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Abstract
We diagnose local properties of magnetic reconnection during a sawtooth crash employing the
three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C1. To do so,
we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to
the helical ( ) ( )=m n, 1, 1 mode at the q=1 surface, where m and n are the poloidal and
toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular
test equilibrium in a non-reduced field representation using both resistive-MHD and extended-
MHD models. We find growth rates for the extended-MHD reconnection process exhibit a
nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from
previous experimental, theoretical, and computational work. We compare the properties of
reconnection in the two simulations, revealing the reconnecting current sheets are locally
different in the two models and we present the first observation of the quadrupole out-of-plane
Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation
(but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties
of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding
qualitative and quantitative effects due to changes in the symmetry of the reconnection process.
This study is potentially important for a wide range of magnetically confined fusion applications,
from confirming simulations with extended-MHD effects are sufficiently resolved to describe
reconnection, to quantifying local reconnection rates for purposes of understanding and
predicting transport, not only at the q=1 rational surface for sawteeth, but also at higher order
rational surfaces that play a role in disruptions and edge-confinement degradation.

Keywords: fusion, magnetic reconnection, sawteeth

(Some figures may appear in colour only in the online journal)

1. Introduction

During a cycle of the sawtooth crash, the temperature of the
core plasma in a tokamak slowly rises (for a few ms) followed
by a rapid crash down (10–100 s of μs). The edge temperature

concomitantly undergoes a slow decline followed by a rapid
increase. It was discovered in 1974 in the symmetric Toka-
mak (ST) [1] and shortly thereafter a qualitative explanation
appeared involving the change of magnetic topology during
magnetic reconnection at the q=1 rational surface [2]. The
Kadomtsev picture is generally accepted although it does not
explain the trigger mechanism, crash time, or measured
evolution of q0, and other explanations have also been put
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forward [3]. Sawtooth phenomena need to be better under-
stood in order to fully optimize ITER operation [4]. If natural
sawteeth are deemed to be too deleterious, operational
regimes exist where smaller amplitude sawteeth can be trig-
gered by RF [5], or eliminated entirely as in the ‘hybrid’
regimes [6–8].

There are many undesirable ramifications of sawteeth.
Sawtooth events degrade confinement of fusion alpha parti-
cles generated in the core of the tokamak, limiting their ability
to transfer their energy to the plasma. It was recently argued
that fast-ion transport strongly depends on the crash time [9].
The sawtooth crash forms seed islands on higher-order
rational surfaces, which can destabilize neoclassical tearing
modes (NTMs) [10]. Because NTMs often lead to locked
mode disruptions (e.g. [11]), sawteeth are also responsible for
triggering disruptions in some circumstances.

Despite its importance, a predictive capability of saw-
teeth and its effects has been elusive. There remains no
accepted model of the crash time. In early devices, crash
times were consistent with the time it takes resistive (Sweet–
Parker) reconnection to process all available magnetic flux
[2], and early simulations [12, 13] were largely consistent
with this picture. However, the crash time was much quicker
than the prediction for sawteeth at the Joint European Torus
[14] and in the Tokamak Test Fusion Reactor [15]. It has been
proposed that this discrepancy is due to collisionless recon-
nection being faster than collisional reconnection in the hotter
devices [16]. However, predicting the crash time is more
complicated than only including collisionless reconnection
effects, primarily because reconnection does not always
continue long enough to process all available magnetic flux in
the core, i.e., reconnection can be incomplete [15]. What
causes reconnection to be incomplete and what sets the time
scale at which reconnection ceases remain open questions.
The limited understanding of incomplete reconnection
impacts tokamak transport modeling. Low-dimensional
transport models capture the sawtooth period and amplitude
[17], but the fraction of flux reconnected is an input parameter
rather than self-consistently calculated (e.g., [18]).

Models for incomplete reconnection often discuss local
physics at the reconnection site [19–23]. Therefore, achieving
the long-term goal of understanding how reconnection occurs
in toroidal fusion devices and using this to develop first-
principles predictions of tokamak plasma evolution requires
an ability to study local aspects of reconnection in toroidal
geometry. Since collisionless physics is a candidate for
describing the reconnection rate, toroidal extended-magneto-
hydrodynamic (MHD) or kinetic codes are needed to properly
analyze the magnetic reconnection. Generally, extended-
MHD models retain physics past that of resistive-MHD,
including two-fluid effects and more physical closures for
conductivity and viscosity. It has been only recently that
extended-MHD terms have been integrated into fluid codes
that employ a toroidal geometry.

There are previous studies employing extended-MHD
physics in both cylindrical and toroidal 3D geometries.
Incomplete reconnection was reported in toroidal simulations
with extended-MHD physics [24] using the M3D code [25]

with ion diamagnetic terms included. While it was not con-
cluded whether the incomplete reconnection was due to the
inclusion of extended-MHD effects or a consequence of the
lesser energy of the second crash, it is the first simulation
showing incomplete reconnection in a 3D toroidal geometry.
More recent sawtooth simulations have also been run with
extended-MHD physics [26, 27] using the TM1 code [28].
These simulations employ a large aspect ratio approximation
(periodic cylinder) with a circular cross-section and a constant
equilibrium density profile with cold ions and anomalous
electron viscosity. With these assumptions, they showed that
using typical parameters from the axially symmetric divertor
experiment-upgrade (ASDEX-U) tokamak, simulations gave
sawtooth crash time scales that were comparable to exper-
imental observations, although the trigger mechanism, saw-
tooth period, and comparison of the change in q0 with
experiments were not addressed.

A complication in studying the reconnection process in
toroidal numerical simulations is that it is easiest to analyze
the simulation data in poloidal planes, while it has been
known since early work (e.g. [2]) that the plane in which
reconnection occurs is normal to the helical magnetic field,
which is not the same as the toroidal plane. We note that in a
general 3D magnetic geometry reconnection is not confined to
a plane (e.g. [29]), but in the limit of a strong helical magnetic
‘guide field’, a ‘reconnection plane’ can be defined in the
vicinity of the reconnection site. We are unaware of any
studies of 3D toroidal simulations to find the appropriate
plane of reconnection. Developing a set of tools to do so and
performing a preliminary analysis is a major goal of this
study.

A second goal of the present study is repeating this
process at multiple toroidal locations to study the dependence
on toroidal angle of sawtooth phenomena. Viewing data from
a single toroidal angle misses out on important information on
how the mode evolves. It was not until the WT-3 tokamak in
the early 2000s that multiple soft x-ray detector arrays were
placed around the device at different toroidal angles [30]. On
WT-3, detector arrays were positioned at f = 0 , 90◦,
and 202.5 .

For the WT-3 discharges, the plasma current was directed
opposite to the toroidal magnetic field, giving the reconnec-
tion mode a counter-clockwise helical polarity. With a tan-
gential neutral beam causing rotation parallel to the toroidal
field, the mode was observed to rotate in the clockwise
poloidal direction. It was also observed that the hot core was
shifted toward the outboard side for all toroidal locations.
Furthermore, it was apparent that the poloidal location of
reconnection affects the structure of the electron temperature.
When the hot core was offset towards the outboard side, the
electron temperature profile elongated along the q=1
surface.

In this study, we develop an approach to find the
reconnection plane in 3D toroidal simulations. To view data
local to the reconnection site, we employ a novel method to
sample data between computational grid points in the toroidal
direction. The methodology should be effective across codes
and numerical models, including kinetic modeling. We use
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this approach both on resistive- and extended-MHD physics
models, using the M3D-C1 code. In doing so, we are able to
make direct comparisons of the local reconnection physics in
both systems. We find, as expected, that the collisional
reconnection process is much slower than reconnection in
well-resolved extended-MHD. We find the contributions to
Ohm’s law in the reconnection plane and compare the mea-
sured reconnection rates to theoretical predictions. We also
present the first known identification of the quadrupole out-
of-plane Hall magnetic field that is an indicator of two-fluid
effects in 3D toroidal simulations. We then compare proper-
ties of the reconnection at different toroidal angles.

In section 2, we describe the simulations in this study. In
section 3, we examine the simulations holistically using data
from the poloidal plane. Then, we describe the approach to
finding the reconnection plane in section 4.1. We discuss
local properties of reconnection in the reconnection plane in
section 4. Section 5 discusses how reconnection varies at
different toroidal locations. We conclude and discuss appli-
cations in section 6.

2. Numerical simulation setup

2.1. The M3D-C1 code

We use the M3D-C1 code [31] to evolve the extended-MHD
equations for the density n, velocity v, ion and electron
pressure pi and pe, and magnetic field B:

· ( ) ( )¶
¶

+  =
n

t
nv 0, 1

( )

· · ·P P¶
¶

+  +  - ´ = - - m
⎡
⎣⎢

⎤
⎦⎥

2

nM
t

p
v

v v J B ,i GV

· ( ) · · ( )h
¶
¶

+  +  = - 
⎡
⎣⎢

⎤
⎦⎥

p

t
p p Jv v q

3

2
, 3e

e e
2

e

· ( ) · ·

( )

P
¶
¶

+  +  = -  - m
⎡
⎣⎢

⎤
⎦⎥

p

t
p pv v v q

3

2
: ,

4

i
i i i

( )¶
¶

= - ´
t

B
E. 5

In these equations, m=  ´J B 0 is the current density, the
electric field is given by the generalized Ohm’s law as

( ) ( )h+ ´ = + ´ - 
ne

pE v B J J B
1

, 6e

and Mi is the ion mass. The Braginskii gyroviscosity pressure
tensor PGV [32] can be included in equation (2). A generic
isotropic viscous term can be included, given by

( )mP = -  + m v vT , where μ is an arbitrary scalar field
and vT is the matrix transpose of v. The resistivity η has a
Spitzer form given by h h h= + Tr 0 e

3 2. For the pressure
evolution, the ratio of specific heats for both species is set to
5/3, and electron and ion heat fluxes are given by

·k k= -  - T Tq bbe,i 0 e,i e,i, where k k= p T0 iso e
3 2

describes isotropic conduction and k is for parallel conduc-
tion, where kiso is a constant. Electrons are assumed massless
for simplicity. The code can simulate different physical
models: ideal-MHD with equations (1) and (5), and the terms
on the left side of the equality in equations (2), (3), (4), and
(6); resistive-MHD with the first term on the right side of the
equality in equations (2) and (6), and all terms on the right
side of the equality in equations (3) and (4) included as well;
and extended-MHD including all the terms.

For representing the variables spatially, M3D-C1 has 3D
finite elements with continuous first derivatives between
elements. In the poloidal plane, M3D-C1 uses a reduced-
quintic (fourth order polynomial with additional constrained
coefficients) representation for the solution on an unstructured
triangular grid. Toroidally, it has a Hermite cubic polynomial
representation. This gives the elements a triangular prism
shape. If the average length of an element edge in the poloidal
plane is Dx, the reduced-quintic representation has an error
on the order of ( )Dx 5 (see [33]). For the simulations included
in this study, we employ a semi-implicit time stepping
method to evolve the model equations; implicit schemes
allow for time steps much larger than the Courant–Friedrichs–
Lewy condition constraining the time step in explicit
methods.

M3D-C1 uses a cylindrical coordinate system ( )fR Z, , .
The positive direction of f is counter-clockwise looking
down from the top of the torus. For a plasma current parallel
to the toroidal magnetic field in the positive f direction, the
resulting helical field has a clockwise helicity relative to the
f-direction. R is the major radial direction from the azimuthal
axis, and Z is the vertical direction.

The boundary conditions employed in the 3D toroidal
simulations are as follows. The flow v has ‘no-slip’ boundary
conditions (the flow tangential to the boundaries is held
constant). There is no flow into the boundary, i.e., ˆ · =n v 0
where n̂ is the unit vector normal to the boundary. The normal
and toroidal magnetic fields have Dirichlet boundary condi-
tions ˆ · ˆ ·f= =n B B constant, and the poloidal magnetic
field qB has Neumann boundary conditions ˆ ·  =qBn
constant. The plasma parameters n, p, and T are all held
constant on the boundary.

M3D-C1 represents the velocity v, magnetic vector
potential A, and magnetic field B in terms of scalar variables

w c yF f, , , , as [34]:

ˆ ˆ ( )f wf c= F ´ + + ̂R R
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where ̂ is the del operator in the R−Z plane. For the
representation of the velocity, Φ is the stream-function
describing incompressible flow in the poloidal plane, ω is the
toroidal angular frequency, and χ captures the effect of
compressible flow in the poloidal plane. This form allows the
numerical method evolving the scalar variables to
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approximately separate the physics of the Alfvén and fast and
slow magnetosonic waves for the toroidal system with a
strong fB field [35]. For the magnetic field representation, ψ is
the magnetic flux function describing the magnetic field in the
poloidal plane and ·= +  ̂F F R f0

2 is an auxiliary
variable. F0 is a constant proportional to the current in the
(modeled) toroidal field magnets. The gauge condition
implied by this representation is · ( ) =^

-R A 02 .

The system of units for all quantities appearing hereafter is
derived from a characteristic length, density, and magnetic field
of =L 1 mnorm , = -n 10 particles mnorm

20 3, and =Bnorm

1 T. This sets the normalization for velocity to
( )m= = ´ -v B n M 2.2 10 m snorm norm 0 norm i

1 2 6 1, the Alf-
vén speed based off the characteristic magnetic field and
density for hydrogen, the time to = =t L vnorm norm norm

m0.46 s, the pressure to m= =p B 2 3.9 atmnorm norm
2

0 , the
electric field to = = ´ -E v B 2.2 10 V mnorm norm norm

6 1, and
the current density to m= = -J B L 0.80 MA mnorm norm 0 norm

2

(implying the current is normalized to =I 0.80norm MA). The
resistivity is normalized to h m= =L vnorm 0 norm norm
2.8 Ohm m, the viscosity to m = =n M L vnorm norm i norm norm

- -0.37 kg m s1 1, and conductivity to k =norm

( )= ´ - -k n L v 2.2 10 W m deg KB norm norm norm
26 1 1, where kB

is the Boltzmann constant. The terms in equations (2) and (6)
that are only used in the extended-MHD model are scaled by a
constant =d d Lb i norm, where di is the ion inertial scale wc pi.
This allows the user to specify the strength of two-fluid effects.

2.2. Initialization and optimization

The simulations are initialized using an axisymmetric equi-
librium determined from solving the Grad-Shafranov equation
[36, 37] using a module included in M3D-C1. The solver
assumes the magnetic field and gas pressure profiles have a
polynomial form, and a relaxation technique is employed to
approach the exact solution. Input parameters include the
toroidal plasma current Ip, the central safety factor q0 and
toroidal magnetic field B0, the central total and ion pressures
p0 and p0,i, the total edge pressure pedge, central density n0,
and a variable named ‘expn’ to set the density profile from the
pressure profile as =n pexpn. Values used to generate the
equilibrium for this study are given in table 1 and profiles
through the midplane at Z=0 are shown in figure 1. The
equilibrium generated for this set of inputs has a plasma
column with an outer boundary parametrized by

( ) [ ( )] ( ) ( )q q q q q= + + =R Z3.20 cos 0.2 sin , 1.3 sin ,
where θ is the poloidal angle. This configuration has a
magnetic axis with radius =R 3.28 m0 , where the q=1
rational surface is located at a minor radius of approximately
=r 0.59 m1 . We note that this equilibrium does not

correspond to a particular tokamak, but is instead chosen to
study the basic physics of reconnection in sawteeth.

Optimizing parameters in the fully nonlinear extended-
MHD model in a 3D toroidal geometry is challenging because
run times are long, so we use M3D-C1 simulations in its 2D
axisymmetric nonlinear, 3D linear, and 3D resistive-MHD
forms to optimize parameters. This allows us to run a series of
computationally inexpensive simulations to probe the equili-
brium parameter space, spatial and time resolution. It also
allows us to tune the simulated plasma controllers for plasma
density and current, which includes applying a loop voltage
by ramping the poloidal flux at the boundary to maintain the
plasma current.

The chosen finite element grid in each poloidal plane of
the computational domain is shown in figure 2(a). The
average edge of an element is 0.04 m, as seen in the zoomed-
in panel (b). There are 16 toroidal planes, each with identical
poloidal meshes. All the DOFs are located at the nodes of the
triangular prisms. There are 12 DOF at each node associated
with each scalar variable. The split-implicit method first
advances all 3 velocity variables (36 DOF at each node)
implicitly, and then uses these to advance the magnetic,
pressure, and density variables. The sparse matrix equations
are solved using the PETSc GMRES iterative solver with a
block-Jacobi preconditioner [38].

The resolution is chosen by running multiple toroidal,
nonlinear resistive-MHD simulations where we vary the
resolution while keeping all other parameters constant. We
check that there is no qualitative change in the solution. In the
nonlinear extended-MHD model, the system of equations to
be solved is much more complex than that of the resistive-
MHD case. Because the iterative solver employed has a limit
on the number of loops for solving each time slice, the
maximum time step that could be used was limited by a factor

Table 1. Parameters used to solve the Grad–Shafranov equation, which determine the equilibrium used to initialize the simulations with the
M3D-C1 code.

Parameter Ip q0 B0 p0 p0,i pedge n0 expn

Value 0.8 0.6 1.0 0.006 0.003 0.0003 1.0 0.2

Figure 1. Equilibrium profiles of normalized system parameters
through the midplane at Z=0, which are used throughout all
simulations.
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of ∼10 smaller than for the resistive-MHD simulations. This
restricted our ability to parametrically scan the resolution for
the nonlinear extended-MHD simulations, and will be a part
of future studies. However, the results of this study sum-
marized in the next few sections serve as additional evidence
that the grid resolution is sufficient.

After setting the equilibrium, a small random perturba-
tion on the poloidal flow on the order of qc0.1 A is employed to
initialize the system, where qcA is the Alfvén speed based on
the poloidal magnetic field. The magnitude of the initial
perturbation is varied to ensure the resulting evolution is not
sensitive to it. The timestep is optimized in 2D and 3D
resistive simulations, with 20tnorm being the largest timestep
that could be used where the results are qualitatively con-
sistent with simulations with a lower timestep. The extended-
MHD simulations are performed with the largest timestep that
the iterative solver could converge, which is 2tnorm.

A simulated neutral beam is included as a source of
particles, torque, and energy into the system. This beam has a

finite deposition area and is located in the central region near
the magnetic axis. It is set to have a beam voltage of 10 V4 ,
deposit ions at a rate of ´5 1022 per second, and have a
Gaussian profile of width 0.8. The simulations also use a
spatially varying pellet fueling source in the continuity
equation equal to ( )´P n p prate 0 0

expn, where p is the local
pressure and Prate is the pellet rate equal to ´ -3 10 5 per
second. A density controller is used to hold the number of
particles at ´8.8 1020 and a current controller is used to hold
Ip at I0.8 norm, both using a standard proportional-integral-
derivative feedback control [31]. With these sources and
controls, we find a range of perpendicular and parallel thermal
conductivities that do not qualitatively alter the evolution by
running simulations with the 2D nonlinear version of the
code. We choose k = ´ -4.0 10iso

6 and k = 10. Addition-
ally, we set the viscosity to m = ´ -3.058 10 5.

A key aspect of this study is resolving two-fluid physics.
To ensure we resolve the Hall scales, we use the 3D linear
version of the code. The system of equations is expanded
using = +A A A0 1, where A0 is the equilibrium value and A1

is the complex perturbation, and A represents all dynamical
variables. Keeping only the linear terms and Fourier trans-
forming in f, the toroidal derivatives are replaced by a mul-
tiplier of in, with n being the chosen number of the toroidal
mode. Employing these linear simulations for a single n mode
at a time, we hold the two-fluid parameter db constant and
change the resistivity, and vice versa. We choose values of
the resistivity of h ~ ´ -1.5 10 6 at the q=1 surface and the
two-fluid parameter db=0.1. For these simulations, the grid
sufficiently resolves the resistive reconnection layer in resis-
tive-MHD simulations (db=0) for =n 0, 1 and 2, and when
extended-MHD effects are turned on the resistivity is small
enough that the two-fluid effects dominate. Note, for
db=0.1, the ion inertial scale is =d 10 cmi , rather than the
value based on the normalized density nnorm of 2.28 cm.

3. Macroscopic properties

The nonlinear 3D simulations are allowed to evolve in time
from the linear through to the nonlinear phase. Before finding
the reconnection plane, we look at macroscopic properties of
the simulation results. We begin by comparing results from
resistive-MHD and extended-MHD simulations. The grid and
the initial conditions of the two simulations are identical; the
only difference between the two simulations is the presence of
extended-MHD terms and a smaller timestep in the extended-
MHD simulations. A complete sawtooth crash is observed in
each simulation.

First, we compare the kinetic energy contained in the
lowest order toroidal modes. In figure 3, the evolution of the
kinetic energy KE in different toroidal modes is shown for the
(a) resistive-MHD (db=0) and (b) extended-MHD
(db=0.1) simulations, where the red stars indicate the
approximate beginning of the reconnection, or crash, phase in
each respective sawtooth cycle. The first striking difference
between the two is the disparity in the time scales; the
extended-MHD simulation evolves from t=0 to its

Figure 2. (a) View of the toroidal current density at a constant
toroidal angle over-plotted with the triangular finite element mesh.
(b) Zoomed in portion of the domain in (a) to show the resolution of
the mesh, with an average edge length of 0.04 m.
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maximum kinetic energy in roughly a quarter of the time it
takes in resistive-MHD. The calculated growth rate of the
kinetic energy in the n=1 toroidal mode is ∼0.005 for the
resistive case and ∼0.015 for the extended-MHD case.

A second important observation in figure 3 is the non-
linear acceleration of the kinetic energy growth rates for the
extended-MHD simulation from ~ -t 1400 1500 consistent
with [16], and a deceleration of the mode growth for the
resistive simulation after ~t 5000. This implies that recon-
nection is not only faster using extended-MHD, but also
increases in rate as the reconnection phase proceeds, while
resistive-MHD has slower reconnection that slows even fur-
ther during the crash. The acceleration of the mode growth
rate is similar to results from [39], where reduced, extended-
MHD simulations showed an accelerating growth rate during
the reconnection phase across a parameter space of poloidal
beta and density gradient widths. This is also reminiscent of
experimental observations from [30] of a two-phase crash,

which was composed of a gradually evolving initial phase
followed by a rapid phase.

A third important difference between resistive-MHD and
extended-MHD is the time it takes for reconnection to process
the magnetic fields and expel the hot plasma in the core, the
time scale of the sawtooth crash phase. Shown in figures 4
and 5 for the resistive and extended-MHD simulations,
respectively, is the electron temperature in the poloidal plane
at a constant toroidal angle for different times throughout the

Figure 3. Kinetic energy in toroidal modes = -n 0 5 in (a)
resistive-MHD and (b) extended-MHD simulations as a function of
time t. The (red) stars indicate the approximate beginning of the
reconnection, or crash, phase in each respective sawtooth cycle.
Time scales are much faster in extended-MHD, and there is late
nonlinear acceleration of the growth for the extended-MHD case
compared to deceleration in the resistive case.

Figure 4. Poloidal cross-sections of the electron temperature during
the reconnection phase of the sawtooth crash for the resistive-MHD
simulation. White x’s show the location of the reconnection site
determined from Poincaré plots. The counter-clockwise poloidal
drift is due to the external neutral beam adding torque to the system
and causing the helical mode to rotate toroidally.

Figure 5. Poloidal cross-sections of the electron temperature as in
figure 4, but for the extended-MHD simulation. The time scale of the
core expulsion is ∼15 times shorter than for the resistive simulation.
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reconnection phase, where the white x’s mark the location of
the reconnection site as determined from Poincaré plots and
poloidal plane velocity data. Reconnection processes the hot
core in the extended-MHD simulation in m~50 s, which is in
line with experimentally observed crash times and approxi-
mately 15 times more rapid than in the resistive-MHD
simulation, which processes the core in m~750 s. This agrees
with the extended-MHD results of [26, 27], which were based
off of typical ASDEX discharge parameters. Another
important ramification of this result is that it serves as an
excellent benchmark suggesting the grid in the extended-
MHD simulations properly resolved the two-fluid physics.

Another difference between figures 4 and 5 is the
poloidal drift of the reconnection site in the counter-clockwise
poloidal direction for the resistive case, while it is not pro-
minent for the extended-MHD case. The torque imparted by
the simulated neutral beam causes the helical mode to rotate
in the positive toroidal direction, which appears as a counter-
clockwise poloidal drift of the reconnection site. This is
consistent with experimental results [30], although their
plasma current Ip was directed opposite to the toroidal field
and neutral beam, so they observed rotation in the clockwise
poloidal direction. Since the reconnection phase starts much
later in the resistive simulation and also evolves over a longer
time scale, the toroidal rotation is apparent for this simulation.
However, there is much less time for torque to be imparted in
the extended-MHD simulation, and because of this, the
poloidal drift of the reconnection site due to the neutral beam
is not significant. Calculations confirm that the observed
poloidal rotation is consistent with the measured toroidal flow
in both simulations.

4. Local properties of reconnection in 3D toroidal
geometry

Looking at data in the poloidal plane as done in section 3 is
sufficient to gain information about the global properties of
the reconnection process, but the reconnection plane is
necessary to quantitatively diagnose reconnection in a toka-
mak. Here, we present the first analysis of the reconnection
plane in a 3D toroidal geometry. We note that the discussion
in this section is limited to the poloidal plane in which the
reconnection site is at the inboard of the torus; a comparison
of reconnection properties for sites at other toroidal angles
will be discussed in section 5.

4.1. Finding the reconnection plane

It has long been known that the reconnection plane should be
the auxiliary plane, normal to the helical magnetic field at the
point of reconnection on the rational surface. Here, we
describe a general approach to find these planes. While the
approach works within the toroidal geometry of the simula-
tions, we show an idealized q=1 surface for a cylindrical
toroid for illustrative purposes in figure 6. The checkered-
green surface represents the q=1 rational surface. The red
line is a helical q=1 magnetic field line.

We find the approximate location of the reconnection site
(the X-line) using the following procedure. First, we generate
Poincaré plots in a chosen poloidal plane to allow us to
visually estimate the location of the reconnection site. We
expect the pressure gradient to be a maximum at the recon-
nection site, so we refine the minor radial location of the site
in the poloidal plane to match this extremum. The red dot in
figure 6 is meant to indicate the location where the recon-
nection site is found. In the figure, the red dot is on the
inboard side of the rational surface. For the initial part of this
study, we choose the toroidal angle such that the reconnection
site is on the inboard side for simplicity, but the approach in
use would work for any toroidal position with the reconnec-
tion site at an arbitrary point.

Having an approximate location of the reconnection site
in the poloidal plane, we next find the reconnection plane.
The vector direction of the local magnetic field at the
reconnection site is denoted by ĥ (for ‘helical’):

ˆ ˆ
∣ ∣

( )= =h b
B
B

. 10

It is shown for the illustrative example in figure 6. This unit
vector defines the blue plane shown in the figure, which we
expect to be the reconnection plane. (We point out that it is
not always the case that the reconnection plane is normal to
the out-of-plane ‘guide’ magnetic field [40, 41], but for the
tokamak geometry with a large helical field the approximation
is expected to be quite good.)

Figure 6. Illustrative example of the approach to find the
reconnection plane. The checkered-green circular torus is an
idealized q=1 rational surface. The red line is a q=1 magnetic
field line. A location of the reconnection site is marked by the red
dot. The direction of the local field is ĥ, the normal to the q=1
surface (the direction of the reconnection inflow) is î , and the
reconnection outflow direction ô completes the triplet. The
reconnection plane (blue) is spanned by ô and î .
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Next we need unit vectors that span the reconnection
plane, and the desire is to have them oriented to align with the
reconnection inflow and outflow. The inflow direction should
be locally normal to the rational surface. To find the normal to
the rational surface at the reconnection site, we first define an
ancillary unit vector t̂ in the poloidal plane that is tangent to
the q=1 rational surface. When the reconnection site is at
the inboard edge, we simply have ˆ ˆ=t Z (not shown in
figure 6), but for other locations, one merely finds the local
direction tangent to the rational surface. Then, the cross
product ˆ ˆ´t h is normal to both the magnetic field and the
q=1 rational surface, which corresponds to the inflow
direction. We normalize it and denote it as the inflow direc-
tion î :

ˆ ˆ ˆ ( )µ ´i t h. 11

Finally, the outflow direction, denoted by ô, completes the
triplet:

ˆ ˆ ˆ ( )= ´o h i. 12

The i and o directions span the reconnection plane and are
expected to be oriented along the reconnection inflow and
outflow, as included in the example in figure 6.

With the reconnection plane defined, the plasma para-
meter data is then obtained on this plane. In the analysis
carried out here, we interpolate to find data on a grid rec-
tangular grid of size 200×200 with a separation between
data points of order ´0.01 0.01, where the exact separation
varies slightly depending on the minor radius of the q=1
surface. With this data, we can analyze the properties of
reconnection in the reconnection plane.

4.2. Finding the local plasma parameters governing
reconnection

We begin by finding the characteristic local plasma para-
meters governing the local efficiency of the reconnection
process, such as the upstream magnetic fields and densities
and the aspect ratio of the reconnecting current sheet. In
addition to setting the stage for a quantitative analysis of the
local reconnection process, this allows us to confirm that the
approach used to find the reconnection plane is successful.

The in-plane components of the magnetic field for the
extended-MHD simulations are displayed in figure 7, show-
ing (a) the reconnecting magnetic field Bo and (b) the
reconnected (normal) magnetic field Bi overlaid with contours
of constant yh, consistent with ˆ

y= ´ B̂ h h. The color
table used here and throughout has white being 0, red posi-
tive, and blue negative. The origin has been shifted so that
( ) ( )=o i, 0, 0 is the reconnection site found with the
approach in the previous section. The in-plane field goes to
zero at the reconnection site, as it should. This suggests the
technique to identify the inflow and outflow directions i and o
is appropriate. Furthermore, the polarity of these fields at the
origin is consistent with an X-type null, as expected.

Quantifying the local reconnection properties requires
measuring the plasma parameters just upstream (in the i
direction) of the reconnection site. These quantities are

measured a distance δ upstream, where δ is the location where
Jh falls to half its maximum value in the inflow in a cut along
o=0. The current density in the out-of-plane (helical)
direction Jh is shown in figure 8 for the (a) resistive-MHD and
(b) extended-MHD simulations. The time slice for the
extended-MHD simulation is well into the accelerated

Figure 7. In-plane components of the magnetic fields: (a) Bo and (b)
Bi in the reconnection plane for the extended-MHD simulation
overlaid with contours of constant yh. The reconnection site is at
( ) ( )=o i, 0, 0 and the field structure there is consistent with an in-
plane X-type magnetic null.

Figure 8. Helical current Jh in the reconnection plane for the (a)
resistive-MHD and (b) extended-MHD simulations. The resistive
current sheet is more elongated than in extended-MHD, as expected
from Sweet–Parker theory.
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nonlinear phase t=1460, and the resistive simulation has an
island size comparable to that of the extended-MHD case at
t=5625. In each case, a strong thin current sheet is visible at
the reconnection site. A comparison of the two simulations is
carried out in the next subsection.

The thickness δ is measured along a cut at o=0.
Figure 9 shows Jh as a function of i for the extended-MHD
simulation as the blue trace. The vertical dashed lines denote
where Jh falls to half of its absolute maximum. This defines
the thickness of the reconnection site in the inflow direction;
the thickness for the extended-MHD simulation is
d = 0.0245, and d = 0.0135 for the resistive-MHD simula-
tion (not shown), and is where values of the upstream
magnetic field and inflow speed are measured. Interestingly,
due to our choice of η and db, the resistive current sheet is
thinner than the extended-MHD current sheet, which may
seem counter-intuitive. However, this actually should be
expected and is a nice consistency check that extended-MHD
physics are dominant in the extended-MHD simulation. It
justifies our choice for η; if the width of the current sheet for
the resistive simulation was larger than for the extended-
MHD simulation, the extended-MHD effects would not have
been active for the simulation with db=0.10 [42]. For this
scaled value of the ion inertial scale, the ion gyroradius based
off the thermal speed r b= =d2 0.015s i for the extended-
MHD simulation, which is approximately d 2.

The cut of Bo is shown as the red trace (scaled up by a
factor of 25 to be on the same axes). The upstream recon-
necting magnetic field Bo,1 and Bo,2 are measured at the ver-
tical dashed lines. The upstream inflow speeds vi,1 and vi,2 are
measured at the same location. However, we note the
reconnecting magnetic field Bo exhibits a weak asymmetry.
When the magnetic fields are asymmetric, the X-line tends to
move in the inflow direction towards the direction of stronger
reconnecting magnetic field (the positive i direction, towards
the tokamak edge) [43–48]. Thus, to get a proper

measurement of the reconnection parameters, we must mea-
sure the velocities in the reference frame of the moving
X-line.

Transforming into the reference frame of the moving
X-line is done using standard techniques [49, 50]. In the
steady-state in quasi-2D systems, the reconnection electric
field ¢Eh is uniform in the reference frame of the X-line, where
we use a prime to denote quantities in the reference frame of
the X-line. In the lab frame, the electric fields =E v Bh,1 i,1 o,1

and =E v Bh,2 i,2 o,2 differ. If the speed of the X-line is defined
as v Xi, , then the reconnection electric field is

( ) ( )¢ = + = -E v v B v v BX Xh i,1 i, o,1 i,2 i, o,2. Solving these two
equations for vi X, gives

( )=
-
+

v
E E

B B
. 13Xi,

h,1 h,2

o,1 o,2

The calculated speed of the X-line from equation (13) are
´ -1.2 10 4 and ´ -2.6 10 3 for the resistive- and extended-

MHD cases. We shift the inflow velocities accordingly to
obtain ¢vi , the inflow in the reference frame of the X-line. This
is plotted for the extended-MHD simulation in green in
figure 9, scaled by a factor of 500 to be on the same axes.

We also measure the length of the reconnection region in
the outflow direction in a similar manner as the width, except
that the current sheet is curved. Thus, we find the location
above and below the X-line at which the current density is
half of its maximum, and calculate the distance along the
current sheet to the X-line as L. For the extended-MHD
simulation L=0.145, and L=0.370 for the resistive-MHD
simulation. Since the current density is more strongly peaked
near the X-line in the extended-MHD simulation, the length is
shorter. We are now ready to quantitatively compare recon-
nection between resistive-MHD and extended-MHD
simulations.

4.3. Local reconnection rates: resistive-versus extended-MHD

We first compare properties of the reconnecting current sheets
visible in figure 8. The dominant feature is that the resistive
current sheet is elongated compared to the extended-MHD
current sheet. The resistive sheet has d =L 0.07 compared to
the extended-MHD sheet with d =L 0.17. The extended-
MHD result is in reasonable agreement with values seen in
2D slab geometry simulations, while resistive reconnection
with smaller d L forms a nozzle which slows reconnection.

Next, we analyze profiles of the contributions to the out-
of-plane electric field ¢Eh in Ohm’s law (in the reference frame
of the X-line) taken through the reconnection site in the
inflow direction at o=0. These profiles are shown in
figure 10 for the (a) resistive- and (b) extended-MHD simu-
lations. The asymmetric shift in the electric field is a con-
sequence of the reconnection being asymmetric—the
reconnecting fields and densities differ on the two sides [44].
Understanding the nature of this asymmetry in a torus should
be the subject of future work as transport through the q=1
surface is sensitive to the reconnection time [9], which is
sensitive to the asymmetry (e.g. [44]).

Figure 9. Profiles of the reconnecting field Bo, the inflow velocity ¢vi

(in the reference frame of the X-line), and the helical current Jh.
Where Jh drops to half its maximum value is denoted by the vertical,
dashed black lines; upstream quantities are evaluated there.
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For the resistive simulation, the only terms that con-
tribute are convection ( )- ¢ ´v B h and diffusion due to
resistivity hJh, shown by the dark blue and red lines respec-
tively. The sum of the terms is ¢Eh, shown as the light blue
line. They essentially balance ( ¢Eh is relatively flat near the
X-line), as one expects for steady-state 2D reconnection, with
a local reconnection rate of about ¢ ´ -E 5 10h

6. The pro-
files are similar to those seen in 2D asymmetric reconnection
in a slab geometry [44].

For the extended-MHD simulation, the dominant terms
are convection and the Hall term ( )´d nJ Bb h shown as the
green line. The resistivity has a negligible contribution to ¢Eh,
which is consistent with previous results (see, e.g., [26]). We
find that the reconnection electric field is ¢ ´ -E 2 10h

4,
∼40 times stronger than that of the resistive simulation. This
shows the extended-MHD reconnection is faster, consistent
with the known result that collisionless reconnection is much
faster than resistive reconnection. Moreover, this result shows
that the Hall term is contributing to the reconnection electric
field near the X-line, showing that the numerical resolution in
this region is sufficient.

We point out that the terms in Ohm’s law shown in
figure 10(b) are close to zero at the X-line. This is because in
the extended-MHD simulation, the diffusive physics breaking
the frozen-in condition is not resolved. In a real system, this
effect is caused by electron inertia or off-diagonal elements of
the electron pressure tensor. In this simulation without these
effects, the mechanism breaking the frozen-in condition is
undoubtedly numerical. Fortunately, the large scale properties
of collisionless reconnection are insensitive to the physics
breaking the frozen-in condition [51], so not resolving the
artificial dissipation that breaks the frozen-in condition (which
would be very computationally expensive) is not a detriment.
Testing how the present results are affected when the dis-
sipation mechanism is explicit as in [52] should be the subject
of future work. In summary, we find that the local measure of
the reconnection rate shows that extended-MHD is much
faster than collisional reconnection, consistent with the global
measures discussed earlier.

We now turn to a quantitative understanding of the local
reconnection properties. First, as a consistency check, a by-
product of the analysis leading to equation (13) is the
reconnection electric field ¢Eh in the reference frame of the
X-line. Using the values for the reconnecting field Bo and the
inflow velocity vi determined in the last section, we calculate
the reconnection electric field (reconnection rate) [49, 50]:

( )¢ =
+
+

E
E B E B

B B
. 14h,meas

h,1 o,2 h,2 o,1

o,1 o,2

We find ¢ = ´ -E 8.23 10h,meas
5 for the extended-MHD

simulation, which is within a factor of 2.5 of the value of
¢ = ´ -E 2 10h

4 obtained from figure 10(b), and
¢ = ´ -E 3.30 10h,meas

6 for the resistive-MHD simulation,
which is within a factor of 1.5 of the value of ¢ = ´ -E 5 10h

6

obtained from figure 10(a).
Next, we employ analytical predictions to calculate the

rate of reconnection and compare it to the measured value for
the inboard reconnection site. A recent theory of 2D asym-
metric reconnection in the absence of a guide field suggests
[44]

( )d¢ ~
+

⎛
⎝⎜

⎞
⎠⎟E

B B

B B
v

L

2
, 15o o

o o
h,pred

,1 ,2

,1 ,2
out

where vout is the outflow speed from the reconnection site. For
the extended-MHD simulation, using the measured value of

=v 0.021out , we get ¢ ~ ´ -E 6.81 10h,pred
5, which is within

20% of ¢Eh,meas. For the resistive-MHD simulation, using
the measured value of =v 0.00235out , we get ¢ ~Eh,pred

´ -3.33 10 6, which agrees well with ¢Eh,meas. The agreement
is quite good despite the fact that the theory is for 2D
reconnection and does not treat the guide field or the curved
magnetic geometry of a tokamak. This is simply for a single
data point, so a more thorough study varying the plasma
parameters is necessary before making any overarching con-
clusions, but the prediction does rather well for this
simulation.

As a final quantitative check of the local reconnection
rates, we compare the asymmetric Sweet–Parker reconnection

Figure 10. Profiles the out-of-plane component of the generalized
Ohm’s law taken through the reconnection site through o=0 in the
reconnection plane. (a) Resistive-MHD results, (b) extended-MHD
results. The contribution due to the Hall term is visible in (b).
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rate and current sheet width [44] to the previously measured
and predicted values. The asymmetric Sweet–Parker recon-
nection rate is given by

( )h¢ ~E
v

L
B B , 16SP

out
o,1 o,2

and is evaluated for the resistive-MHD simulation to give
´ -3.93 10 6, which agrees well with ¢Eh, ¢Eh,meas, and ¢Eh,pred.

The half-widths of the current sheet on either side of the
asymmetric reconnection layer are given by

( )d
h

d
h

~ ~
L

v

B

B

L

v

B

B
, , 17SP,1

out

o,1

o,2
SP,2

out

o,2

o,1

and are evaluated for the resistive-MHD simulation to give
d = 0.006SP,1 and d = 0.026SP,2 , which agree well with the
measured values of d = 0.0081 and d = 0.0192 .

4.4. Separation of ion and electron scales in extended-MHD
reconnection

Due to the disparity between the ion and electron masses, a
characteristic feature of collisionless reconnection is a two-
scale structure of the region near the X-line. In most cases,
simulations purporting to capture extended-MHD effects on
reconnection need resolution sufficient to resolve the
separation in scales between ions and electrons. Shown in
figure 11 are the outflow (o) components of the (a) ion
velocity vi and (b) electron velocity ve, where

( )= - d ne Jv v be i . The maximum electron outflow speed is
larger than that of the ions by over a factor of 2, consistent
with extended-MHD and PIC slab reconnection studies (see,
e.g., [53]).

Furthermore, the electron outflow jets are noticeably
thinner than the ion outflow jets, consistent with the two-scale
structure due to the inclusion of the Hall term in the gen-
eralized Ohm’s law. While difficult to determine from the

figure, the maximum electron velocity is peaked closer to the
reconnection site than the maximum ion velocity, also con-
sistent with known properties of collisionless reconnection
[53]. These results suggest that extended-MHD physics is
playing a role in these simulations as is expected, but has not
previously been diagnosed in 3D toroidal simulations.

An interesting observation is that both the ion and elec-
tron flows are in the direction of the electron diamagnetic drift
velocity *v e at the reconnection site, which is consistent with
the 2D slab simulations [23, 54]. This suggests that electron
diamagnetic effects are playing a role in the local flow
dynamics at the reconnection site, a phenomena that will be
the subject of future study.

4.5. Identification of the hall magnetic field

An important signature of collisionless reconnection is the
existence of a quadrupole in the out-of-plane magnetic field
[55, 56]. It has been observed experimentally in satellite
observations (see, e.g., [49]) and in dedicated reconnection
experiments (see, e.g., [57]). However the small reconnection
scales in a tokamak makes viewing this structure prohibitively
difficult. Furthermore, to the best of our knowledge, it has not
been identified in fully 3D toroidal simulations until now.

We first show the toroidal magnetic field in the poloidal
(R− Z) plane at the inboard side of the torus. Since the
background µfB R1 dominates the signal, a meaningful
measure of the role of the Hall term would remove the
background. To handle this, we define the perturbed toroidal
magnetic field ˜fB as the full Bf with the profile of fB at the
midplane (Z= 0) subtracted from every slice of constant Z.
This is plotted for the extended-MHD simulation in
figure 12(a). The dotted lines mark axes through the location
of the reconnection site as determined from the Poincaré plot.
The solid line shows the calculated q=1 surface from
averaging over the magnetic field in the toroidal and poloidal
directions, where the difference from the Poincaré method

Figure 11. (a) Ion and (b) electron outflow speeds vi,o and ve,o in the
reconnection plane located on the inboard side of the tokamak.
Maximum electron flows are a factor of two larger than the ion flows
and are peaked closer to the reconnection site.

Figure 12. (a) Toroidal magnetic field perturbation ˜fB in the poloidal
plane with the profile at the midplane subtracted out of every
horizontal slice, leaving a dipolar structure. (b) Helical magnetic
field perturbation B̃h in the reconnection plane with the profile
through o=0 subtracted out, which leaves a quadrupolar structure
that has polarity consistent with collisionless reconnection due to the
Hall term.
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reveals the non-axisymmetry of the mode. From this figure, it
is evident that there is no quadrupolar field signature in ˜fB
when viewed from the poloidal plane.

However, in the reconnection plane, we define a similarly
calculated perturbed helical magnetic field B̃h, where the Bh

profile through o=0 has been subtracted off all cuts at fixed
o. The result is shown in figure 12(b); we find a quadrupolar
perturbed helical magnetic field. From the polarity of the in-
plane magnetic fields as shown in figure 7, the polarity of the
quadrupole out-of-plane field is consistent with that of the
expected Hall magnetic field. Note, the quadrupole B̃h is not
observed in the reconnection plane of the resistive-MHD
simulations (not shown). These results are indicative that the
Hall term is actively playing a role in the extended-MHD
simulation, corroborating the result in figure 10.

The helical (guide) field is strong compared to the
relatively weak reconnecting field, with a ratio of
¯  =B B 0.039 1.23 3.2%o h , where B̄o is the average of Bo

on the two sides of the reconnection site. For reconnection
with a strong guide field, it is expected that the helical
quadrupole field is accompanied by a quadrupole gas pressure
profile in order to maintain total pressure balance [58].
Interestingly, we find no gas pressure quadrupole in the
reconnection plane for this extended-MHD simulation.
Additionally, the ratio of the quadrupolar field to the recon-
necting field departs from predictions that ˜ ~B Bh o [59]. We
hypothesize that the curved geometry of the toroidal system
and extremely large B Bh o ratio implies that additional phy-
sics due to magnetic field bending be kept in the scaling
relations; this analysis is left for a future study. In summary,
we have shown evidence local to the reconnection site that
Hall reconnection takes place.

5. Toroidal dependence

Thus far, the discussion has been limited to the reconnection
site located on the inboard side of the torus. In this section we
explore how reconnection changes for different toroidal
angles, where the reconnection site is located at different
poloidal locations. However, we continue to look at data in
the reconnection plane as opposed to the poloidal plane. In
what follows, we compare the reconnection planes for the
toroidal locations where the X-line is on the inboard, top,
outboard, and bottom of the q=1 rational surface. We limit

our analysis to the extended-MHD simulation, but comment
that the results are similar for the resistive-MHD simulation.

Using the methodology in section 4.2, we find upstream
values representing the reconnection process. We find the
reconnecting magnetic fields in the inflows of the core Bo,core

and the edge Bo,edge, the density at the X-line, the ion and
electron outflow speeds vi,out,ave and ve,out,ave averaged over
the two jets, the full length of the current sheet L2 , and the full
width of the current sheet d2 . Measured parameters are listed
in table 2.

For perspective, we show the structure of the recon-
necting current sheet Jh in figure 13. The reconnection sites
are on the (a) inboard, (b) top, (c) outboard, and (d) bottom of
the q=1 rational surface as determined from Poincaré plots.
We note that there is some numerical noise towards the
inboard side, which we attribute to the modest toroidal
resolution; a convergence study of the toroidal resolution will
be a matter for future work. The principal feature is that the
maximum Jh at different toroidal angles is greater on the
inboard side, and is smaller on the outboard side. This is
expected because the toroidal field varies as ~fB R1 ,
leading to stronger reconnecting fields Bo towards the inboard
side. Then, since the width of the current sheet is set by the
reconnection physics, we expect the current density to be
largest on the inboard side, consistent with our simulations.

The average ion and electron flows are the smallest on
the inboard side where the density is largest; this is consistent
with the reconnection outflows scaling with the Alfvén speed
µ -n 1 2. There is a toroidal variation in the length of the
current sheet, which we attribute to toroidal geometry. Using
figure 6 for a helical field line with a circular cross-section as
a reference, the path length from the top to the bottom on the
inboard side is shorter than the path length connecting the top
and bottom on the outboard side because B is stronger on the
inboard side. The width of the current sheet δ varies only
slightly with toroidal (poloidal) location.

We now turn to quantifying the local reconnection rate at
the four toroidal locations. Table 3 contains the aspect ratio of
the reconnection region d L, the measured helical electric
field ¢Eh, and the calculated reconnection electric fields ¢Eh,meas

and ¢Eh,pred from equations (14) and (15), respectively. Since L
increases towards the outboard side due to the toroidal geo-
metry, d L decreases, implying that reconnection proceeds
more slowly towards the outboard side of the tokamak. The
decrease in the rate of reconnection toward the outboard side

Table 2. Measured characteristic values of extended-MHD reconnection, where the reconnection site is located at different toroidal (and
poloidal) angles. Tabulated values are the reconnecting magnetic field in the inflows toward the core and edge Bo,core and Bo,edge, the density n
at the X-line, the average ion outflow velocity vi,out,ave, the average electron outflow velocity ve,out,ave, the total length of the current sheet L2 ,
and the total thickness of the current sheet d2 .

Location Bo,core Bo,edge n vi,out,ave ve,out,ave L2 d2

Outboard 0.02 0.014 0.83 0.028 0.063 0.45 0.051
Top 0.044 0.01 0.91 0.025 0.059 0.28 0.048
Inboard 0.034 0.044 1.1 0.021 0.047 0.29 0.049
Bottom 0.024 0.038 0.95 0.024 0.051 0.35 0.057
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is also visible in the electric field measurements and
calculations.

Another interesting aspect is that reconnection at the top
and bottom is asymmetric in the outflow direction. In
figure 13, the inboard and outboard current sheets are mostly
centered around the midplane, but the top and bottom current
sheets are shifted towards the inboard side of the torus. This is
also apparent from looking at the ion outflow jets, shown in
figure 14 for the (a) top and (b) bottom reconnection sites.
The faster outflow jets are toward the outboard side for both
sites. This asymmetry in the outflow jets can be explained by
the toroidal magnetic field dependence in the major radial
direction, decreasing as ~ R1 . At the inboard and outboard
reconnection sites, the toroidal magnetic field changes
through the inflow direction, contributing to the helical cur-
rent, but at the top and bottom sites the toroidal magnetic field
changes through the outflow direction. There are very few
papers studying reconnection that is asymmetric in the out-
flow direction. One showed that if there is a gas pressure

gradient in the outflow direction, there is an outflow asym-
metry with the faster outflow where the gas pressure is less
[60]. Similarly here, there is a magnetic field pressure gradient
towards the inboard side of the torus, and for the top and
bottom sites this gradient is in the outflow direction, con-
sistent with the polarity of the asymmetric outflows.

Interestingly, the simulations reveal an asymmetry of the
electron temperature for the top and bottom reconnection

Figure 13. Views of the helical reconnection current density Jh in the reconnection plane at different toroidal angles corresponding to where
the reconnection site is at the (a) inboard, (b) top, (c) outboard, and (d) bottom of the torus. The maximum magnitude of the reconnection
current is on the inboard side, where the toroidal field is the strongest. Also, d L is greater towards the inboard side, and lower towards the
outboard side.

Table 3. Aspect ratio of the reconnection site d L, measured ¢Eh and
calculated ¢Eh,meas and ¢Eh,pred values of the reconnection rate at the
same four locations as in table 2. ¢Eh,meas is calculated using
equation (14) and ¢Eh,pred is calculated using equation (15).

Location d L ¢Eh
¢Eh,meas ¢Eh,pred

Outboard 0.11 ´ -7.3 10 5 ´ -2.6 10 5 ´ -2.6 10 5

Top 0.17 ´ -1.0 10 4 ´ -2.3 10 5 ´ -3.4 10 5

Inboard 0.17 ´ -2.0 10 4 ´ -8.2 10 5 ´ -6.8 10 5

Bottom 0.16 ´ -1.4 10 4 ´ -6.5 10 5 ´ -5.7 10 5

Figure 14. Ion outflow speed vo when the reconnection site is at the
(a) top and (b) bottom of the rational surface. The outflows are
asymmetric due to the magnetic pressure gradient in the major radial
direction due to the varying toroidal magnetic field.
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sites, as seen in figure 15. The temperature in the outflow jet
directed toward the outboard side is greater than that in the
outflow jet toward the inboard side. This gives the appearance
that the high temperature core is offset toward the outboard
side. This is consistent with the experimental result of [30],
where the hot core was shifted toward the outboard side when
the sawtooth mode was on the top and bottom sides of the
tokamak.

6. Conclusions and discussion

6.1. Conclusions

It has long been known that reconnection in sawteeth occurs
in the auxiliary plane normal to the helical magnetic field at
the q=1 surface, and idealized simulations of reconnection
in cylindrical geometries have taken this into account. How-
ever, we are not aware of any simulation studies in fully 3D
toroidal geometries that study reconnection in the reconnec-
tion plane. This study has carefully and systematically
devised an approach for analyzing reconnection in a 3D tor-
oidal geometry in the plane of reconnection.

We use Poincaré plots and plasma profiles to find the
reconnection X-line in a particular poloidal plane. Then, we
find the helical direction at that point, and the reconnection
plane is normal to the helical direction. We orient the plane
with vectors spanning the plane and develop a technique to
automatically identify the inflow and outflow directions.

We utilize the extended-MHD code M3D-C1, to perform
a systematic study of the local reconnection properties and to
compare the results of between resistive-MHD and extended-
MHD simulations. Globally, we find that the growth of the
kinetic energy in different toroidal modes for the extended-
MHD reconnection process is substantially greater than in

resistive-MHD and exhibits a nonlinear acceleration, with
crash times more consistent with experimental results. This is
consistent with the hypothesis that collisionless reconnection
is necessary to explain observed crash times.

We observe toroidal rotation due to the externally applied
neutral beam, which causes poloidal rotation of the helical
mode during the longer timescale of the resistive simulation,
consistent with experimental results [30]. During the tearing
phase in the extended-MHD simulations, the tearing site
drifted in the direction of *v e, which shows that the magnetic
field configuration drifts with the electron diamagnetic flow.
This poloidal drift is consistent with the initial findings of [1],
which reported that the sawtooth mode propagates in the *v e

direction. This will be the topic of future work.
By sampling the extended-MHD simulation data in the

plane perpendicular to the local magnetic field at the recon-
nection site, we confirm the approach we developed suc-
cessfully found the reconnection plane. We find the local
parameters controlling the reconnection (in the moving
reference frame of the X-line), find the non-ideal contribu-
tions to Ohm’s law which become important in the recon-
nection region, directly measure the reconnection electric
field and show it is in reasonable agreement with a 2D pre-
diction, show the decoupling of the electrons and ions in the
region near the reconnection site, and show the first obser-
vation of the quadrupole out-of-plane magnetic field resulting
from the Hall term in collisionless reconnection.

We also explored how reconnection varies with toroidal
(and poloidal) angle, which is an interesting aspect that has
not received much attention but is relevant because q=1
magnetic field lines wrap around the rational surface and
sample local parameters varying from the inboard to outboard
sides. Reconnection is faster on the inboard side even though
the outflow speeds are higher on the outboard side. We posit
that toroidal geometry affects the aspect ratio of the recon-
nection geometry, elongating the reconnection site on the
outboard side. The varying toroidal magnetic field causes an
outflow asymmetry on the top and bottom of the torus.
Because these asymmetries and current sheet variations alter
the rate of reconnection, this is important for understanding
how the reconnection mode evolves locally throughout the
tokamak.

6.2. Discussion

The results of this study are important results for a number of
reasons. First, with regard to the role of collisionless effects in
the sawtooth crash, the approach employed here provides a
systematic approach to confirm given numerical results are
properly resolving the appropriate physics. The approaches
employed here were only tested on simulation results from a
single code, but the approach is general and should work with
any 3D toroidal simulation output. Second, by demonstrating
how to measure local properties of reconnection, it enhances
our ability to study the reconnection process in sawteeth in
tokamaks, which is important for developing a first-principles
understanding. Since sawteeth are crucial for transport and
current transport models employ ad hoc techniques to

Figure 15. Electron temperature Te in the reconnection plane when
the reconnection site is at the (a) top and (b) bottom. Consistent with
the results of [30], the hot core bulges toward the outboard side of
the torus.
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incorporate sawtooth crash times, such a research direction is
very important.

The present results show that local 2D reconnection
models agree reasonably well with reconnection properties in
the fully 3D toroidal geometry, which suggest that such an
approach can be useful for predicting quantitative behavior of
tokamak reconnection-related phenomena.

The study of the toroidal angle variation of reconnection
could be useful for analysis of experimental data, such as
recent work in [30]. While the WT-3 tokamak is no longer in
use, there has been recent installations of quasi-3D electron
cyclotron emission diagnostics on the Korea Superconducting
Tokamak Advanced Research [61] and ASDEX-U [62]
tokamaks. The local reconnection analysis utilized in this
paper could be directly tested on either device. This local
analysis could also be useful for modeling and analyzing
reconnection events occurring during non-inductive startup in
many spherical tokamaks, including MAST [63], NSTX-U
[64], and Pegasus [65].

The local reconnection analysis could also be valuable
for diagnosing other dynamic events in tokamaks that involve
magnetic reconnection, namely, NTMs and the use of reso-
nant magnetic perturbations (RMPs) to suppress edge loca-
lized modes (ELMs). An understanding of the suppression of
ELMs by RMPs will also lead to knowledge of the edge
confinement degradation known as density pumpout. A
detailed understanding of both NTM and RMP processes are
of major importance to the success of future fusion devices,
and an understanding of the local reconnection dynamics at
the higher order rational surfaces where these processes occur
is essential.

As mentioned throughout the text, there are several
limitations of the present study that should be addressed in
future work. Convergence tests on the poloidal and toroidal
resolution for the extended-MHD simulation shown are nee-
ded. One could include an explicit, higher-order numerical
magnetic diffusivity to control the dissipation mechanism
breaking the frozen-in condition at the reconnection X-point.
Future work should apply the local reconnection analysis
across test simulations with different equilibrium magnetic
and thermal profiles, and especially across experimental data,
moving past the test simulation used here. One could also
revisit the analytic theory of asymmetric reconnection to
include a guide magnetic field, curved geometry effects, and a
drifting reference frame. A more thorough understanding of
what controls the structure and amplitude of the out-of-plane
(helical) Hall quadrupole field structure when including
curved geometry and drift effects would be useful. The effects
on sawtooth reconnection due to diamagnetic drifts will be
discussed in a forthcoming paper.
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