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A. Derivation of Kinetic Entropy Evolution

Equation

The evolution equation for the kinetic entropy density
s� defined in Eq. (2) is obtained by taking its partial time
derivative and eliminating @f�/@t using the Boltzmann
equation [1],

@f�
@t

+ v ·rf� +
F�

m�
·rvf� = C[f ], (S.1)

where F� is the sum of any body forces, rv is the velocity
space gradient operator, and C[f ] is the inter- and intra-
species collision operator, yielding [2–4]

@s�
@t

+r ·J � = ṡ�,coll, (S.2)

where J � is the kinetic entropy density flux

J � = �kB

Z
vf� ln

✓
f��3r��3v�

N�

◆
d3v (S.3)

and ṡ�,coll is the local time rate of change of kinetic en-
tropy density through collisions,

ṡ�,coll = �kB

Z
C[f ] ln

✓
f��3r��3v�

N�

◆
d3v. (S.4)

Note, there is no term containing body forces such as
the electric and magnetic forces in Eq. (S.2) because the
force term in Eq. (S.1) identically vanishes in deriving
Eq. (S.2). An equivalent form of Eq. (S.2) comes from
writing v = u� + v0

� in Eq. (S.3), which implies J � =
s�u� +J �,th, where the thermal kinetic entropy density
flux J �,th is defined as

J �,th = �kB

Z
v0
�f� ln

✓
f��3r��3v�

N�

◆
d3v. (S.5)
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Then, Eq. (S.2) becomes [3]

@s�
@t

+r · (s�u� +J �,th) = ṡ�,coll. (S.6)

This equation is in the stationary (Eulerian) reference
frame.
Here, we manipulate Eq. (S.6) to derive an evolution

equation for kinetic entropy per particle s�/n� in a co-
moving (Lagrangian) frame [Eq. (3)]. Using the convec-
tive derivative d/dt = @/@t+u� ·r and dividing Eq. (S.6)
by the density n� gives

1

n�

ds�
dt

+
s�
n�

(r · u�) +
r ·J �,th

n�
=

ṡ�,coll
n�

. (S.7)

Using the continuity equation dn�/dt = �n�r ·u� (since
N� is assumed constant), we get

1

n�

ds�
dt

� s�
n2
�

dn�

dt
+

r ·J �,th

n�
=

ṡ�,coll
n�

. (S.8)

Finally, the two terms on the left are equal to
d(s�/n�)/dt, which completes the derivation of Eq. (3).
We conclude this section with two important notes.

First, Eq. (2) is the “Boltzmann” form of kinetic en-
tropy density s�. For collisionless systems, any function
of f� is conserved, so other entropies could be defined
[5]. We choose the Boltzmann entropy because it re-
duces to the ideal fluid entropy density for a system in
LTE and, for collisional systems, the total Boltzmann
entropy S� =

R
s�d3r obeys an H-theorem (S� is non-

decreasing in time) for a reasonably defined collision op-
erator [6]. Neither need be the case for other entropies.
The present analysis may be redone for other entropies
for future work.
Second, the approach we use remains valid even if there

is an entropy source in the Boltzmann equation beyond
collisions, such as due to boundaries of a finite domain.
Such sources can lead to non-conservation of total kinetic
entropy S� =

R
s�d3r even in collisionless systems [7],

but s� is local in space and time and therefore remains
well-defined.
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B. Derivation of Generalized Work Term

Here, we derive Eq. (5a). Dividing both sides of
Eq. (4a) by n� and taking its total time derivative gives

d

dt

✓
s�p
n�

◆
= �kB

n�

dn�

dt
. (S.9)

A brief derivation reveals this is equivalent to

d

dt

✓
s�p
n�

◆
= kBn�

d(1/n�)

dt
. (S.10)

Defining V� = 1/n� as the volume per particle, and using
P� = n�kBT�, the previous equation is equivalent to

d

dt

✓
s�p
n�

◆
=

1

T�
dW�

dt
, (S.11)

where dW� = P�dV� = P�d(1/n�) is the non-LTE gen-
eralization of the work per particle done by the system.

To physically interpret this, note s�p is associated
with the number of permutations of particles in posi-
tion space that produce the same macrostate without
concern for their velocity [8]. The argument of the nat-
ural logarithm in s�p/n� = �kB ln(n��3r�/N�) is al-
ways between 0 and 1, so s�p/n� is non-negative and is
a strictly decreasing function of n�. Thus, local com-
pression (dW� = P�dV� < 0) increases n� and decreases
s�p/n� [i.e., d(s�p/n�)/dt < 0], while local expansion
(dW� = P�dV� > 0) decreases n� and increases s�p/n�

[i.e., d(s�p/n)/dt > 0].

C. Derivation of Generalized Energy Term

We next derive Eq. (5b). We decompose the velocity
space kinetic entropy density s�v in Eq. (4b) as s�v =
s�v,E + s�v,rel, where

s�v,E = �kB

Z
f� ln

✓
f�M�3v�

n�

◆
d3v, (S.12)

s�v,rel = �kB

Z
f� ln

✓
f�
f�M

◆
d3v, (S.13)

where f�M is the Maxwellianized distribution of f� de-
fined in Eq. (8). The relative entropy is related to the
Kullback-Leibler divergence [9] from information theory
which is a measure of the statistical di↵erence between
a two probability distributions, and has been extensively
used in a variety of fields, such as statistical mechanics,
applied mathematics, chemistry, biology, quantum infor-
mation theory, and economics [2, 10–19]. Substituting
Eq. (8) into Eq. (S.12) and carrying out straight-forward
manipulations gives

s�v,E
n�

=
3

2
kB


1 + ln

✓
2⇡kBT�

m�(�3v)2/3

◆�
. (S.14)

Its Lagrangian time derivative immediately gives

d

dt

✓
s�v,E
n�

◆
=

1

T�
dE�,int
dt

, (S.15)

where dE�,int = (3/2)kBdT� is the increment in internal
energy per particle. This reproduces Eq. (5b). Thus,
d(s�v,E/n�)/dt > 0 implies the e↵ective temperature in-
creases, while d(s�v,E/n�)/dt < 0 implies the e↵ective
temperature decreases. Physically, s�v is associated with
the number of permutations of particles of di↵erent ve-
locities in a given position in phase space that produces
the same macrostate [8].

D. Derivation of Generalized Heat Term

We now derive Eq. (5c). We find it is advantageous to
decompose r ·J �,th using Eq. (S.5) as

r ·J �,th = (r ·J �,th)W + (r ·J �,th)E + (r ·J �,th)rel,
(S.16)

where

(r ·J �,th)W = �kB

Z
(f�v

0
�) ·

r

ln

✓
f��3r��3v�

N�

◆�
d3v,(S.17a)

(r ·J �,th)E = �kB

Z h
r · (v�

0f�)
i

ln

✓
f�M�3r��3v�

N�

◆
d3v, (S.17b)

and (r · J �,th)rel is defined in Eq. (7). The latter has
equivalent forms of

(r ·J �,th)rel = �r · (u�s�v,rel)

�kB

Z
r · (vf�) ln

✓
f�
f�M

◆
d3v,

= �s�v,rel(r · u�)

�kB

Z
(v0

� ·rf�) ln

✓
f�
f�M

◆
d3v,

which may be useful in applications depending on which
quantities are easiest to measure in a given system.
We first treat (r · J �,th)W/n�. The gradient of the

term in brackets in Eq. (S.17a) is (1/f�)rf�. Using v0
� =

v � u�, straight-forward manipulations give

(r ·J �,th)W
n�

= �kBr · u� = �kBn�
d(1/n�)

dt
, (S.18)

where we use the continuity equation to eliminate r ·u�.
Therefore, this term describes the non-LTE generaliza-
tion of heating associated with compression or expan-
sion, with the same form as d(s�p/n�)/dt in Eq. (S.10)
but with the opposite sign. This motivates our use of the
W subscript.
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Turning to (r · J �,th)E/n�, we use Eq. (8) to write
Eq. (S.17b) as

(r ·J �,th)E
n�

= �kB
n�

Z
r · (v0

�f�)
(
ln

"✓
n��3r��3v�

N�

◆✓
m�

2⇡kBT�

◆3/2
#
� m�v02�

2kBT�

)
d3v.

The term in square brackets is independent of v and
hence comes out of the integral, and the remaining part
of that integral is

R
r · (v0

�f�)d
3v = 0. Manipulations of

the remaining term after integration by parts gives

(r ·J �,th)E
n�

=
r · (q�/T�)

n�
�

m�

2n�

Z
f�v

0
� ·


rv02�
T�

� v02� rT�
T 2
�

�
d3v,(S.19)

where q� is the vector heat flux density defined after
Eq. (1). Using index notation and the Einstein summa-
tion convention,

v0
�·rv02� = v0�j

@(v0�kv
0
�k)

@rj
= 2v0�jv

0
�k

@v0�k
@rj

= �2v0�jv
0
�k

@u�k

@rj
,

where we use @v0�k/@rj = @(vk � u�k)/@rj = �@u�k/@rj
in the last equality. Carrying out the remaining integrals
and simplifying gives

(r ·J �,th)E
n�

=
r · q�

n�T�
+

(P� ·r) · u�

n�T�
. (S.20)

Comparing the right hand side of Eq. (S.20) with Eq. (1),
we see both terms appear directly in the internal energy
equation with the opposite sign, motivating the choice of
the subscript E . This term describes heat per particle
that changes only the e↵ective temperature. A negative
value of (r ·J �,th)E/n� drives increasing T�, and a pos-
itive value drives decreasing T�.

A consequence of Eq. (S.18) is that (r ·J �,th)W/n� =
�(P�/n�T�)r · u�, so

(r ·J �,th)W
n�

+
(r ·J �,th)E

n�
=

r · q�

n�T�
+

⇧�,jkD�,jk

n�T�

= � 1

T�
dQ�

dt
, (S.21)

where we use the known decomposition (P� ·r) · u� =
P�(r · u�) +⇧�,jkD�,jk, with ⇧�,jk = P�,jk �P��jk be-
ing elements of the deviatoric pressure tensor ⇧, D�,jk =
(1/2)(@u�j/@rk + @u�k/@rj)� (1/3)�jk(r ·u�) being el-
ements of the traceless symmetric strain rate tensor D,
and �jk being the Kroenecker delta [3, 20]. This deriva-
tion provides the expression given in Eq. (5c).

E. Derivation of Relative Energy Per Particle Rate

for a Bi-Maxwellian Plasma

Here we derive the rate of relative energy per particle
change dE�,rel/dt for a bi-Maxwellian initial phase space

density. Consider a purely collisionless system in which
the initial f� is bi-Maxwellian with a converging bulk
flow u(r, t). We define z as the parallel direction k, x
and y as perpendicular ? directions, and T? and Tk as
the uniform temperatures in the ? and k directions. The
initial phase space density is

fbiM = n

✓
m

2⇡kBT?

◆✓
m

2⇡kBTk

◆1/2

e�m[(vx�ux)
2+(vy�uy)

2]/2kBT?e�m(vz�uz)
2/2kBTk ,(S.22)

where n is the initial number density and the constituent
mass is m. The Maxwellianized distribution for this sys-
tem has the form of Eq. (8) with e↵ective temperature
T = (2T? + Tk)/3. Then,

ln

✓
fbiM
fM

◆
= ln

0

@ T 3/2

T?T
1/2
k

1

A�
m(v02x + v02y )

2kB


Tk � T?

T?(2T? + Tk)

�

�mv02z
2kB


2(T? � Tk)

Tk(2T? + Tk)

�
,

and a straight-forward derivation using Eq. (6) yields

sv,rel
n

= �3

2
kB ln

"
2

3

✓
T?
Tk

◆1/3

+
1

3

✓
Tk

T?

◆2/3
#
.(S.23)

The Lagrangian time derivative of this equation, after
some algebra, gives

d

dt

⇣sv,rel
n

⌘
= kB

✓
Tk � T?

2T? + Tk

◆✓
1

T?

dT?
dt

� 1

Tk

dTk

dt

◆
.

(S.24)
The thermal evolution equations in a collisionless gy-
rotropic system, which follow directly from the second
parallel and perpendicular moments of the collisionless
Boltzmann equation, are written in terms of parallel and
perpendicular pressures as [21, 22]

dPk

dt
+ Pkr · u+ 2Pk [ẑ (ẑ ·r)] · u = 0, (S.25a)

dP?
dt

+ 2P?r · u� P? [ẑ (ẑ ·r)] · u = 0, (S.25b)

where P? = nkBT? and Pk = nkBTk. Substituting these
into Eq. (S.24) gives

d

dt

⇣sv,rel
n

⌘
= kB

✓
Tk � T?

2T? + Tk

◆✓
�r? · u? + 2

@uz

@z

◆
,

(S.26)
where u? = u � ẑuz. Finally, using Eq. (9a) to relate
this to dE�,rel/dt gives

dE�,rel
dt

=
1

3
kB(Tk � T?)

✓
�r? · u? + 2

@uz

@z

◆
. (S.27)

To interpret this result physically, suppose Tk > T?.
First consider a bulk flow profile u = u? that is isotrop-
ically converging in the xy plane. Compression leads
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to heating, but only in the perpendicular direction [23].
Thus, f� becomes more Maxwellian. From Eq. (S.27),
both Tk � T? and the bulk velocity term are positive, so
dE�,rel/dt > 0, consistent with energy going into higher
order moments making f� more Maxwellian. Now con-
sider converging bulk flow in the z direction. The com-
pression heats the distribution in the parallel direction,
so f� becomes more elongated in the parallel direction,
i.e., less Maxwellian. From Eq. (S.27), Tk�T? is positive
but the bulk velocity term is negative, so this evolution
away from Maxwellianity is consistent with dE�,rel/dt
being negative. This example illustrates general fea-
tures: dE�,rel/dt > 0 is associated with energy conversion
making higher moments of f� evolve to become more
Maxwellian, and vice-versa.

F. Numerical Simulation Methodology

Details of the simulation in addition to what follows
are available in Ref. [24]. We use the massively paral-
lel particle-in-cell code p3d [25] to perform simulations
that are 3D in velocity-space and 2.5D in position-space.
Periodic boundary conditions are used in both spatial
directions. The code uses the relativistic Boris particle
stepper [26] for stepping particles forward in time, while
the trapezoidal leapfrog method [27] is utilized for step-
ping electromagnetic fields forward in time. The fields
have a time-step half of that of the particles. The multi-
grid method [28] is used to clean the electric field E to
enforce Poisson’s equation every 10 particle time-steps.

Simulation results are presented in normalized units.
The reference magnetic field B0 is the initial asymptotic
magnetic field strength. The reference number density
n0 is the peak current sheet number density minus the
asymptotic background number density. Length scales
are normalized to the ion inertial scale di0 = c/!pi0,
where !pi0 = (4⇡n0q2i /mi)1/2 is the ion plasma fre-
quency (in cgs units), qi is the ion charge, mi is the
ion mass, and c is the speed of light. Velocities are
normalized to the Alfvén speed cA0 = B0/(4⇡min0)1/2.
Times are normalized to the inverse ion cyclotron fre-
quency ⌦�1

ci0 = (qiB0/mic)�1. Temperatures are nor-
malized to mic2A0/kB . Current densities are normal-
ized to cB0/4⇡di0. Reduced phase space densities, with
one velocity dimension integrated out, are normalized to
n0/c2A0. Energy per particle conversion rates are given in
units of ⌦ci0B2

0/4⇡n0.
The initial condition has two oppositely directed cur-

rent sheets with drifting Maxwellian initial distributions.
The magnetic field profile is a double tanh with no ini-
tial out-of-plane (guide) magnetic field. The current
sheet thickness is w0 = 0.5, the background density is
nup = 0.2, and the electron and ion temperatures are
1/12 and 5/12, respectively. A magnetic perturbation
of amplitude 0.05 seeds an X-line/O-line pair in each of
the two current sheets. The simulation system size is
Lx ⇥ Ly = 12.8 ⇥ 6.4, where x and y are the outflow

and inflow directions, respectively. The speed of light c
is 15 and the electron to ion mass ratio is me/mi = 0.04.
There are 1024 ⇥ 512 grid cells initialized with 25,600
weighted particles per grid (PPG), which is chosen to
be very large to decrease particle noise. The grid-length
� in both directions is 0.0125, which is smaller than the
smallest length scale which is the electron Debye length of
0.0176. The time-step �t is 0.001, which is smaller than
the smallest time scale which is the inverse of electron
plasma frequency of 0.012. Our choice of these numeri-
cal parameters results in a total energy increase by only
0.022% by t = 14.
All plots display data from only the lower current sheet

at time t = 13, when the rate of reconnection is in-
creasing most rapidly in time. To reduce PIC noise for
all quantities plotted other than phase space densities,
the raw quantities are recursively smoothed four times
over a width of four cells, then any temporal or spatial
derivatives are carried out, and then the results are again
smoothed recursively four times over four cells. For tem-
poral derivatives, the presented data is calculated from a
finite di↵erence between t = 12 and 14 (on ion cyclotron
time scales). The results are compared to those obtained
from a finite di↵erence between t = 12.96 and 13.04 (elec-
tron time scales), and the results are found to di↵er by
less than 5%; this change is deemed inconsequential for
the present purposes.
Kinetic entropy is calculated in the simulations em-

ploying the implementation from Ref. [29]. Optimization
of the velocity-space grid [30] is done by checking the
agreement between the kinetic entropy density for elec-
trons se calculated by the simulation for various �ve and
the theoretical value at t = 0. We find an optimal �ve of
1.33 which leads to an initial agreement to within ±1% in
the upstream region and ±3% at the center of the current
sheet. For plots of reduced electron phase space densi-
ties, we use a domain of size 0.0625 ⇥ 0.0625 centered
at the location of interest. Particles are binned with a
velocity space bin of size 0.1 in all velocity directions.

G. Additional Comments on the Relation to

Previous Work

Here, we put our result in context of previous work on
related topics.

• Energy Conversion in �f� Kinetic Theory
and Gyrokinetics: We first compare the present
work with previous work on energy conversion in
linearized kinetic theory and gyrokinetics [31–34].
Consider a linear expansion of the phase space den-
sity about its Maxwellianized distribution, so that
f� = f�M + �f�, and �f� ⌧ f�M . A straight-
forward calculation using Eq. (S.13) reveals that
the linearized relative entropy �s�v,rel is

�s�v,rel ' �kB

Z
(�f�)2

2f�M
d3v. (S.28)
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In linear theory, the density and temperature in
f�M are their equilibrium values, which we call n�0

and T�0, respectively. Then, the linearized equa-
tion describing the relative energy increment using
Eq. (9a) is

dE�,rel
dt

' T�0
d(s�v,rel/n�0)

dt
. (S.29)

Since the equilibrium temperature does not change
to low order in linear theory, n�0 and T�0 are con-
stant in time, so integrating Eq. (S.29) in time gives

�E�,rel '
T�0

n�0
�s�v,rel

' �kBT�0

n�0

Z
(�f�)2

2f�M
d3v, (S.30)

where we use Eq. (S.28).

In comparison, the free energy in a �f� linearized
thermodynamic approach [31] [int in their Eq. (7)]
was derived to be

int = kBT0

Z
(�f)2

2f�M
d3v (S.31)

and in a gyrokinetic analysis of energy conversion
[32, 33], the comparable term from the free energy
{the first term of W in Eq. (74) from Ref. [33]} is

W =

Z
d3r

X

�

Z
kBT0�

(�f)2

2f�M
d3v. (S.32)

Clearly, the linearized relative energy per particle
�E�,rel in Eq. (S.30) is related to the free energy
in the �f� thermodynamic and the gyrokinetic ap-
proaches. In particular, int = �n�0�E�,rel and
W = �

R
d3r

P
� n�0�E�,rel. [Note, the relative en-

tropy term di↵ers from the nonlinear term used
in Ref. [35] that reproduces Eq. (S.31) when lin-
earized; theirs is related to M̄KP rather than the
relative energy term.] The sign di↵erence is a re-
sult of �E�,rel measuring the energy going into the
random energy of the particles, while int and W
describe energy going into the bulk flow energy
and magnetic fields from the particles. Thus, the
present work is consistent with previous work, and
generalizes these linear approaches for phase space
densities arbitrarily far from LTE.

• Previous Schematics of Energy Conversion:
We now put the sketch of energy conversion in
Fig. 3 in the context of previous sketches about
energy conversion in plasmas. It is similar to Fig. 1
in Ref. [20], except theirs is averaged over a closed
or periodic domain so the heat flux does not con-
tribute, theirs includes conversion into bulk ki-
netic energy and electromagnetic energy which are
omitted from the present treatment for simplicity,

and ours includes collisions. The key di↵erence
is the additional energy conversion channel associ-
ated with relative energy and heat that arise from
our analysis as another possible energy conversion
channel.

Another related sketch is Fig. 4 in Ref. [36], which
describes energy conversion in weakly collisional
turbulent plasmas. There, electromagnetic fields
play a key role in converting energy to non-thermal
(non-LTE) energy in the plasma, which ultimately
produce irreversible dissipation through the colli-
sions. The present work treats only internal mo-
ments of the phase space density, which formally
has only indirect input from body forces [which,
for example, do not appear in Eq. (1)]. Thus, our
result is in many ways complementary to the re-
search done on the field-particle correlation [37]. It
would be interesting and important to unite the
two approaches in future work.

• The Velocity Space Cascade and Hermite
Expansions of f�: An important approach that
has previously been used to study non-LTE energy
conversion is to take a local phase space density
and expand the velocity space part in Hermite poly-
nomials [38–40]. The coe�cients in the expansion
provide information about how non-Maxwellian the
system is at that location in space and time. In
a weakly collisional or collisionless system, many
phase space densities develop sharp structures in
velocity space, which shows up as a cascade of
power into the higher order coe�cients in the ex-
pansion.

It would be tempting to associate the power in non-
LTE modes, called the enstrophy in Ref. [38], with
the relative energy per particle in the present anal-
ysis, but this association is not possible. The rea-
son is that the enstrophy is a local quantity that
can be calculated for any phase space density, but
the relative energy per particle is history depen-
dent, so only changes to it can be uniquely de-
termined from the local phase space density at a
particular time. A phase space density becoming
more non-Maxwellian has an increase in enstrophy,
while it corresponds to a decrease in the relative
energy per particle because the Maxwellian is the
maximum entropy state. While associating the two
approaches in this manner is therefore not possible,
we do believe there are links between the two ap-
proaches which will be pursued in future studies.

• Energy Conversion Using Other Entropies:
Recent work quantified non-LTE e↵ects using non-
Boltzmann entropies for collisionless plasmas [5,
41]. In Ref. [5], energy conversion was parametrized
by moments of integer powers of f�, which are in-
variants in collisionless systems. In Ref. [41], it was
shown that power law entropies are well-suited for
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describing power law tails during non-thermal par-
ticle acceleration. As pointed out there, these terms
provide information about the shape of the phase
space density, so there are some similarities about
the aims of the two studies despite their di↵erent
approaches.

The formulation here using the Boltzmann en-
tropy is related to these invariants, as an ex-
pansion of the natural logarithm in powers of
f� inside the kinetic entropy density s� =
�kB

R
f� ln(f��3r��3v�/N�)d3v yields integrals

over all integer powers of f�, as done in Ref. [5].
Consequently, the form derived here based on
Boltzmann entropy without expanding the natural
logarithm automatically contains the information
about all of the power law invariants for collision-
less systems. Ref. [5] is important for identifying
how the energy is contained in di↵erent individual
invariants, which is not possible in the present for-
mulation. However, our results can readily be used
for collisional systems even though powers of f� are
no longer invariants.

• Extended Irreversible Thermodynamics
(EIT): EIT begins with the kinetic entropy
evolution equation [Eq. (S.2)] and employs a
perturbative expansion of f�, and the terms of
higher order represent corrections to the first law of
thermodynamics. This is very important because
the corrections are in terms of fluid moments of
f�, so a direct measurement of f� is not necessary.
The advantage of the present analysis is that all
internal moments are retained, so there is no need
to be near LTE.

We also point out that the phase space density f�
inside the natural logarithm in the general expres-
sion for J �,th [Eq. (S.5)] is expanded about the
Maxwellianized distribution f�M in EIT. The low-
est order term in this expansion is [3]

J �,q = �kB

Z
v0
�f� ln

✓
f�M�3r��3v�

N�

◆
d3v. (S.33)

A brief derivation using Eq. (8) reveals that J �,q =
q�/T�. In the present study, instead of decom-
posing f� inside J �,th, we decompose f� inside
r ·J �,th as Eq. (S.16). The di↵erence here is that

J �,q = q�/T� from Eq. (S.33), so r ·J �,q contains
both a (r · q�)/T� term and a �(q� · rT�)/T 2

�
term. The latter term is included as an entropy
source term in the fluid form of EIT [3]. Eq. (S.20)
reveals that �(q� ·rT�)/T 2

� vanishes exactly when
all orders of non-LTE terms are retained so that it
should not be retained.

• Quantum Statistical Mechanics: There are
similarities and di↵erences of our results with a re-
cent independent analysis showing that the quan-
tum first law of thermodynamics can be obtained
from the quantum relative entropy [42]. In the clas-
sical limit, the density matrix ⇢ is analogous to
the distribution function f�/n� [43]. The maxi-
mally mixed state �m, which has the highest en-
tropy, is analogous to the Maxwellianized distribu-
tion function f�M/n�. The von Neumann entropy
S(⇢) = �tr[⇢ ln ⇢] [44] is decomposed as S(⇢) =
Scross(⇢)�Srel(⇢), where Scross(⇢) = �tr[⇢ ln�m] is
the cross-entropy and Srel = tr[⇢ ln ⇢ � ⇢ ln�m] =
�S(⇢) + Scross(⇢) is the relative entropy [42]. This
is similar to the decomposition done here for the ve-
locity space kinetic entropy per particle, so Scross(⇢)
is analogous to s�v,E/n� [Eq. (S.12)] and Srel(⇢) is
analogous to �s�v,rel/n� [Eq. (6)]. In Ref. [42], the
volume of the system was kept fixed for simplic-
ity, so there was no term analogous to the position
space entropy term in our analysis. Including this
term, which gives rise to work in the classical case,
is very straight-forward; indeed, it appears auto-
matically when the phase space density f� is em-
ployed instead of the distribution function f�/n�.
Undoubtedly the quantum statistical mechanical
approach can be generalized to include work done
on the system using open quantum mechanics [45].

For the classical case presented here, the physical
interpretation of the terms are able to be clearly
ascertained. This allows us to help elucidate the
physical interpretation of the terms in the quan-
tum statistical mechanics treatment [42]. The time
rate of change of the relative quantum entropy is
a measure of whether a system is evolving towards
or away from the maximally mixed state and the
rate at which it does so. Scaling it by the temper-
ature of the state described by �m gives the time
rate of change in the energy associated with non-
equilibrium terms.
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