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The statistical study of magnetic reconnection events in two-dimensional turbulence has been
performed by comparing numerical simulations of magnetohydrodynamics (MHD) and Hall
magnetohydrodynamics (HMHD). The analysis reveals that the Hall term plays an important role in
turbulence, in which magnetic islands simultaneously reconnect in a complex way. In particular, an
increase of the Hall parameter, the ratio of ion skin depth to system size, broadens the distribution of
reconnection rates relative to the MHD case. Moreover, in HMHD the local geometry of the
reconnection region changes, manifesting bifurcated current sheets and quadrupolar magnetic field
structures in analogy to laminar studies, leading locally to faster reconnection processes in this case
of reconnection embedded in turbulence. This study supports the idea that the global rate of energy
dissipation is controlled by the large scale turbulence, but suggests that the distribution of the
reconnection rates within the turbulent system is sensitive to the microphysics at the reconnection
sites.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754151]

I. INTRODUCTION

Magnetic reconnection is a fundamental phenomenon
in magnetized plasmas, responsible for magnetic energy
release, topology change, and particle energization, and
therefore it is of widespread relevance in astrophysical and
laboratory systems.1–3 The problem of magnetic reconnec-
tion has been investigated mostly assuming simplified geo-
metries and well known boundary (and initial) conditions,
but, since it might occur in any region separating distinct
magnetic topologies, it is expected to be of importance in
turbulence. Recently,4,5 it has been proposed that magneto-
hydrodynamic (MHD) turbulence provides a kind of
unbiased and natural local boundary condition for recon-
nection, producing much faster reconnection events than
one would expect in laminar regimes.

Besides MHD turbulence,7 another ingredient that may
accelerate the process of reconnection is the Hall effect.8 The
latter is always important for dynamical processes that occur at
scales comparable to the ion skin depth (or ion inertial length),
defined as di ¼ c=xpi (xpi being the ion plasma frequency).
The Hall effect becomes globally important and even dominant
as the ion skin depth becomes comparable to the system size
L0, namely, when di=L0 6¼ 0.9 Generally, the Hall effect is
thought to be fundamental for astrophysical plasmas, since it
modifies small scale turbulent activity, producing a departure
from MHD predictions.10–14 In the past years, the role of the
ion skin depth on reconnection has been matter of numerous
numerical investigations.15–18 In particular, it has been pro-
posed that the Hall term in resistive plasmas causes a cata-
strophic release of magnetic energy, leading to fast magnetic

reconnection onset,19,20 with reconnection rates faster than the
Sweet-Parker expectation.

In this manuscript, we combine the above ideas, namely
that reconnection is locally enhanced by both MHD turbulence
and by the Hall effect, investigating the statistics of magnetic
reconnection in 2D Hall magnetohydrodynamic (HMHD) tur-
bulence. Using high resolution pseudo-spectral numerical
simulations, we will compare the statistical properties of recon-
nection in MHD and HMHD turbulence, by comparing a
sequence of simulations with increasing strength of the Hall
effect. We find a broader range of reconnection rates (normal-
ized to the root-mean-square magnetic field) with respect the
MHD case, and faster reconnection processes. The introduc-
tion of the Hall effect affects as well the local geometry of the
reconnection regions, producing bifurcations in the current
sheets and a quadrupolar structure of the magnetic field.

The outline of the paper is as follows: In Sec. II, the incom-
pressible HMHD equations are introduced together with the
numerical method employed to solve the equations. A global
overview of the MHD turbulence properties for all the simula-
tions performed is given as well. The comparison between the
MHD and the HMHD simulations, together with the new fea-
tures produced by the Hall physics, is presented in Sec. III. In
Sec. IV, the conclusions are given, and possible implications for
turbulent astrophysical plasmas are discussed. The importance
of numerical accuracy will be discussed in the Appendix.

II. NUMERICAL SIMULATIONS OF TURBULENCE

The equations of incompressible HMHD can be written
in Alfv"en units, with lengths scaled to L0, and times to a
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characteristic Alfv"en time sA. In 2.5D (three components of
the vector fields with spatial variations in two directions) the
equations read

@v

@t
¼ "ðv $ rÞv"rPþ j ' bþ R"1

! r2v; (1)

@b

@t
¼ r' ½ðv" "HjÞ ' b) þ R"1

l r2b; (2)

where v is the velocity field and b is the magnetic field.
Both fields can be decomposed into perpendicular (in-plane)
and parallel (out-of-plane, along z) components, namely
b ¼ ðb?; bzÞ and v ¼ ðv?; vzÞ. For the in-plane magnetic
field, b? ¼ ra' ẑ. Here a is the magnetic potential (or
magnetic flux function) which contains important informa-
tion about the topology of the magnetic field and the nature
of reconnection. No external mean field has been imposed.
In Eqs. (1) and (2), j ¼ r' b is the current density (note
that jz ¼ "r2a) and P is the pressure that is determined
by the solenoidal condition r $ v ¼ 0. The parameters Rl

and R! are the magnetic and the kinetic Reynolds numbers,
respectively. The coefficient "H ¼ di=L0 is the Hall parame-
ter, providing an explicit measure of the importance of the
Hall term in Ohm’s law. Note that, for "H ! 0, Eqs. (1) and
(2) reduce to MHD. Generally speaking, the Hall term
becomes a significant factor at wavenumbers k such that
kL0"H ¼ kdi * 1.

Equations (1) and (2) are solved in double periodic (x, y)
Cartesian geometry, with a box size of 2pL0, using 40962 grid
points, and with Rl ¼ R! ¼ 1700. We use a well-tested and
accurate pseudo-spectral code, fully dealiased with a 2/3-rule.
We fix the above parameters for all the simulations reported
here and we vary "H, going from the MHD case ("H ¼ 0) to
the Hall case, choosing "H ¼ 1=400; 1=100; 1=50. For all
the runs, the energy is initially concentrated in the shells with
4 + k + 10 (wavenumbers k in units of 1=L0) with mean value
E ¼ ð1=2Þhjvj2 þ jbj2i ’ 1, where h…i indicates a volume
average. Using the above set of parameters, the dissipation
wavenumber is kdiss ¼ R1=2

l hj2i1=4 * 200. For the HMHD sim-
ulations, the Hall wavenumbers are kH ¼ ""1

H ¼ 400; 100; 50.
The maximum resolved wavenumber in all the simulations
(allowed by the simulation resolution and the 2/3 rule) is
kmax ¼ 4096=3 , 1365. A summary of the simulations is
reported in Table I. Hereafter, we will call each simulation
with its relative roman number, as they are labeled in Table I.

We perform our analysis at a fixed time of the turbulent
evolution, considering the state of the system when the mean

square current density hj2z i is very near to its peak value. At
this time, in fact, the peak of small scale turbulent activity is
achieved. This characteristic time is the same for all the runs
performed here, namely t * 0:5sA. One way to quantify the
differences between MHD and HMHD turbulence is to com-
pute the power spectra for b? and v? (in-plane components),
the former is plotted in Fig. 1. We remark that the case with
kH ¼ 400 (run II) shows no appreciable difference from
MHD (run I). This is due to the fact that the Hall effect
becomes significant in this case in the dissipation range, and
not in the inertial range, since in this simulation, kdiss < kH
(see Table I). In contrast, runs III and IV clearly differ from
the MHD case for wavenumbers >kH. This difference in the
power spectra has been already noticed in previous works,
and is generally attributed to the dispersive effects. These
effects can break, in fact, the Alfv"enic correlations that are
typical of MHD.10,21

When the turbulence is fully developed, coherent struc-
tures appear. They can be identified as magnetic islands (or
flux tubes in 3D) that differ in size and energy. Between
these interacting islands the perpendicular (out-of-plane)
component of the current density jz becomes very large, as
can be seen from Fig. 2, where a comparison between MHD
and HMHD is shown. This spatial “burstiness” of the current
is related to the intermittent nature of the magnetic field. In
fact, like the velocity field in hydrodynamics, both the mag-
netic and velocity fields in MHD show a strong tendency to
generate increasing levels of phase coherence at smaller
scales.22 From a comparison between run I and run IV, we
observe differences concerning the shape of current sheets:
in the Hall case the current filaments display a bifurcated
structure. We will come to this point in a later discussion.
Another interesting feature is that the HMHD current sheets
are shorter and thinner. This is reminiscent of the systematic
shortening and thinning of current sheets seen in isolated
laminar reconnection simulations.23 In order to further inves-
tigate this interesting phenomenon, in Sec. III, we will carry
out local analysis of the reconnection events.

TABLE I. Table of parameters of the runs. The second column is the resolu-

tion of the simulation, third column the Reynolds numbers, fourth column
reports the dissipative scale of the system, and the last column shows the

Hall parameter.

Run Eqs. Resolution RlðR!Þ kdiss ¼ 1=kdiss "Hðk"1
H Þ

I MHD 40962 1700 1/196 0

II HMHD 40962 1700 1/195 1/400

III HMHD 40962 1700 1/188 1/100

IV HMHD 40962 1700 1/179 1/50

FIG. 1. Power spectra of the “perpendicular” magnetic energy, for all the runs
reported in Table I. The vertical dashed lines represent the Hall k-vector for
runs II, III, and IV, that is, respectively, kH ¼ 400 (red), kH ¼ 100 (blue), and
kH ¼ 50 (magenta).
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The current density jz is an important quantity since it
develops small scale features in both turbulence and in
reconnection. We show in Fig. 3 the probability distribution
function (PDF) of jz, for each run in Table I. The core of the
distributions is very similar for all the simulations, but, in the
HMHD cases, the tails are more pronounced. This implies
that the Hall effect causes an enhancement of the small scale
activity that is responsible for increasing intermittency in the
system. We now examine the quantitative connection
between enhanced intermittency and reconnection rates.

III. RECONNECTION IN TURBULENCE: HMHD vs. MHD

As reported in Fig. 4, the magnetic potential a reveals a
collection of magnetic islands with different size and shape.
See Figs. 2 and 4, for example, from two runs. Very similar
patterns are observed for all the runs. Note that the potential
a is very similar in both cases, since this field is generally
large-scale and very smooth. To capture the influence of the

Hall physics, one should look at the local structure of the
current, shown in Fig. 5 (top). When the Hall effect is signifi-
cant, a clear bifurcation of current sheets is observed.

To further investigate the role of the Hall effect on the
process of reconnection in turbulence, we analyze the out-of-
plane magnetic field bz around some X-points. As expected
from theory,8 an out-of-plane magnetic quadrupole forms
nearby reconnection sites; this is shown in Fig. 5 (bottom).
The magnetic field shows four distinctive polarities, organ-
ized with respect to the X-point. This effect is thought to be
a strong signature of Hall activity during reconnection in
astrophysical plasmas,24 and in laboratory plasmas.25,26 Here
we confirm that this is a clear signature of Hall effect in tur-
bulent reconnection.

In order to understand quantitatively the Hall effect on
reconnection, we analyze the magnetic field topology and
reconnection rates. We begin by inspection of aðxÞ, studying
its square Hessian matrix, defined as Hi;jðxÞ ¼ @2a

@xi@xj
. At each

neutral point, where ra ¼ 0, we compute the eigenvalues of
Hi;j. If both eigenvalues are positive (negative), the point is a
local minimum (maximum) of a (an O point). If the eigen-
values are of mixed sign, it is a saddle point (an X point).
See Refs. 4–6 for more details on this standard analysis. In
Fig. 4, an example of a magnetic potential landscape together
with its critical points is reported for a subregion within the
MHD and an HMHD simulation. The number of X-points is
*127, and is a similar number for all the runs. Once we have
obtained the position of all the critical points, it is possible to
measure the reconnection rate of interacting islands as the rate
of change of the magnetic flux at each X-point:

@a

@t

!!!!
'
¼ "E' ¼ ðR"1

l jÞ': (3)

The reconnection rates have been normalized to the mean
square fluctuation db2rms (*1 for all the runs). Note that
Eq. (3) gives exactly the reconnection rate for a fully 2D
(MHD) case, while, in the HMHD case (2.5D), this expres-
sion gives the rate of component-reconnection.

FIG. 2. Current density profile jz (shaded contour) in a small sub-region
of the simulation box, for both MHD (top) and HMHD with "H ¼ 1=50
(bottom). The magnetic flux a is also represented (line contour). As expected
in 2D turbulence, strong and narrow peaks of current densities are present
between magnetic islands. As can be seen in Fig. 3, current density is higher
in HMHD.

FIG. 3. PDF of jz, normalized to its own rms value, for "H ¼ 0 (black),
1/400 (red), 1/100 (blue), and 1/50 (magenta). The longer tails present in run
IV may be the signature of more intense small-scale activity, due to stronger
dispersive effects.
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The PDFs of E', for the runs in Table I are reported in
Fig. 6. All the distributions show a broad range with strong
tails, the average lying near E' * 0:05" 0:06 while the full
range spans jE'j 2 ½10"5; 0:4). The PDFs have been con-
structed using constant weight m per-bin (variable bin
width), with m ¼ 6. The distribution of reconnection rates
for the weak Hall case (run II, not shown) is very similar to
the MHD results (run I), as expected from previous discus-
sions. In the stronger Hall case (runs III and IV), instead,
higher tails appear in the PDF. Apparently, for higher values
of "H the frequency of occurrence of large reconnection rates
is substantially increased. The increased frequency of large
rates influences the means. As an example, for both runs I
and II we obtained the mean value hjE'ji ’ 0:05, while for
run IV hjE'ji ’ 0:06. This analysis confirms that the Hall
term plays an important role in turbulence, where magnetic

islands simultaneously reconnect in a complex way. In par-
ticular, when the Hall parameter is enhanced (increased ratio
between the ion skin depth and the system size) distributions
of reconnection rates have higher tails, revealing more fre-
quently occurring explosive (very large) reconnection events
than in the MHD case. As already pointed out in Ref. 5, there
is a relation between the stronger reconnection rates and the
geometry of the reconnection region, in fact these strong
reconnecting electric fields satisfy the scaling relation,

E' * l

d
*

ffiffiffiffiffi
kR

p
¼

ffiffiffiffiffiffiffiffiffi
kmax
kmin

s

; (4)

where l and d are related, respectively, to the elongation and
to the minimum thickness of the current sheet, i.e., to the ge-
ometry of the reconnecting region, while kmax and kmin are the
Hessian eigenvalues evaluated at the X-point. In Fig. 7, we
report the reconnection rates, associated with each X-point, as

FIG. 4. Line-contours of the magnetic potential a for the MHD case, run
I (top), and for the HMHD case, run IV (bottom). In each, a sub-region of
the simulation box is shown for clarity. The position of the critical points is
reported as well: O-points (blue stars for the maxima and red diamonds for
the minima) and X-points (black '). Magnetic reconnection locally occurs
at the X-points.

FIG. 5. (Top) A contour plot of the out-of-plane component of the current jz
in a sub-region of the simulation box for run IV. The bifurcation of the sheet
and the typical structure of a reconnection region are clearly visible.
(Bottom) A contour plot of the out-of-plane component of the magnetic field
bz, in the same sub-region of the simulation box. The magnetic flux a is also
represented as a line contour. A quadrupole in the magnetic field can be
identified, revealing the presence of Hall activity.
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a function of kR, for runs I, III, and IV. All distributions fol-
low the proposed power-law (at least for stronger reconnec-
tion events), but in the HMHD case the values are more
scattered and are bounded by lower kR. We evaluated, for
each run, the distribution of hkRi as a function of "H (not
shown here), and we observed that, for the strongest Hall
effect case "H ¼ 1=50, the computed value of hkRi is reduced
to half the value obtained in the MHD case.

Following the methodology adopted in Ref. 5, to quali-
tatively characterize every reconnecting region, we extract
information about currents, magnetic fields, and about the
geometry of the diffusion regions. Since we know the ratio
of the eigenvalues obtained from the Hessian matrix analy-
sis, the problem reduces to find just one of these lengths,
such as the current sheet thickness d. For this purpose, for
each X-point, we build a system of reference that has the

origin at the X-point and, using the eigenvectors obtained in
the Hessian analysis, we define a local coordinate system
based on the unit vectors fês; êtg, where the coordinates s
and t are related to d and l, respectively. With respect to this
new reference system, the tangential and normal components
of the magnetic field are evaluated as bt ¼ êt $ b and
bn ¼ ês $ b, while the current profile is obtained with an iter-
ating fit procedure along the s coordinate. Since the current
profile is asymmetric (due to the asymmetric nature of turbu-
lent reconnection), the thickness d is determined as the sum
of right-side and left-side thicknesses separately evaluated in
the iterating procedure (d ¼ d1 þ d2). The above analysis
has been performed only for stronger reconnection sites. For
the present simulations, this means jE'j > 10"2 together
with the restriction kmax=kmin > 100.

In Fig. 8, we compare results from MHD (run I) and
HMHD (run IV), showing the current profile and the local
magnetic field near a particular X-point. The current density
jzðsÞ and the projected tangential magnetic field btðsÞ has
been interpolated along the direction of ês. As already
observed in Fig. 3, two main features are at work when the
Hall effect is not negligible, namely, the thickness d
is reduced with respect to the MHD case, and jz reaches
stronger values. This example serves to illustrate this effect,
which we confirm statistically through an analysis of the
values of d and l for all the stronger X-point regions. The

FIG. 6. PDF of the reconnection rates for "H ¼ 0 (MHD, black rhombus),
"H ¼ 1=100 (blue stars), and "H ¼ 1=50 (magenta squares). The vertical
dashed-dotted lines represent the mean value of the distribution hjE'ji for
run I (black), run III (blue), and run IV (magenta).

FIG. 7. The relation between the reconnection rate (the electric field at the
X-point) and the geometry of the reconnection region (the ratio of the eigen-
values) for both MHD (black rhombus) and HMHD (blue open rhombus and
magenta triangles). The presence of a power-law fit (red solid line) demon-
strates that there is a relation between the reconnection rate and the geometry
of the diffusion region.

FIG. 8. Current density jzðsÞ (top) and tangential component of the magnetic
field bt (bottom), in the vicinity of the same X-point, for both MHD (black
line) and HMHD with "H ¼ 1=50 (magenta dashed-dotted line). s is the
direction along ês-the steepest gradient of the Hessian of a. In HMHD, cur-
rent sheets are narrower and more intense.
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associated PDFs of d and l have been computed, for both
MHD and HMHD, and the comparison is reported in Fig. 9.
In the Hall case, the distributions are shifted towards smaller
values and, accordingly, on average the current sheets are
both thinner and shorter than in the MHD counterpart. These
characteristic average lengths are reported in Table II.

Recently,4,5 it was demonstrated that the fastest recon-
nection events in resistive MHD turbulence can be described
by a modified Sweet-Parker theory which takes into account
asymmetries in the reconnecting magnetic field.27 This
model predicts that the reconnection rate for incompressible
resistive plasmas scale as

Eth
' ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3=21 b3=22

Rll

s

; (5)

where b1 and b2 are the upstream magnetic fields on each
side of the X-point. For this purpose the magnetic fields are
evaluated at 2d1;2, namely bi ¼ btð2diÞ. The comparison
between run I (MHD), run III ("H ¼ 1=100) and run IV

("H ¼ 1=50) is reported in Fig. 10. It is apparent that in Hall
cases the reconnection rates are faster and more broadly dis-
tributed than the MHD prediction. In particular, note the con-
stant fractional increase in reconnection rate jE'j with
increasing Hall parameter "H. To understand why the
HMHD reconnection data does not follow the prediction of
resistive MHD, note that a number of authors have recently
shown that resistive HMHD reconnection does not follow
the standard Sweet-Parker scaling.28,29 However, it was
argued that reconnection in resistive HMHD is not a stable
reconnection configuration.30 When the current sheet is
thicker than di, reconnection rates follow the Sweet-Parker
prediction and scale as g1=2. When the current sheet is thin-
ner than di, the process is faster and reconnection rates scale
linearly in g (E' / gÞ. Thus, to see if the reconnection in
resistive HMHD turbulence follows the predictions of a
steady-state asymmetric reconnection model (as it does in
resistive MHD4,5) we have to apply the more general form of
the prediction of asymmetric reconnection which should
apply independent of dissipation mechanism.27 The predic-
tion is that the reconnection electric field at the X-point
should scale as

Eth
' * ðb1b2Þ3=2

b1 þ b2

2d
l
; (6)

FIG. 9. Histograms of thicknesses d (red bars) and elongations l (azure bars)
for MHD (top) and HMHD with "H ¼ 1=100 (bottom). Vertical lines are
average values hdi (red) and hli (azure), the vertical dashed-dotted line rep-
resents the Taylor microscale kT . The distributions are shifted towards
smaller values for the HMHD case.

TABLE II. Characteristic lengths and reconnection rates for each run. The

first column is the Hall parameter, second column the average thickness of
reconnection regions, the average length of reconnection sites is reported in
column 3, while the average and the maximum reconnection rates are reported

in columns 4 and 5, respectively.

Run "H hdi hli hE'i Max{E'}

I 0 0.014 0.286 0.049 0.315

II 1/400 0.013 0.272 0.050 0.326

III 1/100 0.008 0.172 0.057 0.362

IV 1/50 0.005 0.077 0.059 0.364

FIG. 10. Computed reconnection rates vs expectation from Eq. (5), for runs
I, III, and IV. The Hall cases seem to slightly depart from the Sweet-Parker
asymmetric expectation.
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which replaces Eq. (5). A comparison of the measured and pre-
dicted reconnection rates for the strongest HMHD reconnection
events in run III ("H ¼ 1=100) and run IV ("H ¼ 1=50) is plot-
ted in Fig. 11.

The prediction is seen to collapse the data towards a line
to a certain degree, which is suggestive that the reconnection
agrees with the models. However, we note that the agree-
ment is not as strong as for the resistive MHD case.4,5 One
possible reason that the agreement is not as good is if the
resistive HMHD reconnection is an unstable branch, it will
not stay in a steady state for any extended time. A full test of
whether Hall reconnection models describe reconnection in a
turbulent system should employ hyper-resistive and/or elec-
tron inertia terms so that reconnection is in a stable mode.30

IV. CONCLUSIONS

We have provided a direct comparison of the statistics
of reconnection rates obtained from simulations of MHD tur-
bulence and Hall MHD turbulence for cases with increasing
Hall parameter "H ¼ di=L0. For small values of Hall parame-
ter there is very little difference in distributions of electric
current density or reconnection rates. However for stronger
Hall parameter "H > 0:01 one begins to see enhancements of
reconnection. In particular while there is a modest increase
in average reconnection rate, there is a more dramatic
increase in the frequency of occurrence of large reconnection
rates. Associated with this is the shortening and thinning of
current sheets, and the appearance of bifurcated current
sheets, all previously reported as properties of isolated lami-
nar reconnection sites with Hall effect. Evidently the impact
of Hall effect depends crucially on whether this term in
Ohm’s Law become significant at wavenumbers kH lower
than the reciprocal dissipation scale kdiss, so that it influences
the upper inertial range, or if it becomes significant only at
scales smaller than where dissipation becomes strong. There-
fore in HMHD simulations with scalar resistivity and viscosity
such as the ones we carried out, the simulator has complete
control over the relationship of the relevant wavenumbers kH

and kdiss. Using this flexibility in simulation to independently
vary strength of the Hall effect, the dissipation scale, and the
large scale energy budget, prior studies have provided some
insight into the relationship of these effects. For example in
Ref. 33, Matthaeus et al. examined the influence of varying "H
("H ¼ 0, 1/32, 1/16,…1) on energy decay rates while Reynolds
numbers were fixed at values of 400 or 1000. Little effect on
decay rate was seen until "H * 1.

On the other hand, in the related problem of the effects
of small scale MHD turbulence on a large scale reconnec-
tion simulation, in Ref. 15 it was found that the influence of
Hall effect becomes comparable to that of turbulence when
"H , 1=9. Here we have examined the distribution of recon-
nection rates, which is related to the physics of the cascade
in a complex and incompletely understood way, and find
that the Hall effect begins to produce measurable changes
in the distribution of rates at values of "H * ½0:01" 0:02).
Evidently reconnection rates are more sensitive to Hall
effect than is the overall cascade rate. Simulation has pro-
vided some insights into these relationships, but it is clear
that more complete understanding will require further
study. What is less clear is how to estimate this relationship
of dissipation and Hall effect in a low collisionality plasma.
Typically,31,32 kinetic theory suggests that di is near the
scale at which dissipative effects become significant, but it
is not clear to us whether one can make general statements
concerning the precise value of the ratio kH=kdiss. If dissipa-
tion sets in at scales much smaller than di, e.g., through
dominance of electron dissipation effects, the present work
suggests that the Hall effect can be important in establish-
ing the most robust reconnection rates that will be observed
in turbulence. We have not however examined cases with
very large Hall parameters "H * 1, which become computa-
tionally prohibitive.
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ject FP7 PIRSES-2010-269297—“Turboplasmas,” POR Cala-
bria FSE 2007/2013, NASA Heliophysics Theory Program
NNX11AJ44G, NSF Solar terrestrial Program AGS-1063439,
UBACYT 20020090200602, PICT/ANPCyT 2007-00856,
PIP/CONICET 11220090100825, the NASA MMS mission
NNX08AT76G, and the NSF Grant PHY-0902479.

APPENDIX: ABOUT THE ACCURACY IN HALL MHD
TURBULENCE

In Ref. 34, it was suggested that oversampling the Kol-
mogorov dissipation scale by a factor of 3 allows accurate
computation of the kurtosis, the scale-dependent kurtosis,
and the reconnection rates, in the case of MHD 2D simula-
tions. In particular, the proposed tests stated the conditions
on spatial resolution that must be attained to accurately com-
pute the tail of the distribution of reconnection rates, because
this tail measures the likelihood of the highest rates of recon-
nection. The assumption is that accurate computations of
fourth order moments gives rise to accurate computation
of reconnection rates. Here we want to examine the validity
of the test in the Hall MHD case. We report a numerical
example, where we compare run IV with another run, with

FIG. 11. Computed reconnection rates vs expectation from Eq. (6), for runs
III and IV. Strongest reconnection rates in the Hall MHD cases scale linearly
with expected values.
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identical initial data and dissipation coefficients, but half
spatial resolution (the list of parameters for both simulations
is reported in Table III).

As already observed in Ref. 35 but not shown here, if
simulations differ only in resolutions, the spectra agree well,
the curves nearly overlay each other over the full range of
overlapping k, with only small discrepancies in the lower re-
solution run near its maximum retained wavenumber. In Fig.
12, the PDFs of jE'j together with their respective error bars
are shown. The curves agree very well out to 0.1, but then,
near the upper end, the PDFs differ by a factor of *2. In
addition, we report in Fig. 13 the contour lines of the mag-
netic potential a together with the positions of reconnection
sites, for both runs (20482 top, 40962 bottom) in a sub-region
of the simulation box. In the lower-resolved case, a higher
number of X-points is present. Different than the MHD case,
where for kmax=kdiss * 3 a clear saturation in C' occurs, in
the HMHD case this condition was not achieved (C' ¼ 168
for run I and C' ¼ 126 for run II). Following Ref. 34, such a
factor discrepancy places the lower resolved simulation
down at around an effective resolution of 7502, and the
higher resolved one down to 15362, but still at good level of
accuracy. We believe that the spatial resolutions of the simu-
lations in the main text are adequate to support the physical
conclusions that we report. It is clear that the issue of truly
convergent results for turbulent reconnection in Hall MHD is
an even more difficult problem than it is for resistive

MHD.34 At present, we call attention to this problem, which
has largely been undocumented in the reconnection literature
even for laminar cases.
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