distance from the X-line before rolling over

and decreasing for all simulations as electron outflows exit the EDR. The horizontal

velocity is close to zero in the region of peaked perpendicular temperature and

the shoulder in Bz. The spatial profiles in Fig. A.6 are very similar to previous

simulations by (Fujimoto & Sydora, 2008) (see their Figure 2), i.e., the peak in Ae,?

(due to an enhancement in Te,?) appears in the magnetic pileup region where the

electron outflow speed goes to zero.

We now discuss the locations of the ring distributions relative to these pro-

files. We find that the ring distributions shown in Fig. A.2 are co-located with the

shoulder region of Bz for all simulations. For simulations with increasing upstream
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temperature, the shoulder regions in Bz are in similar locations and the ring dis-

tributions accordingly appear over a similar region in all five simulations (see the

location of the ring distributions in the left column of Fig. A.2). However, as up-

stream density is increased, the shoulder in Bz appears closer to the X-line and so

does the location of ring distributions (see the location of ring distributions in the

right column of Fig. A.2). For all simulations, we find that the shoulder in Bz has

an extent of ⇠ 1 di0, with a field strength of ⇠ 0.5B0.

A possible mechanism for the presence of a shoulder in Bz at the location

where there are ring distributions is the diamagnetic e↵ect of the electrons that

are magnetized by the strong reconnected magnetic field. The associated current

reduces the magnetic field strength in the region where rings are present and increase

the field strength outside. This change to the magnetic field appears as a plateau

on the Bz profile as it ramps up with distance from the X-line.

To estimate the amount by which the reconnected magnetic field decreases in

the presence of ring distributions, we use conservation of energy. Using Eq. (A.7)

and (A.10) to rewrite Eq. (A.11) for the e↵ective temperature of electrons as an

energy equation gives

3

2
kBTe,e↵ ' 3

2
kBTe,up +

1

2
mec

2
Aup,e +

 
1 � e

�r2

2⇤

!
kBTe,up. (A.15)

The left-hand side term gives the plasma energy at the location where rings are

seen because the electron bulk speed vanishes so all energy is thermal. The first two

terms on the right-hand side approximately describe the thermal plus kinetic energy
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of electrons as they leave the EDR. The last term on the right side is associated with

the thermal energy arising from the generation of the ring distribution. This extra

energy is approximately the energy that is lost by the magnetic field as it decreases

due to diamagnetism of the remagnetized electrons. The term in parentheses goes

from 0.5 to 1 as r = v?0/vTh goes from 0 to 1. In order to conserve total energy,

we expect the magnetic field energy to decrease by

�

✓
B

2

8⇡

◆
⇠
 
1 � e

�r2

2⇤

!
kBTe,up, (A.16)

where �(B2
/8⇡) is the change in magnetic field energy. Assuming the change

in the magnetic field is weak, this decrease is approximately B�B/(4⇡) where �B

is the change in the magnetic field.

In the normalized units of our simulations, B ' 0.5 at the shoulder, and r � 1

so (1 � e
�r2

/(2⇤)) is close to 1. For the varying nup simulations where Te,up is kept

fixed at 0.0833, this prediction gives a change in magnetic field of �B ' 0.2. For the

varying TTOT,up simulations where Te,up goes from 0.033 to 0.167, this prediction gives

a change in magnetic field of �B ⇠ 0.1� 0.3. From the profiles of Bz in Fig. A.6(d)

and (i), we find that the di↵erence of the profile from a linearly increasing ramp

away from the X-line is approximately 0.1 - 0.3, in reasonable agreement with the

prediction.
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A.4.4 Confirmation that ring distributions are caused by remagneti-

zation

We now confirm the proposed model that electron rings are associated with

their remagnetization in the reconnected magnetic field (Shuster et al., 2014; Bessho

et al., 2014). We calculate two quantities as a function of x: (1) the magnetic field

radius of curvature Rc = |(b̂ · r)b̂|�1, where b̂ is the unit vector along the local

magnetic field, and (2) the electron gyroradius ⇢bfs = Vex/⌦ce based on the horizontal

bulk flow speed Vex and the local electron gyrofrequency ⌦ce = eB/mec. The bulk

flow speed is the appropriate speed because the ring distributions are proposed to

be formed by outflowing electron beams that get remagnetized. The condition for

remagnetization is
p
 = Rc/⇢bfs ⇡ 1 (Büchner & Zelenyi, 1989).

We plot Rc/⇢bfs as a function of x � x0 in Fig. A.7(a) for the nup = 0.2

simulation at t = 38. A horizontal red dashed line marks where Rc/⇢bfs = 1, which

is x�x0 ⇡ �9 as marked by the vertical red dashed line. Fig. A.7(b) shows ⇢bfs as a

function of x�x0. Its value where Rc/⇢bfs = 1 is ⇡ 0.5 di0, which for this simulation

is ⇡ 1.1 de.

We now compare this to the location where ring distributions are observed in

this simulation. Ring distributions are seen throughout the blue shaded region of

Fig. A.6(g)-(j). This is located ' 2de downstream of the location where Rc/⇢bfs =

1. Since the gyroradius of the electron beam is ⇠ 1de, the ring distributions are

observed one gyro-diameter downstream of the location where the remagnetization

condition is first met. This same behavior is seen in each of the other nine simulations
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Figure A.7: (a) Ratio of the magnetic field radius of curvature Rc to the electron
gyroradius ⇢bfs based on the bulk flow speed as a function of x � x0 in a horizontal
cut through the X-line for the nup = 0.2 simulation at t = 38. The horizontal red
dashed line at Rc/⇢bfs = 1 is where electrons are expected to remagnetize. The
vertical dashed red line marks the x � x0 location where this condition is met. (b)
⇢bfs vs. x� x0 for the same simulation, with the horizontal dashed line marking the
value of ⇢bfs where electrons remagnetize.
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studied here (not shown). This confirms that the remagnetization of the electron

outflow jet is responsible for the generation of the ring distributions.

A further test that the ring distributions are caused by remagnetization of

electron exhaust beams is that they should cease to be present with the addition of

a su�ciently strong out of plane (guide) magnetic field. To test this, we perform

simulations with initial guide fields Bg of 0.05 and 0.25 for nup = 0.2, with all

other parameters the same as before. A similar analysis as shown in Fig. A.7 (not

shown) reveals that for the Bg = 0.05 simulation, Rc/⇢bfs is very similar to the

no guide field case, i.e., away from the X-line, Rc/⇢bfs increases and then crosses

1 signalling remagnetization of the electron outflow jet. The plasma parameter

profiles are similar to those seen in Fig. A.6 for the no guide field case (not shown).

A scan of rEVDFs as described in previous sections shows ring distributions in the

region of a Bz shoulder (not shown). However, for the Bg = 0.25 simulation, Rc/⇢bfs

(not shown) is never less than 1 in the downstream region, implying that electrons

are never demagnetized so no remagnetization occurs downstream. We also find no

presence of ring EVDFs (not shown) in our scan. This provides additional evidence

that the rings are formed by magnetization of the electron exhaust beams.

A.5 Discussion and Applications

The results of this research are potentially useful for a variety of reasons. By

relating the properties of the ring distribution to the upstream (lobe) plasma param-

eters in Sec. A.2, we can make quantitative predictions of the electron temperatures
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achieved downstream of reconnection exhausts, such as a dipolarization front or a

solar flare reconnection outflow. We can also approximately account for the betatron

acceleration that is expected to occur following the generation of ring distributions

(Fu et al., 2012b; Egedal et al., 2016). We characteristically see the Bz shoulder at a

magnetic field strength of about 0.5 as shown in Fig. A.6, and it further compresses

to a strength of 1. If betatron acceleration were to occur and assuming that the

magnetic moment is conserved, we expect the perpendicular temperature to increase

by a factor of ⇠ 2 from our predicted values.

To apply the theory to real systems, we also need to estimate the magnetic

field Bup,e at the upstream edge of the electron layer from the asymptotic magnetic

field strength Bup. There is no widely accepted theory for this, so we discuss two

possible options. In model 1, we use

Bup,e ⇡ 2

✓
me

mi

◆1/2

Bup, (A.17)

which captures that the electron outflow velocity at the EDR is often observed to

be approximately twice the ion Alfvén speed. In model 2, we use (Liu et al., 2022)

Bup,e ⇡
✓
me

mi

◆1/4

Bup, (A.18)

which follows from conservation of magnetic flux at the electron and ion layers.

We first consider Earth’s magnetotail, where there is typically only a weak

guide field and typical plasma parameters may be taken as Bup ⇡ 20 nT, nup ⇡ 0.1
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cm�3, and Te,up ⇡ 700 eV, although there is significant uncertainty in all three values.

Using the expressions in Sec. A.2, we find the predicted v?0 to be (2.8 � 9.2) ⇥ 108

cm/s. Here and in what follows, the first number in the provided range is using

model 1 and the second is using model 2. We also get vTh = 1.6 ⇥ 109 cm/s, so

the perpendicular and e↵ective temperatures associated with ring distributions is

T? = 890�1270 eV and Te↵ = 850�1100 eV, with an anisotropy of Ae,? = 0.2�0.7.

For comparison, the DF studied in Fig. 4 of (Runov et al., 2010) had electron tem-

peratures reaching about 1800 eV with perpendicular temperature Te,? ⇠ 2000 eV.

Doubling our prediction to account for betatron acceleration, we find the predicted

values are broadly consistent with the observations.

We next consider implications for reconnection in solar flares. The presence of

a guide field may suppress the mechanism in the present Appendix entirely. How-

ever, a range of guide fields is observed including examples with little to no guide

field (Qiu et al., 2017). Moreover, a leading model for the observed heating from

MHD simulation studies also requires a low guide field strength (Longcope et al.,

2010, 2016). We assume typical values of a background coronal temperature of

Te,up = 1 MK, a density of nup = 109 cm�3, and an ambient magnetic field for a

large flare of B ⇠ 100 G, the latter of which is consistent with values inferred from

radio and other measurements for large flares (Asai et al., 2006; Krucker et al., 2010;

Caspi et al., 2014). The associated upstream magnetic field at the electron layer

is estimated to be Bup,e = 4.6 � 15.6 G using model 1 and 2. Then, the predicted

major and minor radii of the ring distributions are v?0 = 1.4 � 4.6 ⇥ 109 cm/s and

vTh = 5.5⇥ 108 cm/s. This implies r = 3� 8, Ae,? = 7� 70, and Te,? = 8� 70 MK.
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Since the coronal plasma � is small, r is significantly larger than 1, much higher

than its magnetotail counterpart, leading to a much more dramatic increase in tem-

perature due to remagnetizing the electrons. Taking an asymptotic expansion for

the large r limit of Eq. (A.7) gives

M ⇡ 3

2
+ r

2
. (A.19)

Using Eqs. (A.3) and (A.4) for vTh and r, Eq. (A.8) gives an expression for Te↵ for

large r as

Te,e↵ ⇡ Te,up

✓
4

3
+

B
2
up,e

12⇡nupkBTe,up

◆
. (A.20)

Evaluating this expression in terms of the typical coronal parameters provided above,

we get

Te,e↵ = 1.33 MK

✓
Te,up

1 MK

◆
+(4.2 MK�45 MK)

✓
Bup

100 G

◆2 ⇣
nup

109 cm�3

⌘�1

, (A.21)

where the range in the second term is for model 1 and 2 of Bup,e. Therefore, the

predicted e↵ective temperature is Te,e↵ = 5 � 46 MK using models 1 and 2 for the

typical coronal parameters employed here. This relation predicts a scaling depen-

dence of the temperature approximately as B2
up. The temperatures predicted here,

even when doubled to account for betatron acceleration, are in the same range as the

10s of MK observed during super-hot flares (Caspi & Lin, 2010; Caspi et al., 2014;

Warmuth & Mann, 2016). The heating mechanism in our models is the reconnection

process, significant heating occurs for magnetic fields starting at about 100 G, and
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there is an increase in temperature with magnetic field strength. These features are

broadly consistent with the relationships derived from a statistical study of X-ray

observations of intense flares (Caspi et al., 2014). We therefore suggest it may be

possible that the super-hot temperatures in such flares are generated by electron

beams getting magnetized in reconnected fields, and potentially also subsequently

heated further by betatron acceleration as the reconnected magnetic field continues

to compress. This compression likely leads to higher densities than the ambient

coronal value, as has been previously suggested (Caspi, 2010; Longcope & Guidoni,

2011). The proposed mechanism would also help explain the observed association

of super-hot temperatures with coronal non-thermal emission and energy content

(Caspi et al., 2015; Warmuth & Mann, 2016). Significant future studies to further

explore the viability of the present model for explaining observed temperatures in

super-hot solar flares is needed, including a parametric test of Eq. (A.21), determin-

ing whether this mechanism is consistent with the high level of compression seen in

observations, studying if the small regions where the ring distributions are generated

can transmit to the large scales endemic to solar flares, and determining whether

guide field strengths in solar flares would magnetize the ring distributions.

The results of this Appendix could also be applicable to Earth’s dayside mag-

netopause, where ring distributions and whistler mode generation were recently

observed both in simulations of asymmetric reconnection with a guide field and

in Magnetospheric Multiscale (MMS) Mission observations (Yoo et al., 2019; Choi

et al., 2022). The theory presented in this Appendix is exclusively for symmet-

ric reconnection, but dayside reconnection is typically asymmetric. We expect the
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mechanism for ring distribution generation to be similar in asymmetric reconnec-

tion. We hypothesize that in asymmetric reconnection, the speed that sets the major

radius v?0 in Eq. (A.2) becomes the asymmetric version of the Alfvén speed that

controls the outflow speed of asymmetric reconnection,

v?0,asym =
Bup,asym,ep
4⇡menup,asym

, (A.22)

and the thermal speed that sets the minor radius is replaced by

vTh,asym =

r
2kBTe,up,asym

me
, (A.23)

where

Bup,asym,e =
Bup,1,eBup,2,e

(Bup,1,e +Bup,2,e)
, (A.24)

nup,asym =
(nup,1Bup,2,e + nup,2Bup,1,e)

(Bup,1,e +Bup,2,e)
, (A.25)

from previous work (Cassak & Shay, 2007, 2008). Moreover, Shay et al. (2014) gives

Te,up,asym =
(Te,up,1nup,1Bup,2,e + Te,up,2nup,2Bup,1,e)

(nup,2Bup,1,e + nup,1Bup,2,e)
. (A.26)

It is beyond the scope of the present study to test this hypothesis, but it would be

interesting to do so for future work.

We now discuss implications for direct measurements of ring distributions in

reconnection events, especially in dipolarization fronts that are accessible to in situ
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observations. The simulations suggest that the physical size of the region where ring

distributions are present is relatively small. In the simulations, the range over which

rings are seen is about 1 di, corresponding to approximately 720 km (based on a

lobe density of 0.1 cm�3) in Earth’s magnetotail. Temporally, we expect that they

appear transiently at the dipolarization front. Simulations of reconnection in large

domains do not reveal temperature peaks in the downstream region in the steady-

state (Shay et al., 2014). Moreover, since ring distributions are unstable to wave

generation (Gary & Madland, 1985), they are expected to rapidly decay, making

their direct observation even more challenging. It is also challenging to observe ring

distributions when the major radius is smaller than the minor radius, i.e., when

r < 1. For typical parameters in Earth’s magnetotail, r is theoretically expected to

be approximately 0.2 - 0.6, so in situ observations of rings might be challenging but

can be potentially possible. Rings are more likely to be identifiable in large r (low

electron plasma beta) systems.

To illustrate the challenges of direct measurement of a ring distribution, we

describe an unsuccessful attempt to identify one in Earth’s magnetotail using the

THEMIS spacecraft (Angelopoulos, 2009). On February 27, 2009, four of the five

THEMIS spacecraft traversed a DF between 0750 and 0800 UT (Runov et al., 2010),

and burst mode data were available during this time. Their Figs. 4 and 5 reveal

classic signatures of a DF, with a significant decrease in density and an increase

in Bz (in GSM coordinates). The P1 (THEMIS B) spacecraft passed through the

DF at 07:51:26 UT, shown on the left side of their Fig. 4, with the vertical dashed

line denoting the DF. Immediately upstream of the DF (around 07:51:30 UT), the
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electron temperature in both directions perpendicular to the magnetic field exceeds

the parallel electron temperature, making this location a candidate for having an

electron ring distribution.

To determine whether there is an electron ring distribution at this time, we

investigate the EVDFs in the time interval when Te,? > Te,||. The distributions are

averaged over two spacecraft spin periods (6 s), between 07:51:30 and 07:51:36 UT,

to get better statistics than a single spin. The low-energy cuto↵ due to spacecraft

charging is ⇠ 60 eV, which is smaller than the predicted major radius for this

event, so we expect it to be ostensibly possible to resolve a ring distribution if

it is present. Two-dimensional cuts of the EVDF are produced from recombined

ElectroStatic Analyzer (ESA) and Solid State Telescope (SST) data in this time

range (not shown). Clear signatures of counterstreaming electron beams along the

magnetic field are seen in both ? � k planes. When the raw data is smoothed,

a weak signature of what appears to be a ring population is seen. However, a

closer examination of the uncombined ESA-only burst mode data with no smoothing

reveals that the weak ring population signal is not present in the ? 1� ? 2 cut where

it should be, judging from the ? � k plane cuts.

There are a few reasons for the misidentification of a ring distribution struc-

ture. In the ? 1� ? 2 plane, there is a substantial population of low-energy particles

which are of ionospheric origin. When the distribution function is smoothed, this

population gives the appearance of a ring. However, the ionospheric population

is not what would cause the appearance of a ring distribution by the mechanism

studied here and must be excluded. The reason that Te,? > Te,k for this distribu-
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tion is that the more di↵use magnetotail population is rather elongated in the ?

directions. To determine if this higher-energy magnetotail population is part of a

ring distribution, we look at the k� ? planes. Because of the strong field-aligned

counterpropagating beams, it makes it di�cult to tell if removing that population

would leave a ring in the high-energy population, but the population in question

does not clearly disappear for more field-aligned angles. Consequently, we are unable

to definitively claim there is an electron ring distribution in this particular THEMIS

event. We suggest that observing a ring distribution in situ likely requires higher

temporal resolution than available to THEMIS, but it may be accessible to MMS

(Schmid et al., 2016; Liu et al., 2018; Zhao et al., 2019; Grigorenko et al., 2020; Ma

et al., 2020) which has a much higher temporal resolution.

A.6 Conclusions

The appearance of ring distributions of electrons has been previously identified

in particle-in-cell simulations near dipolarization fronts (Shuster et al., 2014; Bessho

et al., 2014) and for dayside reconnection (Choi et al., 2022). It was suggested that

they are caused by remagnetization of the electrons in the reconnected magnetic

field (Shuster et al., 2014; Bessho et al., 2014). In this Appendix, we carry out a

theoretical and numerical analysis that verifies and quantifies this prediction. Our

analysis gives the major and minor radii of the ring distribution in terms of upstream

conditions that dictate the properties of the reconnection, i.e., the plasma density,

electron temperature, and reconnecting magnetic field strength. In particular, the
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major radius is given by the electron Alfvén speed based on the magnetic field and

density upstream of the electron current layer, while the minor radius is governed

by the electron thermal speed in the upstream region.

We employ 2.5D PIC simulations to test our predictions using five simulations

with varying upstream temperature (with the upstream density held fixed) and five

simulations with varying upstream density (with the upstream temperature held

fixed). We find ring distributions in all 10 simulations. We extract the major and

minor radii of the ring distributions for all ten simulations by fitting Gaussians to 1D

cuts of the reduced distributions. We find that the major radius v?0 is independent

of upstream temperature but decreases for increasing upstream density, while the

minor radius vTh increases for increasing upstream temperature and is independent

of upstream density. The results are qualitatively and quantitatively consistent

with the theoretical predictions, with agreement within one standard deviation of

the theoretical predictions for all simulations.

Next, we use the major and minor radii of the ring distributions to compare

the electron temperature associated with ring distributions to analytical predictions.

We find that the predicted and measured perpendicular electron temperature agrees

very well, within 12%. The parallel electron temperature is consistently di↵erent by

about a factor of 2 between theory and simulation because the simulated plasma also

contains counterstreaming beams in the parallel direction that are omitted from the

analytical model. Since the perpendicular electron temperature contributes to the

total electron temperature more than the parallel, the simulated total temperature

is within 20% of the theoretical predictions.
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By investigating the plasma parameter profiles in the region where the ring dis-

tributions are observed, we find the ring distributions, and their associated perpen-

dicular temperature anisotropy, are spatially coincident with a plateau, or shoulder,

in the profile of the reconnected magnetic field Bz. The shoulder in Bz is present

where the ring distributions are because the remagnetized electrons are diamagnetic,

thereby slightly lowering Bz within the electron orbit and slightly increasing Bz out-

side the orbit, thereby setting up a plateau in the Bz profile. A simple calculation

using conservation of energy reproduces the approximate perturbed magnetic field

due to this e↵ect.

We show that the ring distributions appear approximately two electron gy-

roradii (one diameter of the gyromotion) downstream from the location where the

electrons are remagnetized by the strong reconnected magnetic field, i.e., the lo-

cation where the radius of curvature of the magnetic field exceeds the gyroradius

of the electrons based on the bulk flow speed. This result is consistent with the

prediction that the ring distributions are associated with reconnection jets that are

remagnetized by the reconnected field in a dipolarization front (Shuster et al., 2014;

Bessho et al., 2014). We further confirm this by showing that the ring distributions

become weaker and then are completely suppressed as an increasingly strong guide

field is added.

Finally, we discuss applications of the present results in magnetospheric and

solar settings. For dipolarization fronts in Earth’s magnetotail, the electron tem-

peratures predicted by the scaling analysis presented here are in the few keV range

(when subsequent heating via betatron acceleration is accounted for), which is com-
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parable to the observed electron temperatures. When applied to solar flares, we

predict electron temperatures up to 10s of MK for very energetic flares, and an

increase in temperature with the square of the reconnecting magnetic field. Such

temperatures are consistent with those observed in super-hot flares, which are highly

likely to come from the coronal reconnection process but for which there is not yet

a widely accepted mechanism for their production. We further motivate a possible

extension of the present work to antiparallel asymmetric systems, which may be

important for applications to the dayside magnetopause.

The direct in situ measurement of ring distributions in the magnetotail is

expected to be di�cult, but potentially possible. Various characteristic pitch-angle

distributions have been observed in dipolarization fronts (Liu et al., 2017b,a) and

studied using simulations (Huang et al., 2021). It is possible that pancakes and/or

the perpendicular features of rolling pins are ring distributions, and testing this

would be interesting future work. We note that a pitch-angle distribution plot of a

ring distribution would have a pancake-type structure, but it is not possible using

a pitch-angle distribution plot to confirm the lack of low energy particles that is

characteristic of a ring distribution. Rather, a direct investigation of the velocity

distribution function is required. Based on a case study using THEMIS observations,

we find that it is di�cult to identify ring distributions. Higher temporal resolution,

such as that a↵orded by MMS, would facilitate their identification.

It is known that the significant anisotropy arising in ring distributions makes

them unstable to the generation of waves, especially whistlers (Gary & Madland,

1985; Umeda et al., 2007; Fujimoto & Sydora, 2008; Winske & Daughton, 2012).
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More broadly, (Grigorenko et al., 2020) showed that electrons at 1–5 keV with a per-

pendicular temperature anisotropy generate whistler waves near DFs. By knowing

the major and minor radii of the ring distributions in terms of upstream parame-

ters, the temperature anisotropy can be calculated, which allows for a quantitative

estimate of the linear growth rate of these modes. Such information is an important

aspect of understanding particle acceleration and heating as a result of wave-particle

interactions (Roytershteyn & Delzanno, 2018).

While whistler waves associated with temperature anisotropies are regularly

measured in situ in Earth’s magnetosphere, much less has been studied for the

possibility of whistler wave generation associated with solar flares. There has been

theoretical work on understanding whistler wave generation in solar coronal loops

(Vocks & Mann, 2006). In their work, the whistlers are generated from loss cone

distributions rather than the mechanism discussed here. Since the characteristic

length scale for the ring distributions is de, we expect the frequency of whistler

waves associated with ring distributions to be comparable to the electron cyclotron

frequency ⌦ce = eB/mec. For the characteristic solar flare plasma parameters used

here, we find that the whistler frequencies would be at least on the order of 0.3

GHz. Interestingly, an observational study has seen a long-lived source at 0.327

GHz (Aurass et al., 2006). Whether the mechanism discussed here can account for

observed frequencies and whether this can be used as remote evidence in favor of

the model presented here would be an interesting topic for future work.

There are many avenues for future work. The present simulations are two-

dimensional; we do not expect the fundamental aspects of the results to change in
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three dimensions, especially given that there is no guide field in the system studied

here, but it would be interesting to confirm that 3D e↵ects known to occur in

magnetotail-type settings (Pritchett, 2013; Sitnov et al., 2014) do not alter the

conclusions. The initial conditions of the present simulations did not include an

equilibrium normal magnetic field, which is important for magnetotail reconnection

(Lembege & Pellat, 1982); we do not anticipate this normal magnetic field would

appreciably change the results herein, but it should be verified. The simulation

domain size we employ is too small to allow ions to fully couple back to the plasma,

so future work should confirm that the results are valid for larger system sizes.

For dayside magnetopause applications, the proposed generalization incorporating

asymmetries needs to be tested. For solar corona applications, electron-ion collisions

may need to be taken into account, and observations should be used to test the

functional dependence of the temperature on the magnetic field strength during

solar flares predicted here, as well as whether a guide field suppresses such high

temperatures. The physical size of the region where electrons are remagnetized is

expected from the simulations to be relatively small, so questions about how ring

distributions thermalize and whether they control the temperature over a greater

volume, as would be necessary to explain the temperatures seen in super-hot flares,

would be excellent topics for future work. Future work to quantify the rate of

production of anisotropy-driven wave modes such as whistlers and their interaction

with the downstream plasma would be important for applications.
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Appendix B

Kinetic Entropy-Based Measures of Distribution Function

Non-Maxwellianity: Theory

B.1 Kaufmann and Paterson Kinetic Entropy-based Non-Maxwellianity

Here, we review the kinetic entropy-based measure developed by Kaufmann &

Paterson (2009) to measure the non-Maxwellianity of an arbitrary given distribution

function f(~r,~v, t) as a function of position ~r and velocity ~v at a fixed time t. (We

henceforth suppress the ~r and t dependence for simplicity.) First, one calculates the

density n =
R
d
3
vf(~v), bulk velocity ~u = (1/n)

R
d
3
v~vf(~v) and e↵ective temperature

T = (m/3nkB)
R
d
3
v(~v � ~u)2f(~v), where kB is Boltzmann’s constant and m is the

mass of a particle. The Maxwellianized distribution fM(~v) associated with f(~v) is

defined as

fM(~v) = n

✓
m

2⇡kBT

◆3/2

e
�m(~v�~u)2/2kBT

. (B.1)

part of J. Plasma Phys., 86, 825860502 (2020)
Contributing authors: Haoming Liang, M. Hasan Barbhuiya, Paul A. Cassak, Oreste Pezzi, S.
Servidio, F. Valentini, Gary P. Zank
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The local (continuous) kinetic entropy density s [e.g., Eq. (3) in Liang et al. (2019)]

of the full distribution function f(~v) is

s = �kB

Z
d
3
vf(~v) ln f(~v). (B.2)

The kinetic entropy density sM associated with the Maxwellianized distribution

fM(~v) is

sM = �kB

Z
d
3
vfM(~v) ln fM(~v). (B.3)

Equation (B.3) is analytically solvable using direct substitution of Eq. (B.1), giving

sM =
3

2
kBn


1 + ln

✓
2⇡kBT

mn2/3

◆�
. (B.4)

This form motivated Kaufmann & Paterson (2009) to define a non-Maxwellianity

measure, which we denote M̄KP , as

M̄KP =
sM � s

(3/2)kBn
. (B.5)

They chose to normalize to (3/2)kBn = cvn, where cv = (3/2)kB is the specific

heat per particle at constant volume for an ideal gas, so that M̄KP is dimensionless.

They note, however, that the dimensions of s and sM individually are not well-

defined because they include a natural logarithm of the dimensional quantity f(~v).

This is not an issue for di↵erences in entropy density, which can be written as having

a natural logarithm of a dimensionless quantity. [See also Appendix B4 of Liang
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et al. (2019)].

B.2 Theory of the Kaufmann and Paterson Non-Maxwellianity

B.2.1 Basic Properties of Kaufmann and Paterson Non-Maxwellianity

Here, we gather some basic properties about the Kaufmann and Paterson

non-Maxwellianity measure M̄KP . First, obviously, if f(~v) is Maxwellian, then

fM(~v) = f(~v) and M̄KP = 0. Second, it has long been known that fM(~v) is the

distribution with the maximum kinetic entropy for a fixed number of particles and

total energy (in the absence of electromagnetic fields, net charge, and net current)

[e.g., (Boltzmann, 1877; Bellan, 2008)]. Thus, sM is the maximum entropy density

for a fixed number of particles and energy. Therefore, if M̄KP = 0, then f(~v) is

Maxwellian, and one expects M̄KP to be strictly non-negative. For these reasons,

M̄KP is a good measure of non-Maxwellianity.

It is potentially a useful measure because it is a local measure which can

identify regions with non-Maxwellian distributions. This is worthwhile to know

because the rate of change of the local entropy density s is [e.g., (Eyink, 2018)]

@s

@t
+ r · ~J = �kB

Z
d
3
vC[f(~v)][1 + ln f(~v)], (B.6)

where ~J = �kB

R
d
3
v~vf(~v) ln f(~v) is the entropy density flux and C[f(~v)] is the

collision operator. The collision operator for a single species typically vanishes if

f(~v) is Maxwellian, so the degree of non-Maxwellianity can be related to dissipation

266



through collisions [e.g., (Liang et al., 2020a)]. Caution is necessary, however, be-

cause there are systems where dissipation occurs even if distributions are Maxwellian

everywhere. One example is if the constituent species have come to equilibrium with

themselves, but are at di↵erent temperatures than each other; there can be dissi-

pation through inter-species collisions even though each distribution is Maxwellian

[e.g., (Guo et al., 2017; Grošelj et al., 2017; Parashar et al., 2018; Arzamasskiy et al.,

2019; Kawazura et al., 2019; Cerri et al., 2019; Parashar & Gary, 2019; Rowan et al.,

2019; Zhdankin et al., 2019)]. A second example is at an infinitely thin shock; the

non-Maxwellianity is zero everywhere in such a system, but there is dissipation and

entropy production at the discontinuity.

The quantity M̄KP is fluid-like, obtained from velocity space integrals of a

function of the local distribution function. Thus, it should be able to be calculated

using satellite, simulation, or laboratory experiment data not very di↵erently than

calculating moments of the distribution function such as density or temperature.

Another important property of M̄KP is that it is independent of density, as

we now derive. Dividing Eq. (B.2) by n, then adding and subtracting [f(~v)/n] lnn

inside the integrand and simplifying gives

s

n
= �kB

Z
d
3
v
f(~v)

n
ln

✓
f(~v)

n

◆
� kB lnn. (B.7)

Using this result to directly calculate M̄KP = (sM � s)/(3/2)kBn reveals that the

kB lnn term cancels because the densities associated with f(~v) and fM(~v) are the
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same, so

M̄KP =
2

3


�
Z

d
3
v

✓
fM(~v)

n

◆
ln

✓
fM(~v)

n

◆
+

Z
d
3
v

✓
f(~v)

n

◆
ln

✓
f(~v)

n

◆�
. (B.8)

This shows that if one uses the convention where the distribution function is a

probability density instead of a phase space density, i.e., f(~v) ! f(~v)/n, then the

result for M̄KP is unchanged. It also shows that M̄KP has no explicit dependence

on the plasma density n.

We note that M̄KP contains similar information to the non-Maxwellianity pa-

rameter ✏ introduced by Greco et al. (2012) and the enstrophy non-Maxwellianity

⌦ (Servidio et al., 2017). In our notation, ✏ is

✏ =
1

n

sZ
d3v [f(~v) � fM(~v)]2 (B.9)

and ⌦ = n
2
✏
2. The latter was simplified by expanding f(~v) in a Hermite expansion,

which relates ⌦ to the Hermite spectrum of f(~v). In the limit that the departure

from a Maxwellian is small, we can write f(~v) = fM(~v)+�f(~v). Doing an expansion

of M̄KP to second order in �f(~v) gives

M̄KP ' 1

3n

Z
d
3
v
[f(~v) � fM(~v)]2

fM(~v)
, (B.10)

as is well-known in gyrokinetic theory [e.g., (Howes et al., 2006; Grošelj et al.,

2017; Cerri et al., 2018; Kawazura et al., 2019)]. This is quadratic in �f(~v), similar

to ✏ and ⌦. Thus, one would expect ✏, ⌦, and M̄KP to have similar structure
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in strongly collisional systems where the deviation from Maxwellian distributions

is small. When deviations from Maxwellianity are large, the two measures likely

are di↵erent. These measures are compared with each other and other dissipation

measures for weakly collisional systems in a companion study (Pezzi et al., 2021).

This section provides some insight into the properties of M̄KP , but it does not

address how to interpret what it means for the non-Maxwellianity to be a particular

number. The following sections introduce three examples where analytical values of

M̄KP are calculated for common non-Maxwellian distribution functions.

B.2.2 Kaufmann and Paterson Non-Maxwellianity for Two Beams

We calculate M̄KP analytically for a two-population plasma that are each

Maxwellian but drift parallel or anti-parallel to each other, and we require that

the relative velocity of the beams is large enough that the overlap between the two

populations in velocity space is negligible. A condition for this is derived below.

The distribution function fbeam(~v) for such a system is given by

fbeam(~v) = n1

✓
m

2⇡kBT1

◆3/2

e
�m(~v�uz1ẑ)2/2kBT1 + n2

✓
m

2⇡kBT2

◆3/2

e
�m(~v�uz2ẑ)2/2kBT2 ,

(B.11)

where n1 and n2 are the densities of the two beams, uz1 and uz2 are the bulk

velocities of the two beams, assumed parallel or anti-parallel, and T1 and T2 are the

temperatures of the two individual beams. By taking moments, it is straight-forward
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to show that the density, bulk flow, and e↵ective temperature are

n = n1 + n2, (B.12)

uz =
n1uz1 + n2uz2

n1 + n2
, (B.13)

Tbeam =
mn1n2

3kB(n1 + n2)2
(uz1 � uz2)

2 +
n1T1 + n2T2

n1 + n2
. (B.14)

These bulk properties are valid independent of whether the two populations overlap

in velocity space. The kinetic entropy density, however, is not exactly solvable unless

the overlap between the two distributions is negligible, which occurs when the first

term in Eq. (B.14) dominates the second term. In that limit, the kinetic entropy

density sbeam from Eq. (B.2) is just the sum of the kinetic entropies of the individual

beams,

sbeam ' 3

2
kB(n1 + n2) +

3

2
kB

"
n1 ln

 
2⇡kBT1

mn
2/3
1

!
+ n2 ln

 
2⇡kBT2

mn
2/3
2

!#
. (B.15)

Eq. (B.5) and (B.4) give an associated non-Maxwellianity of

M̄KP,beam ' ln

 
Tbeam/n

2/3

(T1/n
2/3
1 )n1/n(T2/n

2/3
2 )n2/n

!
. (B.16)

As a special case, if the beams are identical plasmas (n1 = n2 and T1 = T2)

and they are counter-propagating (uz1 = �uz2), then

M̄KP,beam ' ln

✓
Tbeam

22/3T1

◆
' ln

✓
mu

2
z1/3 + kBT1

22/3kBT1

◆
. (B.17)
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Letting u
2
z1 = M2

kBT1/m with M � 1, where M is an e↵ective Mach number of

the flow (leaving out a factor of the ratio of specific heats �), then the Kaufmann and

Paterson non-Maxwellianity for this distribution is M̄KP,beam ' ln[(M2
/3+1)/22/3].

B.2.3 Kaufmann and Paterson Non-Maxwellianity for Bi-Maxwellian

Distributions

A bi-Maxwellian distribution function fbiM(~v) is defined as

fbiM(~v) = n

✓
m

2⇡kBT?

◆✓
m

2⇡kBTk

◆1/2

e
�m(~v�~u)2?/2kBT?e

�m(~v�~u)2k/2kBTk
, (B.18)

where the ? and k subscripts allow for anisotropic velocities and temperatures,

typically relative to the direction of a magnetic field. Straight-forward calculation

of the associated kinetic entropy density from Eq. (B.2) gives

sbiM =
3

2
kBn

"
1 + ln

 
2⇡kBT

2/3
? T

1/3
k

mn2/3

!#
, (B.19)

and Eq. (B.5) gives an associated non-Maxwellianity of

M̄KP,biM = ln

 
T

T
2/3
? T

1/3
k

!
= ln

"
2

3

✓
T?

Tk

◆1/3

+
1

3

✓
Tk

T?

◆2/3
#
, (B.20)

where the second form eliminates the e↵ective temperature using T = (2/3)T? +

(1/3)Tk.

A plot of M̄KP,biM as a function of T?/Tk is given in black on a linear scale
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Figure B.1: Plot of the Kaufmann and Paterson non-Maxwellianity M̄KP,biM for a bi-
Maxwellian distribution function fbiM(~v) as a function of the ratio of perpendicular
to parallel temperature T?/Tk. The black line uses a linear horizontal scale on the
bottom axis, and the red line uses a logarithmic horizontal scale on the top axis over
a wider range of T?/Tk to show that it diverges for small and large T?/Tk.

in Fig. B.1. This helps give perspective on values of the Kaufmann and Paterson

non-Maxwellianity measure for a bi-Maxwellian distribution function. In particular,

M̄KP,bim = 0 for a Maxwellian plasma (T?/Tk = 1), as expected. For example values,

M̄KP,biM ' 0.17 for T?/Tk = 4 and M̄KP,biM ' 0.23 for T?/Tk = 1/4.

Interestingly, Eq. (B.20) reveals that M̄KP,biM diverges to infinity as T?/Tk

goes to either zero or infinity. The red line in Fig. B.1 uses a logarithmic horizontal

scale over a broader range of T?/Tk to motivate this.

B.2.4 Kaufmann and Paterson Non-Maxwellianity for Egedal Distri-

butions

During magnetic reconnection, magnetic fields in the upstream region bend

as they approach the reconnection site. A magnetic field-aligned electric field ac-

celerates electrons into this region, leading to a population of electrons that gets

trapped in the mirror field (Egedal et al., 2013). The electron velocity distribution
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functions in these regions are elongated in the direction parallel to the magnetic

field, leading to a gyrotropic distribution. The distribution is a double adiabatic

and reversible solution to the electron drift kinetic equation obtained in the the

limit of short electron transit/bounce time (Egedal et al., 2013). Here, we call it an

Egedal distribution fEg(~v), and it is given by

fEg(~v) =

8
>>><

>>>:

n1
�
2⇡kBT1

m

��3/2
e
� mv2?B1

2kBT1B trapped

n1
�
2⇡kBT1

m

��3/2
e
�

m(v2?+v2k)
2kBT1 e

e�k
kBT1 passing

(B.21)

where n1, T1 and B1 are the density, temperature and magnetic field strength

far upstream, B is the local magnetic field strength, �k is the parallel acceleration

potential, and v? and vk are the speeds perpendicular and parallel to the magnetic

field. The trapped/passing boundary is given by

1

2
m
�
v
2
k + v

2
?
�

� e�k � 1

2

mv
2
?

B
B1 = 0. (B.22)

Calculating the local number density n =
R
d
3
vfEg(~v) for this distribution

gives (Le et al., 2009)

n

n1
= 2b

r
�

⇡
+ erfcx

⇣p
�
⌘

� (1 � b)3/2erfcx

 r
�

1 � b

!
(B.23)

where erfcx(x) = e
x2

erfc(x) = e
x2

[1 - erf(x)] is the scaled complementary error

function, erfc(x) = (2/
p
⇡)
R1
x e

�z2
dz, b = B/B1, and � = e�k/kBT1. Note, in the

limit of � ! 0 and b ! 1, the trapped/passing boundary from Eq. (B.22) reduces to
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a point at vk = 0, and the distribution function fEg(~v) reduces to a Maxwellian, so

the Maxwellian results should be recovered. Since erfcx(0) = 1, we recover n = n1

in this limit, as expected.

The kinetic entropy density sEg for an Egedal distribution follows from direct

application of Eq. (B.2). A lengthy calculation gives

sEg =
3

2
kBn


n1G

n
+ ln

✓
2⇡kBT1

mn
2/3
1

◆�
, (B.24)

where

G = 2b

r
�

⇡
+

✓
1 � 2�

3

◆
erfcx

⇣p
�
⌘

�
p
1 � b

✓
1 � b � 2�

3

◆
erfcx

 r
�

1 � b

!
.

(B.25)

As a check, in the � ! 0, b ! 1 limit, G ! 1, so Eq. (B.24) reduces to Eq. (B.4),

as expected. We also note that, since erfcx(x) ! 1/(x
p
⇡) asymptotically in the

x ! 1 limit, sEg diverges as � ! 1.

To calculate M̄KP,Eg for Egedal distributions from Eq. (B.5), one needs the

e↵ective temperature TEg for Egedal distributions to get the entropy density of the

Maxwellianized distribution. The parallel temperature Tk,Eg = [m/(nkB)]
R
d
3
v(vk�

uk)2f(~v) and perpendicular temperature T?,Eg = [m/(2nkB)]
R
d
3
v(~v? � ~u?)2f(~v),
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following lengthy calculations, are

Tk,Eg =
n1T1

n

"
erfcx

⇣p
�
⌘
+ 2b

✓
2 � b+

2�

3

◆r
�

⇡

� (1 � b)5/2 erfcx

 r
�

1 � b

!#
, (B.26)

T?,Eg =
n1T1

n

(
erfcx

⇣p
�
⌘
+ b(3b � 1)

r
�

⇡

+(1 � b)3/2


�b

1 � b
�
✓
3b

2
+ 1

◆�
erfcx

 r
�

1 � b

!)
, (B.27)

TEg =
2

3
T?,Eg +

1

3
Tk,Eg. (B.28)

As a check, Tk,Eg, T?,Eg, and TEg all go to T1 in the � ! 0, b ! 1 limit, as expected.

Then, sM is calculated from Eq. (B.4) and using the result with Eqs. (B.24) and

(B.5), the closed-form non-Maxwellianity M̄KP,Eg for Egedal distribution functions

is

M̄KP,Eg = 1 � n1G

n
+ ln

 
TEg/n

2/3

T1/n
2/3
1

!
. (B.29)

For reference, plots of kinetic entropy density sEg and Kaufmann and Paterson

non-Maxwellianity M̄KP,Eg for an Egedal distribution are in Fig. B.2, using a density

of n/n1=0.805 and T1 = 0.08 B
2
1/4⇡kBn1. Panels (a) and (d) are contour plots

of sEg and M̄KP,Eg, respectively, as a function of b and �. The former is normalized

to kBn1. Panels (b) and (e) give cuts as a function of b at � = 2, 4, 6, 8, and 10.

Panels (c) and (f) give cuts as a function of � at b = 0.15, 0.30, 0.45, 0.60 and 0.75.

The plots show that the non-Maxwellianity increases as � increases, which makes

sense physically because this increases the temperature anisotropy leading to an
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(a) (c)(b)

(d) (e) (f)

Figure B.2: Kinetic entropy density sEg and Kaufmann and Paterson non-Maxwell-
ianity M̄KP,Eg for an Egedal distribution function from Eq. (B.24) and Eq. (B.29)
assuming n/n1=0.805 and T1 = 0.08 B

2
1/4⇡kBn1. (a) and (d) are contour plots

of sEg and M̄KP,Eg, respectively, as a function of b = B/B1 and � = e�k/kBT1.
(b) and (e) are cuts of these as a function of b for five representative values of �.
(c) and (f) are cuts of these as a function of � for five representative values of b.

increase in M̄KP , similar to bi-Maxwellian distributions in the previous section.

Following Le et al. (2009), it is typically more useful to eliminate � in favor

of n/n1 and b by numerically inverting Eq. (B.23). The result is then in terms of

quantities more easily found in observations and simulations. Plots analogous to

Fig. B.2 but as a function of n/n1 and b are in Fig. B.3. Panels (a) and (d) are

contour plots of sEg and M̄KP,Eg, respectively. Panels (b) and (e) give cuts as a

function of b for n/n1 = 0.6, 0.8, 1.0, 1.2, and 1.4. Panels (c) and (f) give cuts as

a function of n/n1 for fixed b; only b = 0.3 is shown in (c) since the dependence

on b is weak, while (f) shows cuts for b = 0.15, 0.30, 0.45, 0.60 and 0.75. Note that

numerically inverting Eq. (B.23) gives negative � or extremely high � (� 80) for

some values of n/n1 and b. Such values are eliminated from the plots and are

denoted by shaded gray regions in Fig. B.3(a) and (d).
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Figure B.3: Analogous to Fig. B.2, except plotted as a function of n/n1 and b =
B/B1 upon inversion of Eq. (B.23). The shaded regions in (a) and (d) correspond
to parameters for which the inversion gives values of � below 0 or above 80, and are
removed from the plot.

The past three subsections provide exact solutions for the non-Maxwellianity

measure of analytic forms of three common non-Maxwellian velocity distribution

functions. These are potentially useful to quantify the non-Maxwellianity of self-

consistently generated distribution functions in physical systems, such as those

undergoing reconnection, turbulence, or shocks in magnetized plasmas. In self-

consistent plasmas, the distributions undoubtedly are not exactly given by the ex-

pressions analyzed here, but should provide a reasonable approximation in some

settings.

B.2.5 Kaufmann and Paterson Non-Maxwellianity for Ring Distri-

butions

In Appendix A, we discussed the increase in electron temperature caused by

remagnetization of the electron jets outflowing from the di↵usion region by the
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reconnected magnetic field in the flux pile-up regions. Remagnetization of electron

beams turn the electron velocity distribution functions (VDFs) to turn into a torus

or ring shape (in velocity-space), which are again non-Maxwellian. As we did in

Sec. B.2.4, here we derive the kinetic entropy density for ring VDFs first, and then

M̄KP .

We previously used one form of an ideal ring VDF given by (Wu et al., 1989;

Min & Liu, 2016)

fr

�
v?, vk

�
=

nr

⇡3/2v3Th⇤
e
�

v2k
v2
Th e

�(v?�v?0)
2

v2
Th , (B.30)

where nr is the number density, vk and v? are the velocity space coordinates parallel

and perpendicular to the central axis of the ring distribution, v?0 is the major radius

of the ring distribution, and vTh is the minor radius of the ring distribution, assumed

to be Gaussian and isotropic in the parallel and perpendicular directions, given by

vTh = (2kBT/m)1/2. The normalization factor ⇤, defined by ⇤ = r
p
⇡ erfc(�r) +

e
�r2 , enforces that nr =

R
d
3
vfr; here r = v?0/vTh and erfc(�r) = (2/

p
⇡)
R1
�r e

�z2
dz

is the complementary error function. We use Eq. B.2 and after some algebra get

sr =
3

2
nkB


H + ln

✓
⇡v

2
Th⇤

2/3

n2/3

◆�
, (B.31)

where

H = 1 � 1

3

v?0

vTh

p
⇡

⇤
erfc

✓
�v?0

vTh

◆
. (B.32)

Note that in the limit of v?0 ! 0, ⇤ ! 1, H ! 1, and thus sr ! sM (seen in
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Eq. B.3).

Using Eq. B.5, we derive a closed-form expression for non-Maxwellianity M̄KP,r

for ring VDFs which after a brief calculation comes out as

M̄KP,r = 1 � H � 2

3
ln⇤. (B.33)
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Appendix C

Kinetic Entropy in an EDR - Theory, Observations, and Simulations

of Kinetic Entropy in a Magnetotail Electron Di↵usion Region

C.1 Review of Kinetic Entropy with a Uniform Velocity Space Grid

Kinetic entropy S as defined by Boltzmann (Boltzmann, 1877) is written as

S = kB ln⌦, (C.1)

where kB is Boltzmann’s constant, ⌦ = Ntot!/
Q

j,k Nj,k! is the total number of mi-

crostates that correspond to a given macrostate, Ntot is the total number of particles

in the system, Nj,k is the number of particles in the j, k’th cell of phase space, and

the product over j and k is over all position- and velocity-space cells, respectively.

We suppress writing a possible time t dependence here and throughout for simplic-

ity. We call this form “combinatorial entropy” because of how the microstates are

counted.

By breaking up phase space into discrete bins and applying Stirling’s approx-

imation, combinatorial entropy can be written in terms of the particle distribution

part of Phys. Plasmas, 29, 022902 (2022)
Contributing authors: Matthew R. Argall, M. Hasan Barbhuiya, Paul A. Cassak, Shan Wang,
Jason Shuster, Haoming Liang, Daniel J. Gershman, R. B. Torbert, and Jim L. Burch
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function f(r,v) = Nj,k/(�3
r�3

v) as (Boltzmann, 1877; Liang et al., 2019)

S = kB

⇢
Ntot ln

✓
Ntot

�3r�3v

◆
�
Z

d
3
r

Z
d
3
vf(r,v) ln [f(r,v)]

�
. (C.2)

where the small phase space cells have uniform dimensions of size �3
r and �3

v. In

writing this expression, the phase space volume has been written as infinitesimals

d
3
rd

3
v in the integral in the second term but remains �3

r�3
v in the first term.

This implies that Eq. C.2 is only semi-continuous and that the finite grid size of any

practical simulation or measurement device factors into the total entropy (Liang

et al., 2019, 2020a).

By considering the permutation of particles in position- and velocity-space

separately, the total combinatorial entropy can be decomposed into position-space

combinatorial entropy Sr and velocity-space combinatorial entropy SV , each of which

has a semi-continuous representation similar to Eq. C.2 (Mouhot & Villani, 2011;

Liang et al., 2019). It is illustrative to note that the same semi-continuous forms

of position- and velocity-space entropy can be derived directly from Eq. C.2. After

adding and subtracting
R
d
3
rn(r) ln [n(r)] and some simplification, Eq. C.2 becomes

S = Sr + SV (C.3)
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where

Sr = kB

⇢
Ntot ln

✓
Ntot

�3r

◆
�
Z

d
3
rn(r) ln [n(r)]

�
(C.4)

SV =

Z
d
3
rsV (r) (C.5)

sV (r) = kB

⇢
n(r) ln


n(r)

�3v

�
�
Z

d
3
vf(r,v) ln [f(r,v)]

�
(C.6)

The second term in Eq. C.6 is often referred to as the total kinetic entropy

density s(r),

s = �kB

Z
d
3
vf(v) ln [f(v)] , (C.7)

where we begin to suppress the r dependence except where it is important to retain.

This is the density of S because its position space integral gives the total kinetic

entropy S in Eq. C.2 (up to a constant).

For a drifting Maxwellian distribution of the form

fM(v) = n

✓
m

2⇡kBT

◆3/2

e
�m(v�u)2/2kBT

, (C.8)

where m is the mass of the particles, n is the number density, u is the bulk flow

velocity, and T is the temperature, Eq. C.7 is exactly solvable, and gives the kinetic

entropy density sM of a Maxwellian distribution:

sM =
3

2
kBn


1 + ln

✓
2⇡kBT

mn2/3

◆�
. (C.9)
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Substituting this into Eq. C.6 gives

sM,V =
3

2
kBn

"
1 + ln

 
2⇡kBT

m (�3v)2/3

!#
, (C.10)

the velocity-space entropy density of a Maxwellian distribution.

Because the Maxwellian distribution describes a plasma in local thermody-

namic equilibrium, and because that equilibrium state has the highest entropy of

all distributions with the same energy and number of particles (Boltzmann, 1877),

the di↵erence in kinetic entropy density between an observed distribution and its

associated Maxwellian, or the non-Maxwellianity of the distribution (Kaufmann &

Paterson, 2009),

M̄KP =
sM � s

(3/2)kBn
, (C.11)

is a measure of the departure from Maxwellianity of a local distribution function and

gives a measure for the possibility for dissipation to occur. Eq. C.11 was defined

by Kaufmann & Paterson (2009) and is normalized by 3
2kBn = cvn, where cv is

the specific heat per particle at constant volume for an ideal gas, to make M̄KP

dimensionless.

One disadvantage of M̄KP is that it is not bounded, making its interpretation

di�cult (Liang et al., 2020a). To remedy this, a new non-Maxwelllianity measure

formed from the velocity-space entropy density (Eq. C.6) was introduced (Liang

et al., 2020a)

M̄ =
sM,V � sV

sM,V
. (C.12)
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Provided the velocity space grid is chosen appropriately, as discussed in Liang

et al. (2020a), this measure is not only dimensionless, positive definite, and vanishes

when the distribution is a Maxwellian (similar to M̄KP ), but is also bounded. It can

be written in terms of total entropy density s (Eq. C.7)

M̄ =
sM � s

sM + kBn ln (n/�3v)

but we will evaluate it in terms of M̄KP (Eq. C.11) (Liang et al., 2020a)

M̄ =
M̄KP

1 + ln
n
(2⇡kBT )/

h
m (�3v)2/3

io . (C.13)

because this allows us to isolate the e↵ects that discretizing phase space has on our

ability to measure entropy and non-Maxwellianity.

C.2 Simulation

The observed reconnection event was nearly symmetric and reasonably lami-

nar, and previous studies employing 2.5D PIC simulations have shown good agree-

ment with the observations (Torbert et al., 2018; Nakamura et al., 2018, 2019; Egedal

et al., 2019). We therefore also employ 2.5D PIC simulations to compare with the ob-

servations. We use the massively parallel PIC code P3D (Zeiler et al., 2002), where

particles are stepped forward in time using the relativistic Boris particle stepper

(Birdsall & Langdon, 1991) and electromagnetic fields are stepped forward using

the trapezoidal leapfrog method (Guzdar et al., 1993); the fields can have a smaller
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time-step than that of the particles. P3D employs the multigrid approach to clean

the electric field, E, to enforce r ·E = ⇢/✏0, where ⇢ is the net charge density, every

10 particle time-steps. We employ periodic boundary conditions in both directions

with a large enough computational domain that the boundaries are not expected to

play much of a role in the region of interest at the time examined. A motivation for

choosing periodic boundary conditions over open ones is to see if the local kinetic

entropy densities obtained in a closed system are representative of the local kinetic

entropy obtained in the (open) real system.

The initial setup of the simulation has two Harris current sheets (CS) and a

uniform background (BG) plasma population for which the density nBG and tem-

perature Ts,BG for species s (either e for electrons or i for ions) can be chosen

independently from the Harris sheet parameters. The initial magnetic field pro-

file is BL(N) = B0[tanh [(N � lN/4)/w0] � tanh [(N � 3lN/4)/w0] � 1], where B0 is

the asymptotic reconnecting magnetic field far upstream, w0 is the half-thickness

of the current sheet and lN is the width of the computational domain in the êN

direction. Initially, the electrons and ions in the Harris sheets have the same den-

sity profile, nCS(N) = n0

�
sech2 [(N � lN/4)/w0] + sech2 [(N � 3lN/4)/w0]

�
, where

n0 = B
2
0/[8⇡kB(Te,CS + Ti,CS)] and Ts,CS are the temperatures of the current sheet

population for each species.

For the plasma parameters in the simulations, we employ the same values used

by Nakamura et al. (2018) The upstream (lobe) magnetic field is B0 = 12nT and

the density at the center of the initial CS is n0 = 0.0896 cm�3. The electron CS

temperature Te,CS = 1.053 keV = 0.125T0 and ion CS temperature Ti,CS = 3Te,CS,

285



where T0 = miV
2
Ai0/kB = 8.424 keV and VAi0 = 875 km/s is the Alfvén speed based

on n0 and B0. The background (lobe) electron temperature Te,BG = 0.351 keV =

0.04167T0 and the background ion temperature Ti,BG = 3Te,BG. The BG density

is nBG = 0.0296 cm�3 = 0.33n0. These parameters result in an upstream electron

Debye length of �De = 0.018di0 = 1.37⇥104m, and upstream total beta of � = 0.11.

The speed of light c is 1.75⇥104 km/s which is smaller than that of Nakamura

et al. (2018) but is su�ciently larger than other speeds of our system. The initial

current sheet half-thickness w0 = 456 km = 0.6 di0, where di0 = c/!pi0 = 760 km is

the ion inertial length based on n0, !pi0 = (n0e
2
/✏0mi)1/2 is the ion plasma frequency,

and e is the proton charge, which is the same as in Nakamura et al. (2018). The

electron to ion mass ratio is me/mi = 0.01 which is larger than in Nakamura et al.

(2018) and is a factor of 18.36 larger than the realistic value. This means the

electron-to-ion inertial length ratio in the simulations is a factor of 4.28 larger than

the realistic length ratio. This di↵erence will be noted while drawing comparisons

between observation and simulation results, but we do not expect that electron

scale properties of the reconnection region are altered when properly normalized to

a realistic value.

The length of the computational domain is lL = 2.66 ⇥ 104 km = 35 di0 and

its width is lN = 1.33 ⇥ 104 km = 17.5 di0. The system size is smaller than that

of Nakamura et al. (2018) but since the focus of our study is a trajectory which

passes very close to the electron di↵usion region, a smaller system size is su�cient;

our system size is not large enough for ions to fully couple to the reconnected

field downstream of the X-point, but this is not expected to a↵ect dynamics at the
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electron scale that are the focus of this study. The grid-length� in both directions =

6.5 km = 0.008545 di0, which is chosen to be smaller than the smallest length scale of

the system (the electron Debye length). The time-step �t = 0.652ms = 0.00075⌦�1
ci0

is chosen to be smaller than the smallest time scale of the system (the electron plasma

frequency), where ⌦ci0 is the ion cyclotron frequency based on B0. The time step

for electromagnetic fields is half of that for the particles. There are 4096⇥2048 grid

cells which are initialized with 100 weighted particles per grid (PPG). To initiate

reconnection, an X point/O point pair are seeded in both current sheets using a weak

magnetic field perturbation of the form �BL = �0.08B0 sin (2⇡L/lL) sin (4⇡N/lN)

and �BN = 0.08B0[lN/(2lL)] cos (2⇡L/lL)[1 � cos (4⇡N/lN)].

Kinetic entropy is calculated in the simulations employing the implementation

from Liang et al. (2019) with one noteworthy di↵erence. The velocity-space grid

scale �vi for ions and �ve for electrons was imposed to be equal to each other

in previous works (Liang et al., 2019, 2020a). In the present study, we allow �vi

and �ve to be chosen independently. Moreover, this study employs two popula-

tions in the initial Harris sheet profile, compared to a single drifting Maxwellian

distribution in previous works. Therefore, we optimize the velocity-space grid scale

analogously to the previous works, but specifically check the agreement between ki-

netic entropy density calculated by the simulation and the theoretical value in both

the background plasma and the current sheet center simultaneously. We calculate

the kinetic entropy density for each species in the simulations with varying velocity-

space grids in order to find the optimal velocity-space grid scale at t = 0. This is an

important step because if the velocity space grid is too small, the distribution is over-
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resolved, meaning there is not a statistically significant number of particles per grid

cell. Meanwhile, if the grid size is too large, the distribution is under-resolved and

important structures are lost. The kinetic entropy density for either species is given

by Eq. C.7 with f = fCS+fBG, consisting of both the current sheet and background

populations at t = 0. Since these integrals cannot be done analytically, we carry out

these integrals numerically. After we choose a (Cartesian) velocity-space grid scale

for electrons, we numerically compute the entropy and compare it to the theoretical

value. This results in agreement to within ±1% in the upstream region and ±2% at

the center of the current sheet. The optimal velocity-space grid scale for each species

is 60� 65% of the smaller of the background and current sheet thermal speeds. For

electrons, each velocity-space direction is binned from (�1.67, 1.67) ⇥ 104 km/s =(-

18.71, 18.71)VAi0 with 22 bins of size �ve = 1.48⇥103 km/s=1.7005 VAi0. For ions,

the binning range is (�7.34, 7.34) ⇥ 103 km/s=(-8.38, 8.38)VAi0 with 54 bins with

bin-size �vi = 2.72 ⇥ 102 km/s=0.3105VAi0.

Previous simulation studies (Liang et al., 2019, 2020a) employed a look-up ta-

ble A look-up table for the simulation is advantageous because the simulated plasma

has PIC noise while the analytical expression does not. Using raw density and tem-

perature values with an analytical expression for the Maxwellianized entropy leads

to disagreement with the theoretical value. The look-up table allows comparable

amounts of error in the simulated and theoretical values, which improves the agree-

ment with theory.

For the present study, we find that unlike in Liang et al. (2020a), the results for

sM when using a look-up table are significantly di↵erent than when not using one.
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The reason for the disagreement is mixing between macroparticles of di↵erent nu-

merical weight; previous studies employed a look-up table that assumed the weights

were the same for all macroparticles. As macroparticles of di↵erent weight mix, the

look-up table becomes less accurate. This could be addressed by including a third

axis of the look-up table to incorporate particle weight, but that is not undertaken

for the present study. We therefore directly calculate sM to get simulated values of

the non-Maxwellianity parameters.

The simulation results we present are carried out with no initial out of plane

(guide) magnetic field Bg. It is important to put this choice in the context of previous

numerical simulations of the observed event that employed a weak initial guide field

(Egedal et al., 2019; Nakamura et al., 2018). We perform and compare results

from test simulations with and without a weak initial guide field of Bg = �0.36 nT

= �0.03B0. Figure C.1 shows 2D plots of the out-of-plane magnetic field component

BM , where the X-line is located at (0, 0) and the separatrices are the black curves. In

the presence of the weak guide field (Fig. C.1a), we find that BM has a value of about

�0.6 nT = �0.05B0 in the vicinity of the EDR. This is not seen in MMS3 data (see

Figure C.2e; BM does not become appreciably negative in the shaded region). In

our simulations without an initial guide field (Fig. C.1b) we find that BM is again

negative in the vicinity of the X-line along the virtual spacecraft trajectory marked

by the thick black curve, but has a smaller value of �0.24 nT = �0.02B0, closer to

the MMS3 observations. We find no comparable virtual trajectory in the simulation

with an initial guide field that reproduces the signature of BM observed by MMS3,

so we use the Bg = 0 simulation for this study. Egedal et al. (2019) also used a
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Figure C.1: Out of plane magnetic field BM from simulations (a) with and (b)
without an initial guide field of Bg = �0.36 nT = 0.03B0. The separatrices are
thick black curves and the thick black line in (b) is our selected virtual spacecraft
trajectory. [Associated dataset available at https://doi.org/10.5281/zenodo.
5807744].

guide field weaker than that of Nakamura et al. (2018) for similar reasons.

Finally, we note that the virtual spacecraft trajectory is selected from a set of

possible trajectories, chosen by eye (as opposed to using more systematic approaches

to determine the trajectory (Nakamura et al., 2019; Egedal et al., 2019; Shuster et al.,

2017)). The selected trajectory is one which produces qualitatively similar trends of

magnetic field and electron flow speeds when compared with MMS3 observations.

We do not anticipate significantly di↵erent values by employing more systematic

approaches. In what follows, all plots are made from the lower current sheet at the

simulation time of 23.4 s = 27⌦�1
ci0, when the system has achieved a steady-state

reconnection rate (not shown).
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C.3 Results

C.3.1 Comparison between Observations and the PIC Simulation

Figure C.2 shows a comparison between observations (left) and the PIC sim-

ulation (right) in the same format as Figure 7 of Nakamura et al. (2018) MMS3

passed closest to the reconnection X-line and its data is plotted during the 5 second

interval starting at 22:34:00UT because this is the time interval surrounding the

EDR most commonly shown in previous studies (Torbert et al., 2018; Genestreti

et al., 2018; Hasegawa et al., 2019; Nakamura et al., 2018, 2019). In this study,

we focus on the electron entropy in and immediately surrounding the EDR in the

subinterval from 1.95 s to 3.315 s, which is highlighted by the gold box in the MMS

panels. Since the structure velocity is VL = �170 km/s and the electron inertial

length is de = 30 km (Torbert et al., 2018), the spacecraft traversed a distance of

7.7 de during this time.

The corresponding path of the virtual spacecraft trajectory through the sim-

ulation is 5.3 di0 = 30.64 de long, where (no) subscript 0 indicates that the (current

sheet density, n0) upstream density was used. This would correspond to a path

length of 7.1 de in a simulation with a realistic mass ratio (with me 18.36 times

lighter), which is nearly the same as the path length in the observations. The data

is taken at a single time after the simulation has reached a steady state. We include

simulation results both in normalized units (left vertical axis) and physical units

(right vertical axis), the latter of which allows for a quantitative comparison with

the MMS data.
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Quantitatively, the density (Fig. C.2a,b); electron temperature anisotropy

A = Te,k/Te,? � 1, where Te,k and Te,? are the electron temperatures parallel and

perpendicular to the magnetic field (Fig. C.2c,d); and magnetic field (Fig. C.2e,f)

are similar between observations and the simulation. The electron bulk flow (Fig-

ure C.2g,h) has similar structure but is smaller in the simulation by about a factor

of 4; this is because the simulated electron mass is 18.36 times larger than the re-

alistic value, so the electron Alfvén speed is 4.28 times smaller. The electric field

components in the simulation reference frame E and in the electron rest frame E0

(Fig. C.2i-n) all have similar profiles to the observations, but the L and N compo-

nents are about 2 times smaller in amplitude in the simulations than in the obser-

vations. Similarly, the rate of energy conversion between the electric field and the

electrons (Fig. C.2o,p) is a factor of about 4 lower in the simulations. We note that

there is good agreement in the normalized simulation values and those presented in

Nakamura et al. (2018) (see their Figure 7), so the quantitative di↵erences with the

observations seen here are consistent with previous studies. The overall agreement

between the simulation and observations gives us confidence in our comparison and

interpretations of entropy that follow (§C.3.2).

Some di↵erences in density visible in Figure C.2a,b can be attributed to the

trajectory of the virtual spacecraft through the simulation EDR. Along the trajec-

tory, the density profiles both increase, but the simulation profile exhibits a local

minimum not present in the observations. The density profile along a vertical cut

through the EDR has a double peak with the peaks appearing just upstream of

the X-line at the turning points of the meandering motion (Chen et al., 2011). If
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our virtual trajectory began closer to, but still below, the central current sheet and

sloped gently downward, the density profile would gradually increase as in the ob-

servations. However, the qualitative agreement between the fields and flows just

described would su↵er. We choose to keep this trajectory because of the importance

of B and Ve to reconnection. We will revisit this issue when comparing entropy in

the next section.

C.3.2 Kinetic Entropy: Application

We now compare observations and simulation results of kinetic entropy pa-

rameters along the satellite trajectory to a) determine if local kinetic entropy mea-

surements in a large, open system can be interpreted in a similar manner to those

of a closed system and b) draw a link between kinetic entropy and the dissipation

processes of reconnection. Figure C.3 again shows the virtual satellite trajectory

through the simulation domain during the gold highlighted interval, as well as a

2D snapshot of M̄ from Eq. C.12. We then plot total and velocity-space entropy

densities s and sV along with their associated Maxwellianized values sM and sM,V ,

and the non-Maxwellianity measures M̄ and M̄KP from both MMS (left) and the

simulation (right) in the same format as Figure C.2. We note that s and sM do not

have real units on the right-axis because the units are not physical (Liang et al.,

2019). From 22:34:00-1.95 (the left-edge of the gold box), MMS3 made a brief excur-

sion into the inflow region (Torbert et al., 2018) where entropy reaches a maximum

during the separatrix crossing and a minimum at the furthest excursion. During the
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Figure C.2: Comparison between MMS observations (left) and a PIC simulation
(right) of a magnetotail EDR encounter. MMS observations are shown over an ex-
tended region to provide context and comparison to previous results (see text). The
gold rectangle highlights the EDR and region of overlap with simulation. Compar-
isons are made between (a,b) electron density, (c,d) electron temperature anisotropy,
(e,f) magnetic field, (g,h) electron bulk velocity, (i-n) electric field in the spacecraft
and electron rest frame, (o,p) total and M-component of the rate of energy con-
version between the electric field and the electrons. Simulation data is shown in
real units (right-axis) on the same scale as MMS observations with the exception
of panel (p), which is much smaller in magnitude. Overall, observations and sim-
ulations are in qualitative agreement. [Associated simulation dataset available at
https://doi.org/10.5281/zenodo.5807744]

.
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same interval, the non-Maxwellianity peaks in the inflow region, a characteristic that

has been noted in previous simulations of reconnection (Liang et al., 2020b). That

non-Maxwellianity peaks outside of the regions where energy is being dissipated will

be discussed below in the context of the electron distribution functions.

As MMS3 enters into the EDR (the gold box), passes southward of the X-

line, and exits into the tailward exhaust, entropy density gradually increases in the

observations; however, in the simulation, entropy density has a U-shaped profile

with a minimum below the EDR. As expected from Eq. C.9, these traces have the

same overall structure as the density profiles in Figure C.2a,i.

The non-Maxwellianity measure M̄KP (Eq. C.11, Fig. C.3d,g) is computed

using both s (Eq. C.7, blue) and sV (by using the version of Eq. C.6 in spherical

coordinates (Argall et al., 2022), green). The MMS observations result in unphysical

values within the EDR of the electron Kaufmann and Paterson non-Maxwellianity

M̄KP,s,e based on s, where it becomes negative. The Maxwellian distribution should

have the highest entropy of any distribution with the same number of particles and

energy, so M̄KP,s,e should be positive. The reason M̄KP,s,e is negative is explained

in detail in Argall et al. (2022). In contrast, the electron Kaufmann and Paterson

non-Maxwellianity M̄KP,sV ,e using the velocity space entropy density sV is always

positive, consistent with theoretical constraints.

The other non-Maxwellianity measure M̄ (Fig. C.2d,g, orange) is computed us-

ing the appropriate version of Eq. C.12 for MMS and the simulation. It is smaller in

magnitude than M̄KP because its normalization term sV ensures that M̄ is bounded

to the range [0,1] for a properly defined velocity space grid (Liang et al., 2020a).
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Figure C.3: Kinetic entropy and non-Maxwellianity in an EDR and their relationship
to structures in the distribution function. (a) 2D plot of electron non-Maxwellianity
M̄e in the PIC simulation, the virtual satellite trajectory through the EDR, repre-
sentative magnetic field lines, and the location of the EDR distribution in panel o,
marked by an “x”. (b,f) Total and (c,g) velocity space kinetic entropy density for
the measured (orange) and Maxwellianized (blue) distributions. (d,h) Kaufmann
and Paterson non-Maxwellianity M̄KP using total (blue) and velocity space (green)
entropy density. (e,i) Velocity space non-Maxwellianity M̄ (orange). For (b)-(i),
MMS data is in the left column and simulation data is in the right column. (j,m)
Upstream, (k,n) inflow, and (l,o) EDR electron distribution functions from MMS3
(j-l) and the PIC simulation (m-o). [Associated simulation dataset available at
https://doi.org/10.5281/zenodo.5807744].
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When comparing observations to simulations, both M̄ and M̄KP have similar shapes

within the EDR despite the fact that s and sV are di↵erent. In addition, both values

of M̄ are more similar in magnitude than the values of M̄KP . This implies that the

local measure of kinetic entropy density sV as measured in the closed simulation can

be interpreted in the same manner as it is in the large, open magnetotail system by

MMS.

Now we relate kinetic entropy measurements to various kinetic processes that

occur during reconnection by examining the electron distribution functions in the

MMS data (Fig. C.3j-l) and the PIC simulation (Fig. C.3m-o) at the times and

locations indicated by vertical dashed lines in Figures C.3b-i and by the “x” in

the EDR of Figure C.3a. The simulated distributions are on a di↵erent scale; as

noted, multiplying the axes by
p
mi/me⇡4.3 will give the proper ranges for a real

mass ratio simulation. The two simulated distributions corresponding to the MMS

observations outside the EDR were taken from representative upstream locations

in the simulation. The first distribution (Fig. C.3j,m) is taken from the Earthward

exhaust after the electrons have re-magnetized and become mostly Maxwellian. The

second distribution (Fig. C.3k,n) is from the inflow region where parallel potential

structures generate a temperature anisotropy (Egedal et al., 2008, 2010). Here

sV is lower, but the non-Maxwellianity is relatively large. The third distribution

(Fig. C.3l,o) is from the heart of the EDR where meandering motion in the current

sheet creates crescents and striations (Ng et al., 2011; Shuster et al., 2015; Torbert

et al., 2018). Here, the non-Maxwellianity is intermediate between the inflow and

Maxwellian distributions. That regions of elevated non-Maxwellianity in the MMS
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observations can be related to kinetic processes during reconnection is consistent

with previous numerical simulations (Liang et al., 2020b) and motivates the utility

of the entropy-based non-Maxwellianity measure as an indicator of kinetic-scale

energy conversion and dissipation processes that occur during reconnection.

C.4 Data Availability

MMS data is publicly available at the MMS science data center (https://

lasp.colorado.edu/mms/sdc/public/) (Burch, 2015). MMS data was processed

and visualized with the help of the PyMMS Python library (Argall et al., 2020b,a).

Simulation data used in this manuscript is available on Zenodo (https://doi.org/

10.5281/zenodo.5807744)
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