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Abstract. In this work, recent advances in numerical studies of local reconnection events in the turbulent plasmas are
reviewed. Recently [1], the nonlinear dynamics of magnetic reconnection in turbulence has been investigated through high
resolution numerical simulations. Both �uid (MHD and Hall MHD) and kinetic (HybridVlasov) 2D simulations reveal the
presence of a large number of X-type neutral points, where magnetic reconnection locally occurs. The associated reconnection
rates are distributed over a wide range of values and they depend on the local geometry of the diffusion region. This new
approach to the study of magnetic reconnection has broad applications to the turbulent solar wind (SW). Strong magnetic
SW discontinuities are in fact strongly related to these intermittent processes of reconnection [2, 3]. Methods employed to
identify sets of possible reconnection events along a one-dimensional path through the turbulent �eld (emulating experimental
sampling by a single detector in a highspeed �ow) are here reviewed. These local reconnection/discontinuity events may be
the main sites of heating and particle acceleration processes [4]. Results from hybrid-Vlasov kinetic simulations support these
observations [5, 6]. In the turbulent regime, in fact, kinetic effects manifest through a deformation of the ion distribution
function. These patterns of non-Maxwellian features are concentrated in space nearby regions of strong magnetic activity.
These results open a new path on the study of kinetic processes such as heating, particle acceleration, and temperature
anisotropy, commonly observed in astrophysics.
Keywords: Magnetic Reconnection, Plasma simulations, Plasma Turbulence, Solar Wind
PACS: 52.35.Ra, 52.35.Vd, 52.65.-y, 96.50.Bh, 96.60.Iv, 96.60.Vg

INTRODUCTION

Magnetic reconnection is a fundamental phenomenon
in magnetized plasmas, responsible for magnetic energy
release, topology change and particle energization, and
therefore it is of widespread relevance in astrophysical
and laboratory systems [7, 8, 9]. Another underlying
common feature of the above systems is the presence of
turbulence [10], so a simultaneous description of both re-
connection and turbulence is needed. Recently [1, 11],
it has been proposed that turbulence provides a kind of
unbiased and natural local boundary condition for recon-
nection, producing much faster reconnection events than
one would expect in laminar regimes. In those works,
direct numerical simulations of decaying incompressible
two-dimensional magnetohydrodynamics (MHD) reveal
that in fully developed turbulence complex processes of
reconnection locally occur. The complex scenario con-
sists of multiple-reconnection simultaneous events in-
volving different-size magnetic vortices.
Besides turbulence [12], another ingredient that may

accelerate the process of reconnection is the Hall effect

[13]. The latter is always important for dynamical pro-
cesses that occur at scales comparable to the ion skin
depth, de�ned as di = c/ωpi (ωpi being the ion plasma
frequency). The Hall effect become globally important
and even dominant as the ion skin depth becomes compa-
rable to the system size L0, namely when di/L0 �= 0 [14].
Generally, the Hall effect is thought to be fundamental
for astrophysical plasmas, since it modi�es small scale
turbulent activity, producing a departure fromMHD pre-
dictions [15, 16, 17]. A study on the comparison between
MHD and Hall MHD, through high resolution pseudo-
spectral numerical simulations, reveals that an increase
of the Hall parameter broadens the distribution of recon-
nection rates and changes the local geometry of the re-
connection region, leading locally to faster reconnection
processes [18].
The preferential sites for small-scale turbulent recon-

nection are very thin current sheets [19], that represent
a fraction of the most common solar wind discontinu-
ities. Starting from this new approach we put a link
between solar wind discontinuities and local magnetic
reconnection processes. Solar wind discontinuities are
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characterized by large and rapid changes in properties
of the plasma and magnetic �eld [20, 21]. Recent stud-
ies on magnetic discontinuities show that their statisti-
cal properties are very similar to distributions obtained
from simulations of MHD turbulence [2, 3]. This line of
reasoning argues that thin current sheets are character-
istic coherent structures expected in active intermittent
MHD turbulence [22], and which are therefore integral
to the dynamical couplings across scales. Therefore, so-
lar wind discontinuities are one of the best applications
of our theory of reconnection-in-turbulence. Here, using
MHD simulations, we review that methods for identify-
ing intermittent current sheet-like structures can identify
sets of structures that are likely to be active reconnection
regions. Applications to the study of solar wind discon-
tinuities are reviewed, comparing simulations to space-
craft observations.
In turbulence, coherent structures are expected to

be sites of enhanced inhomogeneous dissipation. Such
small scale dissipative structures, through kinetic pro-
cesses, may be candidates to be active sites of mag-
netic reconnection, heating and temperature anisotropy
[23, 24, 25]. To support this idea, kinetic processes are
investigated in a two-dimensional turbulent plasma us-
ing direct numerical simulations of a hybrid Vlasov-
Maxwell model. In the turbulent regime, kinetic effects
manifest through a deformation of the ion distribution
function. The analysis shows that the distribution func-
tion is strongly modulated by the electromagnetic �eld,
and elongates mainly or across the local magnetic �eld
[5]. These departures from a Maxwellian equilibrium
may be responsible for the production of heating and
anisotropy, commonly observed in many astrophysical
and laboratory systems.

MAGNETIC RECONNECTION IN 2D
MHD TURBULENCE

The 2D incompressible MHD equations can be written
in terms of the magnetic potential a(x,y) and the stream
function ψ(x,y). By choosing a uniform mass density
ρ = 1, the equations read [26]:

∂ω
∂ t
=−(vvv ·∇∇∇)ω+(bbb ·∇∇∇) j+Rν

−1∇∇∇2ω , (1)

∂a
∂ t
=−(vvv ·∇∇∇)a+Rμ

−1∇∇∇2a, (2)

where the magnetic �eld is bbb = ∇∇∇a × ẑzz, the velocity
vvv=∇∇∇ψ × ẑzz, the current density j=−∇∇∇2a, and the vor-
ticity ω=−∇∇∇2ψ . Eqs. (1)-(2) are written in Alfvén units
[27] with lengths scaled to L0. The latter is a typical large
scale length such that the box size is set to 2πL0. Veloci-
ties and magnetic �elds are normalized to the root mean

square Alfvén speed VA and time is scaled to L0/VA. Rμ
and Rν are the magnetic and kinetic Reynolds numbers,
respectively (at scale L0). Eqs. (1)-(2) are solved in a

FIGURE 1. (a) Shaded-contour plot of the current density j.
(b) Line-contour of the magnetic potential a with the position
of all the critical points: O-points (blue stars for the maxima
and red open-diamonds for the minima) and X-points (black
×). From a run with 81922 grid points.

periodic Cartesian geometry (x,y), using a well tested
dealiased (2/3 rule) pseudo-spectral code [28] with res-
olutions from 40962 up to 163842 reaching Reynolds
numbers Rν = Rμ ∼ 10000 (more details can be found
in [29]).
For the statistical analysis we considered the state of

the system at which the mean square current density 〈 j2〉
is very near to its peak value. At this instant of time the
peak of small scale turbulent activity is achieved, and co-
herent structures appear. They can be identi�ed as mag-
netic islands (or vortices). The current density j becomes
very high in narrow layers between islands (Fig. 1-(a)).
These coherent structures interact non-linearly, merge,
stretch, connect, attract and repel each other. Reconnec-
tion is a major element of this complex interaction.
In order to describe the local processes of reconnection

that spontaneously develop in turbulence we examine the
topology of the magnetic potential studying the Hessian
matrix of a, de�ned as

Hai, j(xxx) =
∂ 2a

∂xi∂x j
, (3)
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which we evaluate at the neutral points of the magnetic
�eld. At each neutral point, where ∇∇∇a = 0, we compute
the eigenvalues of Hi, j. If both eigenvalues are positive
(negative), the point is a local minimum (maximum) of a
(an O point). If the eigenvalues are of mixed sign, it is a
saddle point (an X point). Further details on the method-
ology are provided in [11]. In Fig. 1-(b) an example of
a magnetic potential landscape together with its criti-
cal points are reported for a subregion of the simulation
box. The local geometry of the diffusion region is related
to the Hessian eigenvalues, λ1 =

∂ 2a
∂ s2 and λ2 =

∂ 2a
∂ l2 , the

larger and smaller (in magnitude), respectevely. The co-
ordinate s is associated with the minimum thickness δ of
the current sheet, while l with the elongation �. From a
scaling analysis, the aspect ratio of the diffusion region

FIGURE 2. (a) Scatter plot of the reconnection rates vs. the
geometry of the reconnection region (ratio of the eigenvalues
λR). The presence of a power-law �t (blue line) demonstrates
that there is a relation between the reconnection rate and the
geometry of the diffusion region. (b) Computed reconnection
rates vs. expectation from Eq. (5) [30]. The good agreement in-
dicates that the system is reconnecting in a asymmetric Sweet-
Parker scenario. Resolution runs from 40962 up to 163842 (see
[11] for more details).

is well approximated by

�/δ �
√
|λ1/λ2|. (4)

Once the position of all critical point is obtained it
is possible to �nd the reconnection rate of two island,
through ∂a/∂ t and it is equal to the electic �eld mea-
sured at the X-point (∂a/∂ t = −E× = (R−1

μ j)×). These
rates are then normalized to the mean square �uctuation
δb2rms, appropriate for Alfvènic turbulence. Fig. 2-(a)
shows that the reconnection rates are broadly distributed
with a range |E×| ∈ [10−6,0.3] with 〈|E×|〉 � 0.05. The
distribution of reconnection rates PDF(|E×|), for a run
with 40962 grid points, is reported in Fig. 3-(a) (red
curve) and it is broad and peaked around zero value. In
the case in which the reconnection is in a stationary state,
the rate depends on the aspect ratio de�ned by Eq. (4).
From Fig. 2-(a) it should be noted that the strongest re-
connection rate scale as E× ∼ �/δ ∼ √

λR, where λR =∣∣∣ λ1
λ2

∣∣∣. These fastest reconnection events in MHD turbu-
lence can be described by a modi�ed Sweet-Parker the-
ory which takes into account asymmetries (consequence
of the asymmetric nature of turbulent reconnection) in
the reconnectingmagnetic �eld [30]. This model predicts
that the reconnection rate scales as

Eth× =

√
b3/21 b3/22
Rμ�

(5)

where b1 and b2 are the upstream magnetic �elds on
each side of the X-point. Fig. 2-(b) shows that in all the
simulations the reconnection rates are consistent with the
prediction given by Eq. (5)

MHD VS. HALL MHD

Analogously to MHD, the equations of incompressible
Hall MHD can be written in dimensionless form. In
2.5D (2 dimensions in the physical space for three-
dimensional components) the equations read:

∂vvv
∂ t
=−(vvv ·∇∇∇)vvv−∇∇∇P+ jjj×bbb+R−1

ν ∇2vvv, (6)

∂bbb
∂ t
= ∇∇∇× [(vvv− εH jjj)×bbb]+R−1

μ ∇2bbb. (7)

The �elds can be decomposed in perpendicular (in-
plane) and parallel (out-of-plane, along z) components,
namely bbb = (bbb⊥,bz) and vvv = (vvv⊥,vz). For the magnetic
�eld bbb⊥ =∇∇∇a× ẑ, where a is the magnetic potential. The
coef�cient εH = di/L0 is the Hall parameter and is pro-
portional to the amount of dispersive effects present in
the system. Note that, for εH → 0, Eqs. (6)-(7) reduce
to MHD [see Eqs. (1) - (2)]. The above equations are
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FIGURE 3. (a) PDF of the reconnection rates for εH = 0
(MHD, red squares), εH = 1/100 (blue stars) and εH = 1/50
(black rhombus). The vertical dash-dotted lines represent the
mean value of each distribution 〈|E×|〉. (b)-(c) Respectevely, a
contour plot of the out-of-plane components of current jz and
of the magnetic �eld bz in a sub-region of the simulation box.
The bifurcation of the sheet and a quadrupole structure in the
magnetic �eld can be identi�ed.

solved with the same algorithm used for the MHD case,
using 40962 grid points, and with Rμ = Rν = 1700 with
different values for the coef�cient εH . The detailed dis-
cussion about results on reconnection in Hall MHD tur-
bulence has been recently published in [18]). In this pub-
lication it was showed that an increase of weight of the
Hall parameters re�ects in a higher small scale activity
that is responsible for increasing intermittency in the sys-
tem, and is generally attributed to the presence of disper-
sive effects [31]. The PDF of E× (constructed using con-
stant weight m per-bin [10]), for MHD and Hall MHD
cases, are reported in Fig. 3(a). As expected, both distri-
butions manifest strong departures from the averages. In
the HMHD cases higher tails appear in the PDF indicates
that the Hall term slightly accelerates reconnection. This
analysis con�rms that when the Hall physics is present,
distributions of reconnection rates become broader than
the MHD case, leading to slightly faster rates on average,
but revealing more frequently occurring explosive (very
large) reconnection events than in the MHD case.
To capture the in�uence of the Hall physics, one

should look at the local structure of the current. The in-
troduction of the Hall effect affects the local geometry of
the reconnection regions, producing a clear bifurcations

in the current sheets (Fig. 3-(b)) and, as expected from
theory [13], a quadrupolar structure of the magnetic �eld
(Fig. 3-(c)). Themagnetic �eld shows four distinctive po-
larities, organizedwith respect to the X-point, a clear sig-
nature of Hall effect in turbulent reconnection. Another
interesting feature (not shown) is that the HMHD current
sheets are shorter and thinner. This is reminiscent of the
systematic shortening and thinning of current sheets seen
in isolated laminar reconnection simulations [32].

INTERMITTENT STRUCTURES AND
RECONNECTION IN MHD

TURBULENCE

Here, using simulations of 2D MHD turbulence, we ex-
plore a possible link between tangential discontinuities
and magnetic reconnection. The goal is to develop ne-
merical algorithms that may be useful for solar wind ap-
plications. Following [33], rapid changes in the magnetic
�eld are described looking at the increments Δb(s,Δs) =
b(s+ Δs)− b(s), calculated along a 1D path s in the
simulation box, which emulates the spacecraft measure-
ments, on a spatial separation or lag Δs. Employing only
the sequence of magnetic increments, we computed the
normalized magnitude

ℑ(Δs, �,s) =
|Δb(s,Δs)|√
〈|Δbbb(s,Δs)|2〉�

, (8)

where 〈•〉� = (1/�)
∫
� •ds denotes a spatial average over

an interval of length �, and Δs is the spatial lag of the
increment). The square of the above quantity has been
called the Partial Variance of Increments (PVI) [2].
For the numerical analysis performed � � 535λC,

where λC = 0.18 is the turbulence correlation length -
a natural scale for computing averages. The PVI time se-
ries, evaluated using Eqs. (8) is reported in Fig. 4-(a).
The illustration spans more than 500 correlation lengths.
This spatial signal has been compared to a time signal
measured by a ACE solar wind spacecraft, near 1 AU,
over a period of about 20 days (panel (b)), where the time
signal is converted to a spatial signal, using the average
velocity of the �ow (details in [33]).
The PVI increment time series is bursty, suggesting the

presence of sharp gradients and localized coherent struc-
tures in the magnetic �eld, that represent the spatial inter-
mittency of turbulence. These events may correspond to
what are qualitatively called “tangential discontinuities”
(TD) and, possibly, to reconnection events. Examples of
TD selected by the PVI method are displayed in Fig. 4,
in simulation data (panel (c)) and in solar wind data [3]
(panel (d)). Imposing a threshold θ on Eq. (8), a collec-
tion of stronger discontinuities along the path s can be
identi�ed. That is, we selected portions of the trajectory
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FIGURE 4. (a) Spatial signal ℑ(Δs, �,s) (PVI) obtained from
the simulation by sampling along the trajectory s in the simula-
tion box. (b) Same quantity obtained from solar wind data. (c)
The two components of the magnetic �eld vector in simulation
data. (d) The three components of the magnetic �eld vector in
solar wind data in the RTN reference frame

in which the conditionℑ(Δs, �,s)> θ is satis�ed, and we
employed this condition to identify candidate reconnec-
tion sites (these regions are determined using a map gen-
erated by the cellular automaton procedure described in
[11]). For high θ , all the TDs correspond to reconnection
sites. In general, we suggest that the methods developed
here may have many applications to the the solar wind
data, where the coexistence of turbulence and magnetic
reconnection cannot be discarded.

RECONNECTION IN VLASOV
TURBULENCE

Here, using a Eulerian algorithm [34, 35] in a 2D-3V
geometry (two dimensions in physical space and three in
velocity space), we present a statistical description of the
link between the magnetic skeleton of turbulence and the
velocity subspace of the distribution function (DF). The
goal was to investigate the link between spatial magnetic
structures, such as magnetic vortices, and the formation
of non-Maxwellian features. Results have been published
on [5].
The dimensionless hybrid Vlasov-Maxwell equations

(kinetic ions and �uid electrons) are given by [34, 35]

∂t f +∇∇∇ · (vvv f )+∇∇∇vvv · [(EEE+ vvv×BBB) f ] = 0 (9)
∂tBBB=−∇∇∇×EEE, EEE =−uuu×BBB+ jjj×BBB/n−∇∇∇Pe/n+η jjj

where f (xxx,vvv) ≡ f (x,y,vx,vy,vz) is the ion DF, EEE the
electric �eld, BBB = bbb+BBB0 the total magnetic �eld (BBB0 =
B0ẑ is the mean �eld), and jjj = ∇∇∇× bbb the total current
density. The ion density n and the ion bulk velocity uuu
are obtained as the velocity moments of f , while an
isothermal equation of state for the electron pressure Pe
has been assigned. Times are scaled by the cyclotron

time Ω−1
ci , velocities by the Alfvén speed VA, lengths by

the ion skin depth di = VA/Ωci, and masses by the ion
mass mi. Runs were performed with 5122 mesh points in
physical space and 513 in velocity space. To investigate
the in�uence of both turbulence and system size, we
performed different runs varying δb/B0 (δb= 〈b2x+b2y)〉
and 〈•〉 represents spatial averages) and L0/di (being L0
the system size). More details about numerical methods,
accuracy and initial conditions in [5].
In analogy with �uid models, the analysis has been

done at the time τ at which the turbulent activity is
maximum. This time is estimated measuring the average
out-of-plane squared current density 〈 j2z 〉. At this time
of simulation, as seen in MHD and Hall MHD models,
turbulence manifests through the appearance of coherent
structures, exhibiting a sea of vortices and current sheets.
In between islands the out-of-plane component of the
current ( jz) becomes very intense, and in these regions of
highmagnetic stress, reconnection locally occurs at theX
points of az [1, 36]. From a qualitative analysis, the size
of these current sheets is of the order of few di’s. The
concentration of current in sheetlike structures (Fig. 5-
(a)) suggests that also kinetic effects may nuzzle locally
as well (note that they also manifest a bifurcation).
To get more insight in this phenomenon, we quanti�ed

kinetic effects looking directly at the high-order velocity
moments of the DF, concentrating in particular on tem-
perature and the kurtosis of f . The preferred directions of
f in the velocity space, for each xxx, can be obtained from
the stress tensor

Ai, j(xxx) =
1
n

∫
(vi−〈vi〉)(v j−〈v j〉) f d3v. (10)

This tensor can be studied in a diagonal form com-
puting its eigenvalues λ1, λ2, λ3 (note that λi are the
temperatures, choosen for convenience such that λ1 >
λ2 > λ3, and the respective eigenvectors êi are the
anisotropy directions in the minimum variance frame).
For a Maxwellian, the tensor in Eq. (10) is diagonal
and degenerate. Using the eigensystem, the temperature
anisotropy is given by λ1/λ3. The PDF of λ1/λ3 in
Fig. 5-(c) show that f is mostly isotropic, while only few
events manifest strong anisotropy (λ1/λ3∼ 1.7 ). A com-
parison between the simulations reveals that higher level
of turbulence (Runs II and III with δb/B0=1/7 while
for Run I δb/B0=1/3) produces patches with higher
anisotropy. The anisotropy, whose shaded contour is rep-
resented in Fig. 5-(b), is con�ned in sheetlike structures
(with the size of a few di), modulated by the local mag-
netic �eld: anisotropy is low inside magnetic islands
while is high in between them. The comparison between
Fig. 5-(a) with Fig. 5-(b) suggests that these distortions
are concentrated in sheetlike regions, located near the
peaks of jz. Therefore these patterns are characterized by
intense |∇2bbb⊥|(= |∇∇∇ jz|) - in a �uid model these would
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FIGURE 5. (a) Shaded contours (zoom) of jz together with
az (isolines) and its X points (black crosses). (b) Shaded con-
tour (same region of panel a) of the anisotropy together with
the inplane magnetic �eld lines (black). (c) PDF of the temper-
ature anisotropy λ1/λ3 for all runs (arrows represent averages).
(d) Isosurfaces of the velocity DF f (xxx∗,vvv), at a given spatial
position xxx∗ �(60, 119)di .

correspond to regions where collisional dissipation takes
place. The distributions of kurtosis (not shown) mani-
fest strong variations from Maxwellian, suggesting that
in turbulence the velocity distributions are leptokurtic.
Finally, in Fig. 5-(d) the isosurfaces of f reveal that the
DF is strongly affected by the presence of turbulence,
resembling a potatolike structure elongated in the ê1 di-
rection (ê3 and the direction of the local magnetic �eld
are reported as well).
To summarize, hybrid Vlasov-Maxwell simulations

reveal that, in turbulence, kinetic effects manifest as
snakelike patches of high anisotropy and kurtosis, the DF
results strongly modulated by the turbulent electromag-
netic �eld. This suggests that kinetic effects in plasmas
are strongly inhomogeneous, property related to the in-
termittent character of the magnetic �eld.
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