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Abstract. Numerical simulations of two-dimensional Magnetohydrodynamic (2D MHD) turbulence reveal the presence of
a huge number of sites where magnetic reconnection locally occurs. The properties of this ensemble of reconnection events,
that are spontaneously generated by turbulence, have been studied. The associated reconnection rates, computed as the electric
field at the neutral points, are broadly distributed and the statistics of these events are presented. This new description of
reconnection is relevant for space and laboratory plasmas, where generally turbulence is present.
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INTRODUCTION

Magnetic reconnection is a nonlinear process that occurs
in many astrophysical [1, 2, 3, 4] and laboratory plas-
mas [5]. The common feature of these nonlinear systems
is the presence of an inhomogeneous magnetic field that
changes rapidly across a narrow region. Reconnection, in
two dimensions, implies the presence of a magnetic X-
type neutral point where a conversion of magnetic into
kinetic energy occurs [6, 7], and where a strong peak in
the electric current density is present.

In the past decades many theoretical studies have dis-
covered much of the basic physics of magnetic recon-
nection, especially in simple geometries. Sweet [6] and
Parker [7], using conservation of mass, pressure balance
and continuity of the electric field, revealed the essential
large scale dynamics of magnetic reconnection. In partic-
ular, in the (idealized) configuration of two-dimensional
Magnetohydrodynamics (2D MHD), a neutral sheet sep-
arating plasma regions is subject to a pressure imbal-
ance that produces a plasma flow toward the neutral sheet
from the strong field regions.

Generally, simulation studies of magnetic reconnec-
tion have been performed in simplified geometries and
boundaries conditions [8, 9], but reconnection might be
expected to be of importance in more general circum-
stances, as for example fully 2D MHD turbulence [10].
Some speculations have been made concerning both the
general role of reconnection in MHD turbulence and the
impact of turbulence on reconnection [10, 11, 12, 13, 15,
14], but no quantitative description of these effects has
been documented, especially at high Reynolds numbers.

Only recently [16], it has been shown that in fully de-
veloped turbulence, complex processes of reconnection
locally occur. Here we further describe the statistical fea-
tures of this complex scenario of reconnection events,
where initial and boundary conditions are naturally im-
posed by the turbulence itself.

TWO-DIMENSIONAL MHD

TURBULENCE

The two-dimensional, incompressible, MHD equations
in terms of a magnetic potential a(x,y) and stream func-
tion φ (x,y) (uniform density ρ = 1) are [17]:

∂ ω

∂ t
= −(vvv ·∇∇∇)ω +(bbb ·∇∇∇) j +Rν

−1
∇∇∇

2ω, (1)

∂ a

∂ t
= −(vvv ·∇∇∇)a +Rµ

−1
∇∇∇

2a, (2)

with the magnetic field bbb=∇∇∇a× ẑzz, the velocity vvv=∇∇∇φ ×
ẑzz, the current density j=−∇∇∇

2a, and vorticity ω =−∇∇∇
2φ .

Eqs. (1)-(2) are written in familiar Alfvén units [10] with
lengths scaled to a typical scale L0. Rµ and Rν are, re-
spectively, magnetic and kinetic Reynolds numbers (re-
ciprocals of kinematic viscosity and resistivity).

Eqs. (1)-(2) are solved in doubly periodic (x,y) Carte-
sian geometry (side 2πL0), with a dealiased (2/3-rule)
pseudo-spectral code [18]. We report results from runs
with up to 81922 grid points and Rν =Rµ = 5000. Time
integration is second order Runge-Kutta. The initial state
consists of Gaussian fluctuations: random phases are em-
ployed for the initial Fourier coefficients and uncorre-
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TABLE 1. Description of runs. Analysis is per-
formed at time t∗ (peak of 〈 j2〉).

Mesh
points

Rµ

(= Rν )
Initial

spectrum t∗

Run 1 40962 1700 4 ≤ k ≤ 10 0.4

Run 2 40962 2500 5 ≤ k ≤ 30 0.2
Run 3 40962 2500 3 ≤ k ≤ 10 0.7

Run 4 81922 5000 5 ≤ k ≤ 30 0.3

lated, equipartitioned velocity and magnetic field fluctu-
ations are considered. For the main 81922 run (Run 4),
energy is initially in the shell 5 ≤ k ≤ 30 (k in units of
1/L0), and the total energy E = 〈|vvv|2 + |bbb|2〉 ' 1 (〈...〉
denotes a spatial average). The time of our analysis is at
the peak of the mean square current density 〈 j2〉, when
nonlinear activity is strong (t∗ ∼ 0.3). The main parame-
ters of all the runs are reported in Table 1.

ELECTRIC FIELD PROPERTIES

We investigate the properties of the turbulent electric
field, given by the Ohm’s law:

EEE = −vvv×bbb+R−1
µ j (3)

In 2D, only the out of plane component is present (along
z). In Fig. 1, color maps of the advective and diffusive
terms of the electric field in Eq. (3) are separately shown.
As it can be seen, the diffusive electric field (|R−1

µ j| ≤
0.3) is very small compared to the vvv× bbb–electric field
(|Evvv×bbb|≤ 3). The total electric field is essentially due to
the term vvv×BBB, that is the electric field produced by fluid
plasma motions. The diffusive electric field R−1

µ j, is very
small and with a much narrow distribution [14]. The re-
sistive R−1

µ j contribution is non-Gaussian and gives in-
formation about the intermittent nature of MHD turbu-
lence, and is related to the local reconnection processes.

To describe the magnetic field topology [16], we ana-
lyze a(x,y) [17], and the Hessian matrix of a, Ha

i, j(xxx) =
∂ 2a

∂xi∂x j
. At each neutral point, ∇∇∇a = 0, we compute the

eigenvalues of Ha
i, j. If both eigenvalues are > 0 (< 0),

this is a local minimum (maximum) of a (an O-point). If
the eigenvalues are of mixed sign, it is a saddle point (an
X-point). Fig. 2 shows an example of the magnetic po-
tential with its critical points (for Run 4, for example, the
number of X-points is ' 1300.) Many magnetic islands
are present, and, at the boundaries of these vortices, the
diffusive electric field is bursty [see Fig. 1-(b)].

The reconnection rates are computed as the rate of
change of the magnetic flux through ∂ a/∂ t , and using

FIGURE 1. 2D plot of the z components of the electric field:
(a) the advective term −vvv×bbb, and (b) the diffusive part R−1

µ jjj.

Eq. (3) at the saddle points,

∂ a

∂ t
= R−1

µ j|X−point = −Erec, (4)

where Erec is an abbreviation for the electric field mea-
sured at the X-point. The reconnection rates have been
normalized to the mean square fluctuation δ b2

rms, appro-
priate for Alfvènic turbulence. Note that due to the orien-
tation of the interacting pairs of magnetic islands, some
of the reconnection zones have a positive reconnection
rate and others, negative. In Fig. 3 the PDF of the ab-
solute value of the reconnection rate is shown. The PDF
of the electric field at the X-points is quite broad and
peaked around zero value. The mean value of the recon-
nection rate is ' 0.04, with strong variations from the
average. In terms of the global parameters this observed
range of reconnection rates varies from very slow to fast,
in fact |Erec| ∈ [10−6÷0.3]. For Run 4 (Rµ = 5000), the
global Sweet-Parker rate would be estimated as ∼ 0.014.
In this sense the typical reconnection rate is found to be
far higher than what is expected based on a simple global

application of the Sweet-Parker rate Erec ∼ R
−1/2

µ . More-
over, since this rate is broadly distributed, there are some
values of Erec that can easily exceed 0.1, as it can be seen
in Fig.s. 1 and 3). We do not attempt to further describe
the functional form of this PDF as we lack a specific the-
oretical expectation; however, it will be of interest to at-
tempt to explain this distribution in future work.
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FIGURE 2. Contours of magnetic potential a with the po-
sition of all the critical points: O-points (blue stars for the
maximum and red open-circles for the minimum) and X-points
(black ×). Only ∼ 1/17 of the entire simulation box is shown.

FIGURE 3. PDF of the reconnection rate (absolute value of
the electric field at the X-points.) The vertical dotted black line
in the panel represents the mean value of the distribution.

A MODEL FOR RECONNECTION IN 2D

TURBULENCE

When magnetic reconnection is in a stationary state,
the rate depends on the geometry of the diffusion re-
gion [16, 7, 17], that can be characterized by two lengths:
the thickness δ and the elongation ! of the current sheet.
From the matrix Ha

i, j(xxx) (see previous Section), the ratio

!/δ '
√

λmax/λmin, being λmax(min) the maximum (min-
imum) of the eigenvalues at the X-point. Since we can
obtain the ratio of the eigenvalues λmax/λmin, the prob-
lem reduces to measure each current sheet thickness δ
(then ! ∼ δ

√

λmax/λmin.)
We build up a system of reference with its origin at

the X-point, and the (normalized) eigenvectors of the

FIGURE 4. Computed reconnection rates vs. expectation
from Eq. (6) [21]. Symbols distinguish runs in Table 1. The
reconnection is an asymmetric Sweet-Parker scenario.

Hessian matrix identify the directions associated with
inflow (êees) and outflow (êeel ) regions. Using this system
of reference, we can obtain the tangential and the normal
component of the magnetic field as bt = êeel · bbb and bn =
êees · bbb, respectively.

We found that the strongest reconnection events have
the tangential magnetic field bt that reaches a max-
imum and then decreases going far from the saddle
point [19, 20]. This gives rise to much steeper gradients
of the field near the neutral point. Another interesting
feature is that reconnection in turbulence is essentially
asymmetric [21]. Because of the asymmetry of the prob-
lem, we compute the total width of each current peak as
δ = δ1 +δ2, being δ1(2) the left (right) contribution in the
system of reference of the X-point. The values of δ1,2 are
found by assuming that the magnetic field, close to the
X-point can be approximated with hyperbolic functions.
We interpolate the current density j, along the inflow co-
ordinate s, using the following parametric functions:

fle f t(s) = A1sech2

(

s− s0

δ1

)

+C1 {s < x0}

fright(s) = A2sech2

(

s− s0

δ2

)

+C2 {s ≥ x0} (5)

being A1,2 the amplitudes (they are proportional to the
magnetic field inside the two islands), s0 the position of
the current peak and C1,2 local constants. For each X-
point the fit has been optimized by an iteration procedure
in order to minimized the error of the interpolation [22].
Using the above procedure, the lengths of the diffusion
region (δ and !) and the up-stream (tangential) magnetic
fields (b1 and b2) have been found (note we suppressed
the index “t”).

A recent steady, anti-parallel reconnection model [21]
allows for asymmetries including unequal upstream
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magnetic field values b1 and b2 by analyzing conserva-
tion laws in the diffusion region. In the incompressible
case the associated reconnection rate is given by:

γ =

√

√

√

√

b
3
2

1
b

3
2

2

Rµ!
. (6)

To understand scaling we evaluated Eq. (6) using several
numerical experiment, listed in Table 1. Fig. 4 shows that
in all the simulations the reconnection rates are consis-
tent with the prediction given by Eq. (6). In this scenario
turbulence plays a crucial role, providing locally the pa-
rameters that determine the Sweet-Parker reconnection
rate: the lengths and local magnetic field strengths.

CONCLUSIONS

Properties of magnetic reconnection in turbulence have
been investigated through direct, high Reynolds num-
ber, numerical simulations of 2D MHD. The turbulent
cascade produces a distribution of reconnecting islands.
Computing the electric field at the X-points, we see that
turbulence produces a broad range of reconnection rates,
with values in excess of 0.1 in dimensionless global
Alfvén units. Only a small portion of the available tur-
bulent electric field Evvv×bbb is supplied to the local recon-
nection processes. These results may explain how rapid
reconnection occurs in MHD turbulence in association
with the most intermittent non-Gaussian current struc-
tures. On the other hand, turbulence can also generate
many reconnection sites that have very small rates.

This new perspective on reconnection may be relevant
to space and astrophysical applications [2, 3, 4, 1]. On
the basis of the current results, we would expect to find
in a turbulent MHD system a broad distribution of size
of interacting islands, with a concomitantly broad dis-
tribution of reconnection rates. A useful extension will
be to employ models that are suited to low collisionality
plasmas, where for example anomalous resistivity, Hall
MHD, or other kinetic effects, may be important.

Note that turbulence at higher Reynolds numbers will
in general have a broader range of represented dynamical
length scales. Indeed, the present modest Reynolds num-
ber simulations, limited by computing resources, show
thousands of reconnection zones having a range of sizes
and rate. In the corona and solar wind, which presumably
have much higher Reynolds numbers, one might expect
even more reconnection zones and with a greater range
of scales and rates.

Finally we remark that extensions of this approach to
the three dimensional case (3D) would of course be de-
sirable, and could produce valuable insights into real sys-
tems. However, due to the enormous computational re-
quirements, lack of applicable methodologies (e.g., an

extension of the Hessian approach) and the inherent com-
plexities of 3D reconnection [23], such efforts make take
some time to be realized.
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