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ABSTRACT

It is widely accepted that magnetic reconnection releases a large amount of energy during solar flares. Studies of
reconnection usually assume that the length scale over which the global (macroscopic) magnetic field reverses is
identical to the thickness of the reconnection site. However, in spatially extended high-Lundquist number plasmas
such as the solar corona, this scenario is untenable; the reconnection site is microscopic and embedded inside the
macroscopic current set up by global fields. We use numerical simulations and scaling arguments to show that
embedded effects on reconnection could have a profound influence on energy storage before a flare. From large-
scale high-Lundquist number resistive magnetohydrodynamics simulations of reconnection with a diffusion region
on a much smaller scale than the macroscopic current sheet, we find that the generation of secondary islands is
governed by the local magnetic field immediately upstream of the diffusion region rather than the (potentially much
larger) global field. This diminishes the production of secondary islands and leads to a thicker diffusion region than
those predicted using the global field strength. Such considerations are crucial for understanding the onset of solar
eruptions and how energy accumulates before such eruptions. We argue that if reconnection with secondary islands is
fast, the energy storage times before an eruption are too small to explain observations. If reconnection with secondary
islands remains slow, embedded effects cause the diffusion region to begin far wider than kinetic scales, so energy
storage before a flare can occur while collisional (Sweet–Parker) reconnection with secondary islands proceeds.

Key words: Sun: activity – Sun: chromosphere – Sun: corona – Sun: flares – magnetic fields – MHD

1. INTRODUCTION

Energy release during solar flares is thought to be allowed
by magnetic reconnection. A long-standing question was how
reconnection releases energy at the observed rate, which is
much faster than the classical Sweet–Parker model (Sweet 1958;
Parker 1957, 1963). A leading candidate is collisionless (Hall)
reconnection (Birn et al. 2001). An equally important question
is how energy accumulates beforehand, a conundrum in light of
reconnection. If reconnection is always fast and begins easily,
reconnection would release any free energy immediately, pre-
cluding major energy storage. Energy accumulation, therefore,
requires that reconnection can be slow or completely inactive.

It was recently proposed that Sweet–Parker reconnection, a
valid model for some parameters as confirmed by simulations
(Biskamp 1986) and experiments (Ji et al. 1998; Trintchouk
et al. 2003; Furno et al. 2005), occurs continuously before a
flare; its slowness allows energy to accumulate (Cassak et al.
2005, 2006, 2007b, 2008; Uzdensky 2007). The transition from
Sweet–Parker to Hall reconnection is catastrophic, implying
sudden onset of energy release. Consistent with this scenario,
flux emergence (Longcope et al. 2005) and coronal eruption (Liu
et al. 2009) observations display slow energy release before fast.
Transitions at kinetic scales are observed in experiments (Ren
et al. 2005; Egedal et al. 2007). Stellar flare data imply kinetic
effects are relevant (Cassak et al. 2008).

This discussion tacitly assumes Sweet–Parker scaling
holds for coronal parameters with Lundquist number S =
4πcALSP/ηc

2 ∼ 1014, where η is the resistivity, and L and
cA are the characteristic length scale and Alfvén speed. How-
ever, this is false. Thin current sheets are unstable to secondary
island formation when S > Scrit ∼ 104 (Biskamp 1986). Sec-
ondary islands, called plasmoids upon ejection from the cur-
rent layer, are observed in many contexts (Reeves et al. 2008;

Lin et al. 2008; Linton & Moldwin 2009). No quantitative
model of their impact on Sweet–Parker reconnection exists,
but evidence suggests it gets faster (Matthaeus & Lamkin 1986;
Lazarian & Vishniac 1999; Lapenta 2008; Loureiro et al. 2009;
Bhattacharjee et al. 2009). Secondary islands make sheets thin-
ner (Shibata & Tanuma 2001), as confirmed by simulations
(Daughton et al. 2009a, 2009b; Cassak et al. 2009). These ef-
fects are critical; if secondary islands make reconnection fast or
hasten the transition to collisionless reconnection, it is unclear
how pre-flare energy accumulates.

In this Letter, we address how energy storage during col-
lisional reconnection is affected by secondary islands, taking
into account the large separation between the thicknesses of the
equilibrium current layer and the reconnection dissipation layer.
Coronal current sheets can be ! 103 km thick (Lin et al. 2009),
but the diffusion region is microscopic and embedded deeply
within the macroscopic current sheet. This has been studied
in magnetospheric contexts (Pritchett & Coroniti 1995; Sitnov
et al. 2000; Yin & Winske 2002). In embedded systems, the
magnetic field immediately upstream of the diffusion region Bup
is weaker than the asymptotic (large-scale) field Basymp (Shay
et al. 2004). The diffusion region sees a much smaller effective
Lundquist number Sup than the asymptotic value Sasymp. The S
in the Biskamp (1986) criterion S > Scrit should be Sup rather
than Sasymp. We confirm this prediction using high-S magneto-
hydrodynamic (MHD) simulations of reconnection embedded
in a wide current sheet. Embedded effects suppress secondary
island generation and broaden the diffusion region relative to
expectations based on Sasymp.

To address the impact on flares, we need quantitative models
incorporating secondary islands. No accepted theory exists, but
recent work by Daughton et al. (2009a) and Loureiro et al.
(2007) provides a starting point. We argue that secondary
islands are ubiquitous in coronal reconnection. If Sweet–Parker
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Figure 1. Out-of-plane current density Jz for the w0 = 10 simulation with
η = 0.003 at (a) t = 4000 and (b) t = 5500. Only a small fraction of the domain
is plotted and its aspect ratio is altered for clarity.

reconnection with secondary islands is fast, issues of onset
and energy storage remain unsolved; if slow, embedded effects
ensure sufficient time to store energy before a flare.

2. SIMULATIONS AND RESULTS

Two-dimensional resistive MHD simulations are performed
using F3D (Shay et al. 2004) in a periodic domain of size
Lx × Ly = 409.6 × 204.8 with a grid scale of 0.1. Lengths,
magnetic fields, and densities are normalized to arbitrary values
L0, B0, and n0; velocities, times, electric fields, and resistivities
are normalized to the Alfvén speed cA0 = B0/(4πmin0)1/2, the
Alfvén time L0/cA0, E0 = cA0B0/c, and η0 = 4πcA0L0/c

2,
where mi is the ion mass.

The equilibrium is a double Harris sheet Bx(y) = tanh[(y −
Ly/4)/W0] − tanh[(y − 3Ly/4)/W0] − 1 with current sheet
thickness W0. The density asymptotes at 1 and is non-uniform
to balance total pressure. The temperature T = 1 is uniform and
is not evolved. Resistivity is constant and uniform throughout
all simulations. Ohmic heating is ignored. Viscosity is omitted,
but fourth-order diffusion with coefficient 3 × 10−5 is used in
all equations to damp noise at the grid scale. A single X-line is
seeded using a coherent magnetic perturbation. Initial random
perturbations on the magnetic field of amplitude 5×10−6 break
symmetry so secondary islands are ejected. There is no out-of-
plane (guide) magnetic field.

In collisional reconnection, L ∼ LSP, the half-length of the
Sweet–Parker diffusion region. In periodic systems, LSP ∼
Lx/4 ∼ 102.4. We find LSP closer to 75. To test the Biskamp
(1986) criterion, we use a base simulation with η = 0.003,
corresponding to Sasymp % 2.5 × 104, which is unstable to
secondary islands when Bup % Basymp. The classical Sweet–
Parker thickness is δSP % 0.47, so reconnection is initially
embedded if W0 > 0.47.

As a first test, we run a simulation with W0 = 0.4. The
diffusion region is immediately unstable to secondary tearing
as expected, splintering into ∼ 15 pieces at early times. Next,
we use W0 = 5, 10, and 15. For these runs, Sasymp > Scrit,
but Sup < Scrit because Bup is substantially decreased. The
simulations reveal that secondary islands do not form initially,
suggesting that Sup is the control parameter. Figure 1 shows the
out-of-plane current density Jz for the W0 = 10 simulation at (a)
t = 4000 and (b) t = 5500, revealing secondary island formation
only later in the evolution.

w0 = 10, η = 0.003
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Figure 2. Quantities as a function of time t for the w0 = 10, η = 0.003
simulation. (a) Diffusion region (half) thickness δ, (b) aspect ratio of the
diffusion region L/δ, (c) number of X-lines, (d) magnetic field strength upstream
of the main X-line, and (e) reconnection electric field. The vertical dashed line
denotes the time at which secondary islands appear.

In embedded reconnection, the initial half-thickness δi is
much larger than δSP based on Basymp. To estimate δi , classical
Sweet–Parker theory predicts (Parker 1957)

δi

LSP
∼ S−1/2

up ∼

√
ηc2

4πcA,upLSP
, (1)

where cA,up is the Alfvén speed based on Bup. If the diffusion
region is deeply embedded (W0 & δi), the field profile is roughly
linear, Bup % Basympδi/W0. Eliminating Bup gives

δi

LSP
∼ S−1/3

asymp

(
W0

LSP

)1/3

, (2)

so δi & δSP based on Basymp for large S.
The dynamical evolution is completely self-generated. In

embedded reconnection, the field upstream of the diffusion
region is stronger than Bup. This stronger field is frozen-in to the
reconnection inflow. Therefore, the reconnection inflow itself
carries in the stronger field. From Equation (1), increasing Bup
causes thinner diffusion regions. When Bup is large enough to
cross the Biskamp criterion, secondary island production begins.

This dynamics can be seen in Figure 2. Panel (a) shows the
diffusion region thickness δ, measured as the e-folding distance
of Jz in the inflow direction across the main X-line, as a function
of time for the W0 = 10 simulation, which is representative.
Following transients which last until t ∼ 2300, δ decreases
steadily in time. Extrapolating the linear part in back in time
to t = 0, we find δi % 1.2, in good agreement with δi % 1.3
predicted from Equation (2).

Since the diffusion region half-length L, measured as the
e-folding distance of Jz in the outflow direction, is relatively
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w0 = 10, η = 0.00075
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Figure 3. Same quantities as plotted in Figure 2 for the simulation with w0 = 10
but with a smaller resistivity of η = 0.00075.

constant, the aspect ratio L/δ steadily increases (panel (b)). Only
when L/δ % 130 does secondary island formation ensue. This is
shown in (c), with the number N of X-lines as a function of time.
To find N, X-line candidates are identified as locations where
the reconnected field By changes sign along the neutral line. The
number of active X-lines is hand-counted to determine N. After
initial transients, the system has a single X-line for % 2000 time
units. When L/δ exceeds 130, N increases. Panel (d) shows Bup,
measured as the reconnecting field strength 2δ upstream of the
main X-line, which steadily increases as reconnection proceeds.
The onset of secondary islands at L/δ % 130 (corresponding to
Sup ∼ 1.7 × 104) agrees with the Biskamp (1986) criterion.

To confirm Bup is the relevant field, we perform a simulation
with η reduced by a factor of 4 (corresponding to Sasymp ∼ 105),
which should require a smaller Bup to induce secondary tearing.
Figure 3 shows plots like Figure 2. As before, transients last until
t % 2000, then the sheet thins as Bup increases. The extrapolated
δi % 0.8 agrees well with the prediction of δi % 0.8 from
Equation (2). There is only a single X-line until t % 3200,
when secondary islands form. At this time, L/δ % 130 as in
the previous simulation. However, Bup ∼ 0.6, rather than 0.9,
consistent with expectations. We conclude that the field that
controls the onset of secondary islands is Bup, not Basymp.

The reconnection electric field E is plotted in panel (e) of
Figures 2 and 3, with the classical Sweet–Parker prediction ESP
based on Basymp plotted as the dashed line. Clearly, E exceeds
ESP upon onset of secondary islands. However, we cannot
ascertain whether E reaches a steady value. Larger simulations
are required to determine whether E is slower than or comparable
to the fast reconnection rate of E ∼ 0.1.

It is crucial to ensure that secondary islands do not introduce
excessive grid scale dissipation, which could adversely affect the
results. Cuts of Jz in the inflow direction for the data shown in
Figure 1 are shown in Figure 4(a) before and (b) after secondary
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Figure 4. Cut across Jz in the inflow direction of the two current sheets pictured
in Figure 1 confirming sufficient numerical resolution.

islands arise. There are over 16 and 10 grid cells across the
diffusion region, respectively, confirming that grid scale effects
are negligible.

3. APPLICATIONS TO THE CORONA

The present work has important implications for pre-flare
energy storage in the solar corona. The most important issues are
whether secondary islands (1) make Sweet–Parker reconnection
fast, (2) hasten the transition to collisionless reconnection, and
(3) make the reconnection electric field exceed the Dreicer
field, which would invalidate the use of a Spitzer resistivity.
We address each in turn.

At present, no accepted quantitative model for the impact
of secondary islands exists. Daughton et al. (2009a) provide
a possible starting point by assuming that fragments of the
diffusion region obey the Sweet–Parker model, allowing one
to predict the scaling with the number of islands N. With N
islands, the length L of each segment scales like L ∼ LSP/N .
From Equation (1), the thickness of the fragmented layer scales
like

δ ∼ δSP

N1/2
, (3)

where δSP is the classical Sweet–Parker prediction. The layer
becomes thinner, as noted previously (Shibata & Tanuma 2001).
Since E ∼ δ/L,

E ∼ ESPN
1/2, (4)

where ESP is the classical Sweet–Parker prediction. As previ-
ously noted, E increases due to secondary islands. Evidence
that this scaling holds in a time averaged sense is presented in a
companion study (Cassak et al. 2009).

There is evidence that the number of islands N scales with
a power of S. The analytical model by Loureiro et al. (2007)
predicted N ∝ S3/8. Amending their result to include embedded
effects, we write

N ∼
(

Sup

Scrit

)α

, (5)

where Scrit ∼ 104 and α generalizes the model by characterizing
potential models of secondary island generation. Recent numer-
ical results by Samtaney et al. (2009) agree with the prediction,
while Daughton et al. (2009a) report α % 0.6 in particle-in-cell
simulations, and Cassak et al. (2009) report α ∼ 0.72–0.93 in
MHD simulations.
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While the appropriateness of these models for coronal param-
eters has not been shown, it is instructive to investigate the pre-
dictions to see the effect of embedding and secondary islands.
We consider properties of the reconnection for various α. To
compare with coronal data, we use representative pre-flare pa-
rameters of Basymp ∼ 100 G, n ∼ 3×109 cm−3, LSP ∼ 109 cm,
and T ∼ 106 K (Cassak et al. 2006). Using a parallel Spitzer
resistivity, this gives Sasymp ∼ 4 × 1013. For the macro-
scopic current sheet thickness, we use Ws ∼ 103 km (Lin
et al. 2009). These values do not apply to a particular event;
the focus is on orders of magnitude, not specific values of
predictions.

The reconnection rate. Using ESP ∼ S
−1/2
up with Equations (4)

and (5) implies E ∝ S
−(1−α)/2
up , which is quite sensitive to α. If

α % 1, then E weakly depends on S and reconnection is fast. If
α < 1, then E scales with a negative power of S, so reconnection
is slow. To make this quantitative, ignore embedded effects
for simplicity (which make reconnection slower). The classical
(normalized) prediction is ESP ∼ S

−1/2
asymp ∼ 10−7, six orders of

magnitude slower than observed energy release rates (Parker
1963). To put this in perspective, if α = 3/8, then E ∝ S

−5/16
up

giving E ∼ 63ESP for coronal parameters, which is four orders
of magnitude slower than observed rates; see Cassak et al. (2009)
for further discussion.

The transition to collisionless reconnection. Collisionless
reconnection begins when δ reaches a kinetic length scale
(Aydemir 1991; Mandt et al. 1994; Ma & Bhattacharjee 1996),
which we call δk . The transition is abrupt; for anti-parallel
reconnection, δk = di = c/ωpi , the ion inertial scale (Cassak
et al. 2005), where ωpi is the ion plasma frequency. With a
strong guide field δk = ρs = cs/Ωci , the ion Larmor radius
(Cassak et al. 2007a), where cs is the ion sound speed and
Ωci is the ion cyclotron frequency. Reconnection in the corona
has a strong guide field (Uzdensky 2007), so the δk = ρs is
appropriate.

If reconnection with secondary islands remains slow (α < 1),
one must ask how secondary islands impact onset of collision-
less reconnection. We estimate the length scales for the corona.
The kinetic scale is ρs ∼ 10 cm. From Equation (2), the initial
thickness of the diffusion region is δSP,i ∼ (WsL

2
SP/Sasymp)1/3 %

104 cm. The initial upstream field is Bup,i ∼ BasympδSP,i/Ws %
0.01 G, giving an initial Sup,i ∼ 5 × 109. Since Sup,i & Scrit ∼
104, secondary islands occur during coronal Sweet–Parker re-
connection from the outset despite embedded effects. For def-
initeness, if α = 3/8, Equation (5) predicts initially Ni ∼ 140
islands. From Equation (3), δi ∼ δSP,i/N

1/2
i ∼ 1200 cm. This is

∼ 102 times wider than ρs , so the fragmented diffusion regions
are initially wider than kinetic scales. Reconnection at initiation
is collisional.

To estimate the critical upstream field Bup,c needed to make
δ ∼ δk , set Equation (3) equal to δk and eliminate N using
Equation (5). We make contact with previous work by first
writing this in terms of a dimensionless effective collisionality
parameter ηc = ηc2/4πcA,upδk , getting

ηc = 1

S
α/(1+α)
crit

(
δk

LSP

)(1−α)/(1+α)

. (6)

This generalizes the result by Daughton et al. (2009a) to include
embedded effects (Bup,c instead of Basymp in ηc), guide field
effects (δk instead of di), and the amended Loureiro et al. (2007)

(a)

(b)

Figure 5. From the model, the predicted critical field Bup,c and quiet time τquiet
as a function of the exponent α in the secondary island generation model for
coronal parameters employed in the text.

result in Equation (5). Solving for Bup,c gives

Bup,c ∼ Basymp
S
α/(1+α)
crit

Sasymp

(
LSP

δk

)2/(1+α)

. (7)

This result is plotted as a function of α in Figure 5(a) using
δk = ρs . For very small α, Bup,c > Basymp, so a flare would
never occur (α " 0.25). For larger α, Bup,c ( Basymp, so a flare
would onset too easily to store energy (α ! 0.5).

The time it takes for this upstream field to convect into the
diffusion region is a measure of the quiet time before a flare
τquiet. We estimate it using an analysis similar to Shay et al.
(2004); Cassak et al. (2006). The time it takes to convect flow
is τquiet ∼

∫ δf
δi

dδ/vin, where the bounds of integration are the
initial and final thicknesses. We write vin in terms of δ using
conservation of mass vin ∼ cA,upδ/L. Then Equation (4) implies
δ/L ∼ δSPN

1/2/LSP. Finally, using Equation (5) to eliminate
N and Bup ∼ Basympδ/Ws gives the integrand entirely in terms
of δ and asymptotic system parameters. Integrating from the
distance upstream that the field strength equals the critical field
δi ∼ δup,c ∼ (Bup,c/Basymp)Ws to very small kinetic scales
δf ∼ 0 gives a quiet time

τquiet % 2
1 − α

Ws

cA,asymp
S
α/(1+α)
crit

(
LSP

δk

)(1−α)/(1+α)

. (8)

This is plotted (in hours) in Figure 5(b) as a function of α. For
0.25 " α " 0.5, there are several hours for energy storage,
which is a reasonable pre-flare storage time (Priest & Forbes
2002). Since τquiet is linear in Ws, wider macroscopic sheets
produce longer quiet times. We conclude that secondary islands
do not invalidate recent models (Cassak et al. 2005, 2006;
Uzdensky 2007; Cassak et al. 2008) of energy storage provided
α is in this range (for the parameters and secondary island model
employed here). If α % 1, the quiet time before a flare would be
exceedingly small, so energy would not have time to accumulate.

The Dreicer field. The Dreicer field is

ED ∼ 0.43
(

2πneZe3

kBTe

ln Λ
)

∼ 1.25 × 10−7 statvolt cm−1.

(9)
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Using α = 3/8 and the asymptotic fields, E ∼ 1.3 × 10−5

statvolt cm−1, which exceeds the Dreicer field. However, from
Figure 5(a), the transition to collisionless reconnection occurs
when Bup ∼ 10 G. For these fields, E ∼ 2.6 × 10−7 statvolts
cm−1, comparable to the Dreicer field. In this scenario, the field
during the quiet time is below the Dreicer field, so the description
using a Spitzer resistivity is valid.

4. DISCUSSION

The precise scaling of reconnection with secondary islands re-
mains an open question. The model employed here, for example,
does not take into account possible hierarchical secondary is-
land scenarios (Shibata & Tanuma 2001; Daughton et al. 2009a;
Bhattacharjee et al. 2009). Regardless, the present results con-
clusively show that embedded effects can be considerable, and
need to be taken into account when modeling coronal reconnec-
tion.

In addition to coronal reconnection, the present results may be
relevant to chromospheric reconnection (Litvinenko 1999; Chae
et al. 2003; Litvinenko & Chae 2009), where S ∼ 106–108. The
inferred reconnection rate exceeds the classical Sweet–Parker
prediction by a factor of a few. Using Equation (4) with α = 3/8
predicts an enhancement by a factor of about 5 for Sasymp ∼ 108,
which brings the observations into closer agreement with theory.

Limitations to the present simulations include the absence
of a guide field, the usage of a constant resistivity instead of
a Spitzer resistivity, and the omission of Ohmic heating and
viscosity; the latter of which may be important for secondary
island generation (Park et al. 1984). Three-dimensional effects
are omitted, but are potentially important. The models employed
here treat only self-generated secondary islands, not externally
driven turbulence (Lazarian & Vishniac 1999; Smith et al. 2004;
Kowal et al. 2009; Loureiro et al. 2009).

The authors thank W. Daughton, A. A. Schekochihin, and
M. A. Shay for valuable discussions. Computations used re-
sources at the National Energy Research Scientific Computing
Center. P.A.C. and J.F.D. acknowledge support from NSF grants
PHY-0902479 and PHY-0316197, respectively.
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