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Formulas for the expansion of arbitrary invariant group functions in terms of the
characters for the Sp{®), SO(2N+1), and SO(H) groups are derived using a
combinatorial method. The method is similar to one used by Balantekin to expand
group functions over the characters of theN)(group. All three expansions have
been checked for alN by using them to calculate the known expansions of the
generating function of the homogeneous symmetric functions. An expansion of the
exponential of the traces of group elements, appearing in the finite-volume gauge
field partition functions, is worked out for the orthogonal and symplectic
groups. ©2002 American Institute of Physic§DOI: 10.1063/1.1418014

[. INTRODUCTION

The expansion of invariant functions of a group into its characteases of the representation
matrices! is very useful in a number of physical situations. InN)(lattice gauge theories and in
the lattice expansion of the nonlinear N)J>X U(N) sigma model calculation of certain Nj
group integrals are needét If the integrands can be expanded in terms of th&lU¢haracters,
then such integrals can easily be calculatéf Similar U(N) integrals also arise in the statistical
theory of nuclear reactior’sin 1980 ltzykson and Zuber calculated a particular unitary group
integral® which turned out to be a special case of a more general formula by Harish-CHandra.
The ltzykson—Zuber integral and its generalizatlén® are also easily dealt with using character
expansions.

The character expansion of an invariant function of group elements is given by

f(detU,TrU,..)= >, a,x,(U), (1.2

wherey,(U) is the character of the representatianSince group characters form an orthogonal
set® the coefficients can be obtained by explicitly integrating the product of this function with the
characters over the group manifold:

arzfdUXf(U)f(detU,TrU,...). (1.2

(Note thata, is the integral of the function itself over the group manifold is rather difficult to
obtain complicated character expansions by explicit integration. In 1984 Baldhtkialoped a
combinatorial method that enabled one to solve for the coefficients in some expansions over the
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U(N) group characters that was quite simple in comparison to performing group integrals. Need-
ing a more general version, the result was recently extended in its range of applicability.

In a parallel development it was shown that the spectral density of the Dirac operator for a
gauge theory near its zero eigenvalues should only depend on the symmetries in ddestion.
Although the original work’~*° used a Gaussian random matrix model, the results from the
random matrix theory can be proven to be univef8al* This implies that the spectral density of
the Dirac operator near the origin can be extracted from random matrix theories which provide a
description of common aspects of various quantum phenortiena review see Ref. 25Hence
to study the low-energy limit of, for example, quantum chromodynar@SD), one needs to
choose a random matrix theory with the global symmetries of the QCD partition function. The
partition functions calculated from the effective field theory and random matrix theory
agree'’?®2'These random matrix theories are characterized by the Dyson jfidehich is the
number of independent variables per matrix elent&ft For fermions in the fundamental repre-
sentationB=1 for N.=2 andB=2 for N.=2 whereN, is the number of colors. For fermions in
the adjoint representation ad,=2 we haveB=4. For =2 the low-energyfinite-volume
QCD partition function is the same as the one-link integral of two-dimensional lattice’&@Rd
is calculated using the W) character expansiorand other method®:1*3'For B=4 the zero
momentum Goldstone modes belong to the coset spac® SIKON;)3**® where N is the
number of fermion flavors. Hence the finite-volume partition function is a group integral where the
argument is the exponential of an SQf group element. Similarly in th@=1 case the coset
space of the Goldstone modes is SMEY Sp(2N;).3%1> Massive partition functions of random
matrix ensembles witl®=1 and 4 were considered in Refs. 24 and 32. To calculate these partition
functions it is very useful to have expressions for character expansions over the orthogonal and
symplectic groups. Explicit expressions for these partition functions, for example, may help in
finding solutions of Virasoro constraints which were found so far only fordke2 case(For the
application of Virasoro constraints on the effective finite volume partition function, see, for ex-
ample, Refs. 33-35

The present work is an extension of Balantekin’s method of finding the expansion coefficients
for expansions over the characters for the symplectic group$p(the odd dimensional special
orthogonal group SO(2+ 1), and the even dimensional special orthogonal group Sp(3ome
background material will be treated in Sec. Il, including general information about the characters
of the groups in question. The procedures for developing the expansions for the different groups
are similar, so Sec. Il will treat the general idea. The specific expressions will be derived in Sec.
IV for Sp(2N), in Sec. V for SO(A+1), and in Sec. VI for SO(R). Finally, some examples of
expansions will be given for each of the groups in Sec. VII.

For quick reference, the expansions and the most general expressions for their coefficients for
Sp(2N), SO(2N+1), and SO(N) are found in Eqs(4.10 and(4.11), (5.8) and(5.9), and(6.10
and (6.12, respectively.

IIl. BACKGROUND AND FORMULAS FOR CHARACTERS

In order to calculate expressions for the character expansions, we will need expressions for the
characters. These characters have been furnished by*(\egt.reference, the Weyl formulas for
the UNN), Sp(2N), SO(2N+ 1), and SO(N,fR) group characters are reprinted beldve
have included the formula for the N} group characters for completeness even though we will
not need them in the present wark.

In the following, deftA;; ] refers to the determinant of tHéxX N matrix A whose entry in the
ith row andjth column is.4;; . Furthermore, we will denote a matrix in the unitary grouplas
the symplectic group aB, and the orthogonal group & and the eigenvalues of any of these
matrices are labeled Ry. For the UN) case, there ard eigenvalues that are all phases. For the
Sp(2N) and SO(N) cases, there areN2eigenvalues, but they come in pairs of a phase and its
reciprocal. Thus, a complete list of eigenvalues wouldtpe,, ... ty,t; 5.t ...ty 1. For the
SO(2N+1) case, it is the same as the even dimensional cases with an additional eigenvalue of
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t=1. The determinants given below, then, are determinants>N matrices which contain
functions of only the individual eigenvalues, not their reciprocals. Finally, the character is a
function of the representation, which is labeled by a partitiop,,,...,ny) where the non-
negative integers; satisfyn,=n,=---=ny. Each representation corresponds to a permissible
Young tableau.

The expressions for the simple characters of thB)JJ(Sp(2N), and SO(N+ 1) groups are

deft N7
X(nyn,,..., nN)(U)ZW’ (2.1
de[tFﬁijJrl_tif(nﬁij+1)]
X(ny.ny....n(P)= de(tV T T—g, (VFT] (2.2
and
de[t?j+N—j+1/2_ti—(nj+N—j+1/2)]
X(ny.n,....ng(R)= de{ (V72T (WD (2.3
respectively.
The SO(N) case requires more attention. We define
n+N=j —(j+N=j)_ o
Ciny iy, nN)(R): de[tidett_r\j—’_]t_;_t_(N])_:”;5%0] (2.9
i i jN
and
de[tinj+N—j_ti—(nj+N—j)]
Siny iny...n(R)= Geft™ T+t 5] (2.5

(The notation in the previous two equations is nonstandard, but they give the proper elements as

.....

.......... ay(R)). In the
_____ ny(R) given in Eq.(2.4) will be needed. This
statement will be justified in Sec. VI where SO is treated.

One last property of these expressions that will be useful for checking the reliability of the
expansions derived in this article is the value of the characters for representations corresponding to
Young tableaux of one rown;=n, all others are Pand one columrin,=1 for all n up to some
value, all others are)0The characters for representations with one row, labehgd &nd one
column, labeled (%), are

XU =ha(t)),  xan(U)=ay(t), (2.6
Xm(P)=ha(ti,ti D), xan(P)=an(ti ti H—ay ot 4 ), (2.7
X (R)=ha(ti t7 D) —hy ot 0D),  xan(R) =an(t t ), 2.9
Ciy(R) =hn(ti 7 H—hy_o(ti 7D, Cam(R =an(ti 1), (2.9

for the U(N), Sp(2N), SO(2N+1), and SO(R) groups, respectively. The functiohg(t;) are
the homogeneous symmetric functions of orderand the functiong,(t;) are the elementary
symmetric functions of ordem. Further discussion is given in Ref. 1.

Downloaded 03 Feb 2007 to 128.175.189.139. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 43, No. 1, January 2002 Character expansions for the orthogonal groups 607

Ill. GENERAL PROPERTIES OF THE DERIVATION

We are now ready to derive the form for the expansions of group functions over the characters
of the various groups mentioned in the previous section. As with any expansion, the crux of this
issue is being able to determine and calculate the coefficients in the expansion. The goal of the
next four sections will be to find these coefficients.

The derivation is very similar to the one used by Balantkkirfinding the coefficients of the
expansion over the unitary group characters. As the expressions for the group characters for
Sp(2N), SO(N+1), and SO(H) are all similar, the derivations for all three will proceed in
much the same manner. To make the general method more transparent, the common aspects of the
derivation will be presented in this section without mention of the specific groups. The following
three sections will be devoted to using the result of this section to derive expressions for the
coefficients in the expansions over the characters in each group.

We begin by noting that each of the expressions for the characters given b{2Es(2.4)
are all ratios of determinants, so that we can write

, (3.9

where M is a matrix element of the group in question andand D refer to numerator and
denominator. For any of these groups, the denomirBtoan be expressed generally as

D:de(tiNquiti*(N*HQ)_5q05jN], (3.2

whereq can take on the value 1 for the SR group, 3 for the SO(N+ 1) group, and 0 for the
SO(2N) group. In this form, we choose the appropriate valuegaind the proper sign of the
+ sign to specify which group we are discussing. Namely, we see that the minus sign will be used
for Sp(2N) and SO(N+1) whereas the plus sign will be used for S®)2

In following the derivation of the U{) expansion given in Ref. 1, we define a “generating
function,” G(x,t), to be some function of a variabteand any necessary parameterd ater, we
will take t to be an eigenvalue of a group matrix. For now, we expand the generating function in
a power series in the variabtearoundt=0. Thus,

G(x,t)= Z_ A", (3.9

We assume that the series expansion convergas| fofl.. However, there are no other restrictions
on the coefficients, so that some of tAg(x) can be zero. For instance, if the expansion is a
Taylor series, thed\,=0 for all n<O.

Now, we define a functioF by

N
F= D[[1 G(x,t)G(x,t Y, (3.9)

whereD is given in Eq.(3.2). By using the definition o5(x,t) from Eg.(3.3), F can be written
as(suppressing th& dependence oA,)

{ > A"

n=—owo

F= D[ > AL

n=—oo

{ > AntgH > Antz_”]”{ > AntﬁH > Ant,g”},
(3.5

or, by combining the product of sums over the same variable, it can be written as
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F=D| 2 2 AALP

n=—ow p=—

Z EAAt p} {2 EAAt Pl. (3.6

n=—-o p= n=—o p=—wx

To proceed, we use the expression fonn Eg. (3.2). This determinant can be laboriously
expanded as an alternating sum of products of the elerfezrsEq(A3)]. Upon doing so, we can
combine the factors of the variablgin the determinant with the factor in E(.6) of the same
variable. However, before naively doing so, we notice that there is a symmetry in the exponents in
the determinant. We also notice that the double summations dof 'thare unaffected by inter-
change of the dummy indicesandp. So the symmetry of the exponents will be preserved if we
usen—p in the product of the first ternp—n in the product of the second term, and split the delta
term in half usingn—p in the first one angb—n in the second one. Upon doing so, we find that
the new expression is again a determinant. Rewriting this as a determinant, we obtain

o0

]—"=de{ > 2 AAt

n=—«x p=—»

. (3.7

. , 1
i’\l—1+q+n—ptti—(N—J+q+n—p)_ E@qong(tin—pHip—n))

Now, we change variables, defining a new integemN—j+n—p. This gives

1 -
]—‘—de{ > 2 Ar—n+j+pPo (t{*qiti“*q)—z(sqoam(t{N+J+tiNJf)”. (3.8

p=—® r=—o

The order of the summation farandp is interchangeable. Also, the delta term chooses dhly
=j. Thus,

(3.9

]—'—de{ > E A - N+,+pAp<tr+q+t <f+Q>—§5q05,N(t +t ))

r=—ow p=—ow

We notice that all of the dependence on the dummy varipidan be isolated by defining

= 2 Ansirphy. (310

Also, by combining the delta term with the other tefagain remembering that it is only present
for the SO(AN) case in whichg=0 and we use thée- sign], we can write our expression fdr as

oo

1
.7-"=de{r_2x Cr,j(tiniti(”Q))(l—zﬁqoﬁm) ] (3.11)

We have come to the point in the derivation where it will be necessary to specializg. Ef).for
the three different types of groups by making appropriate choiceg &rd the=x sign. This will
be taken up in the next three sections.

IV. THE EXPANSION OVER SP(2N) CHARACTERS

We begin with the Sp(R) case, as it is the simplest one. The starting point will be(BEd.D.
For the Sp(&) case,q=1 and we choose the minus sign. Thus, we have

o

]—"=de{ > (U= Ty 4.1

r=—o

wherec, ; is defined in Eq(3.10. Before proceeding, it is beneficial to change dummy indices
again by lettingr +1—r. This gives us
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©

}‘zde{ > cr’,j(ti’—tir)}, (4.2)

where

p_Z Arnsj-14pPp- 4.3

This sum over from — to © can be broken up into positive negativer, andr=0. Ther
—Olterm vanishes be.caut;,‘?e—ti =0. Then, changing the negative values to positive by replacing
r with —r and collecting terms, we get

f=de{ > dr,j(tir_tir)} (4.9
r=0
where

drj=crj—cl ;. (4.5

Equation(4.4) is very similar to an expression that is treated in Theorem 1.2.1 from Ref. 37. We
will need a slightly more general form of this theorem, which we present in the Appendix. Using
the result, Eq(A8), we get

F= > defd, ;]deft]—t "]. (4.6)

r1>rp>>r =0

Now, if, in the summationt =0, then both determinants vanish, so we can restggetl. Let us
define

ri=nj+N—-j+1. (4.7

Then,r;>r;, , implies thatn;=n; ;. Furthermore, sincey=1, thenny=0. Thus, we can write
the summatlon as

Feo X defdn iy ldet) g ), (4.8

In the above expression, the second determinant is seen to be exactly the numerator in the
Weyl formula for the characters of the symplectic group given in ). We even have the
appropriate restrictions on the values of thehat are necessary to make the equation valid. Thus,
we can write the above expression as

©

F= 2 defdy IV, (4.9

n=ny=---=np=

Now we recall our definition ofF from Eq. (3.4). If we divide both sides by the denominatbr
and recall that our expression for the character of the Bp(@oup iSX(nl,nz

then we obtain

.....

N £
Il sxwexyh= > defdynjesilxmgn,..np(P) (410

ny{=n,

—=n
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This is our desired character expansion over the Sp(@roup! It is a sum over all irreducible
representations of the symplectic group. Expressions for the coefficients are obtained using Egs.
(4.5 and(4.3). The result is

[ee]

dnJ-+ij+1,i:p=27OC Ap(Aanri7j+p_Afn1.72N—2+i+j+p)- (4-1:0

In the special case in which the expansion of the generating fun@omnt) is a Taylor series
expansion withA,=0 for all p<<0, this simplifies slightly to

dnJ--%—N—j +1i 7 pEO Ap(Ap+\nj+i—j|_Ap+nj+2N+2—i—j)- (4.12
We defer examples of the usage of this expansion until Sec. VII.

V. THE EXPANSION OVER SO(2N+1) CHARACTERS

Once again, we start from E@3.11). For SO(N+1), we haveq=3 and we choose the
minus sign. Then, we have

F= de{r_E_ cr,j(t{“’?—ti(”l’”)} (5.1)

andc, j is defined in Eq(3.10.
This sum over from —oo to oo can be broken up into ranges o0 andr <0, which gives

o0 _l
f: de{ 20 Cr’j(tir+l/2_ti—(r+l/2))+ Z Cr’j(tir+1/2_ti—(r+1/2)):|. (52)
r= r=—c

Changing variables in the second summation usirg—(r +1) and collecting terms, we get

f:de{zo dr‘j(tir+1/2_ti(r+1/2)):|, (53)

where
dr,j:an_C—r—l,j- (54)

Once again, we refer to EA8) in the Appendix to simplify Eq(5.3) and we write

o

F= > defd, jldeft/i"¥?—¢ (T3 (5.5
r>ry>>ry=0 J
If we define
ri=nj+N-j, (5.6
then the summation becomes
f=n12n2222nN20 de[dnj+N—j,i]de[ti“j+ij+1/2_tif(nj+ij+1/2)]' 5.7

The second determinant is simply the numerator of the Weyl formula for B®(2) as given in
Egs.(2.3), so using the definition af from Eq.(3.4) and dividing byD gives
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N o
Il sxtexih= > defdy n-ji1X(ny.ny.... g (R)- (5.9

= ni=ny,=---=n\=0

This is the expansion for the SO{2-1) group, again a sum over all irreducible representations.
Note, however, that this expression does not include the spinor representations & -80).2
The expression for the coefficient is found using E&s4) and(3.10 with the result given by

o

dnj+ij,i:p=§;w Ap(Anj+ifj+p_A—nj—2N—1+i+j+p)- (5-9)

In the special case of a Taylor series with=0 for all p<0, this simplifies to

]

dnj+N—j,i:p20 Ap(Ap+|nj+i—j\_Ap+nj+2N+1—i—j)- (5.10

We conclude this section with a reminder that care must be taken in the usage of the above
formulas for SO(A+1). One must remember that the number 1 is always an additional eigen-
value of the matrixR. Thus, in forming group functions, one must manually include a factor of
G(x,1) on both sides of the equation in order to have a function on the left hand side that treats
all eigenvalues equally. This tricky point will be illustrated by example in Sec. VII, after we treat
the SO(AN) case in the next section.

VI. THE EXPANSION OVER SO(2N) CHARACTERS

One more time, we start from E¢3.11). Recall that for SO(Rl), we haveq=0 and we use
the + sign. Thus, we have

, (6.1

- _ 1
f:dE{r;w Cr,j(t{—i_ti r)(l— EéJN)
wherec; ; is defined in Eq(3.10. The delta function term serves to divide each entry in the last
column by a factor of 2. When taking the determinant, a factor of 2 comes out and divides the
equation. Thus,

1 o]
fzzde{ > Crj(ti+t7 ") . (6.2
r=—om

This sum over from —« to o0 can be broken up into positive negativer, andr=0. Then
changing the negative values to positive by replacingith —r and collecting terms, we get

1 ” 1
fZEde{z ( ro

(ti+t, )} (6.3

where
dr'j=Cryl-+C,ryj (64)

and theé, is inserted to ensure the correct coefficientrfer0. Once again, we can use E&S8)
from the Appendix to simplify Eq(6.3) which gives

1 - fL et 1
F=5 > de(drj'i]de{(til—i—ti J)<1_§5r-0”- (6.5
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Let us define
rj=nj+N—j. (66)

Then the summation becomes

]

1 . i N, .
fzi E 0 de[dnj+N_],i]de{(tFJ+N ]+t| (n]+N ]))

n1>n2>--->nN>

1
1_§5nj+N—j,0”- (6.7)

Focusing on the second determinant on the right hand side, we can multiply the two binomials to
give

) . o . 1 ) . e .
dE{t?“” bty N 2 ot g N ”)] 6.8)

Now, the delta function is only nonzero wheg+N—j=0, which can only occur fof=N and
ny=0 because; is non-negative. In this event, the exponents vanish and the sum in parentheses
becomes 2, which cancels tBeThus, we can write E6.7) as

1 NSD (N
Fego X defdy o ldef) Ny =56, ) (6.9

ng=ny=---=ny=

We see that the second determinant is precisely the appropriate numerator in the Weyl formula
for the quantityCin, n,....n)(R) givenin Eq.(2.4). By recalling the definition of” from Eq.(3.4)
and dividing byD, we get

0

N
1
iljl G(x,t)G(x,t; = > > defdn n-.i1C, ... g (R): (6.10

ni=ny=---=n=0

This is the character expansion for SO(2 As with the SO(A+ 1) case, the expansion does not
include the spinor representations. Note that the above expansion is not an expansion over the
simple characters of the SO{2 group because th€'s are double characters iify>0 as dis-

cussed in Sec. Il. If one desires an expansion over the simple characters, one can write

C=3(C+S)+3(C-9), (6.11)
which puts the two simple characters on the right hand side, as explained earlier. At the present

time, we find it simpler to apply the formula in the state that it is in. The expression for the
coefficient is found using Eq$6.4) and(3.10 and is found to be

[

dnj+N—j,i:p_§; Ap(An+i-j+pT Ani—an+itj+p)- (6.12
In the special case of a Taylor series with=0 for all p<0, this simplifies to
dnj+N—j,i:p§0 Ap(Ap+|nj+i—j|+Ap+nj+2N—i—j)- (6.13
The derivations of the expansions are complete. We now turn to some examples.

VIl. EXAMPLES OF CHARACTER EXPANSIONS

In this section, we give some examples of expansions of group functions over the characters
of the Sp(AN), SO(2N+1), and SO(R) groups. In Sec. VII A, we will present the expansion of
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the generating function of the homogeneous symmetric functions. This can be used as a check of
the formulas derived in the present article, as the expansions are known. In Sec. VII B, we present
the expansion for the function exd(rM), whereM is some matrix element of one of the three
groups we treat.

A. Homogeneous symmetric functions

Consider the generating function of the homogeneous symmetric functions, namely

1 oo
G(X,t)zm:nzo X"t (7.2

Thus, we haveA,(x)=x" for n=0 andA,(x)=0 otherwise. Consider the Sp{2 expansion.
Note that

N
i=1'[1 G(x,t)G(xt = (7.2

defl —xP]’

wherel is the 2NX 2N identity matrix. The expansion is given by E@.10. Since the series
expansion of the generating function in E@.1) does not contain negative powers tfthe
coefficients are given by E@4.12. Thus, the coefficients are given by

de(dnj+N_,-+1,i]=de{Z xp<xp+'”ﬁii—x*’*"J*ZN*Z”)} (7.3
p=0
which after simplifying becomes

xINjFi=il— ynj+2N+2-i—j
defd, ;n_j+1i]=de
( nJ+N j+l,l] 1—X2

(7.4)

We simplify by noticing that ifn,= 1, then the first column of the determinant is a multiple of the
second column, thereby making the determinant vanish. Thusust be zero in order to have a
nonvanishing coefficient. Now, sinece=n5; and so on, we see that the only surviving terms in the
expansion are those for whiech=n;=---=ny=0. This corresponds to one row Young tableaux,
labeled @) earlier. The above determinant then becomes

xIN1dgj+i=jl_ ynydyj+2N+2-i-]
de[dnj+N—j+1,i]:de{ 12 : (7.9
This, in turn, can be written as
X" o -
defdy, - 111 = gz detd! -2 ], (7.6
By an induction argument on the dimension of the determinant on the right hand side, one can
prove that
def ! 7il—x2N+2=i=i1= (1 —x2)N (7.7
and thus
defdn -+ 1]=x", (7.9

where we recall that alt’s other thanmn, are 0. Then, the character expansion is @dqL0O with
the coefficients found above is
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1
1—xt;

If we use Eq.(2.7), which relates the character of one row Young tableaux to the homogeneous
symmetric functions, we have

1
dEU—XP] i

mz

) .
( 1-xt; 1) = 2 X"o(P) (79

1
defl—xP] ;

mz

1 1 *
(1 Xt )(1—)(*[.—1) zngo X"ha(ti 1. (7.10

However, this is exactly the defining equation for the homogeneous symmetric functions. Thus, we
see that the expansion derived for SNj2agrees with the known expansion.

To perform the same expansion over the S®{21) group, one must use caution. As alluded
to earlier, we must manually include the eigenvalue 1. Mathematically, we have

z

deti—xry G f:[ G(x,t)G(xt ), (7.1

whereG(x,t) is still given by Eq.(7.1) andl is the (2N+1) X (2N+ 1) identity matrix. Then, we
have the expansion from E¢5.8) and we scale both sides I6(x,1)=(1—x) ! to get

N oo
1
G(x, 1)H GG =75 >n22 o 980 ni Xy, (R)-
(7.12
The coefficient is given by Eq5.10
de{danrNjyi]:de{E Xp(xp+|nj+i—j|_Xp+nj+2N+1—i—j)}, (7.13
p=0
or, after simplifying,
M+ =i N+ 2N+ 1
de{dnj+N—j,i]:de 132 (7.14

Once again it can be shown thatn§=1, the first two columns are multiples and the coefficient
vanishes. It can also be shown using the result of the similar expression for thi)Sggansion
that if ny=n and all othem;=0, then

n

de(dn +N— JI] 1+X (7-15
so that
1 1 N1 1 I
deti xR~ (10 Mk Toxt) (ioxe 5~ 1o Xo(R): (7.19

Finally, using the value of the single row characters for the 30(24) group from Eq(2.8), one
can show that

o

! . 1 n -1
defl —xR] (1 X) H (1- Xt)(l xt ) nzoxhn(ti-ti 1), (7.17

which again agrees with the definition of the homogeneous symmetric functions.
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We continue on with the same expansion for the SO(@roup. Using the same generating
function and using the character expansion from @dL0), we have

A 1 i Lo . o
defl —xR] =1 (1=xt) (1-Xt D) n=n,seny=0 2 eldn, +n-jilCn, iy, (R)-
(7.18
Note the appearance of the factoriih this expression. The coefficient is given by .13 to
be
de(dnﬁN,—,i]:de{E xp(xp+”i+i‘j|+xp+”i+2N‘i‘j)}, (7.19
p=0
or, after simplification,
X\nj+ifj|+xnj+2N7ifj

defd, +n-ji]=de 12 (7.20

Once again, the first two columns are multiplesj& 1, so the only surviving coefficients are the
ones corresponding to, = n, all others are zero. Again, the determinant can be evaluated with the
help of the result from the Sp{®) case, and the result is

2x"
detdn +n-jil= 752 (7.2

We note that the 2 cancels with tBéuilt into the SO(N) expansion and the remaining expres-
sion is exactly the same as the SQ(21) expression. Thus, we see that the expansions derived

in the present work indeed give the correct expansion. In all three of these examples, we have
tacitly assumed thall is at least 2, but one can check that the expansions are correct fbr the

=1 cases as well.

We could also consider the generating function for the alternating symmetric functions,
G(x,t)=1-—xt, and calculate the expansions as another check for reliability. One can check that
the expansions derived from the present work in fact give the known expansions. This task will
not be undertaken in the present work.

B. Expansion of exp (x Tr M)

Now that we have confidence in the character expansions derived here, we can start consid-
ering more interesting examples. Of course, any generating function can be chosen as long as it
can be expanded in a power series. For our example, we will choose the exponential function
because it is expected that this technique will prove useful in performing group integrals that arise
in low-energy effective QCD partition functions and the integrals are of exponential functions.

We begin by defining the generating function

* n

X
G(x,)=e=> —t" (7.22
A=o N!
so thatA,(x)= x"/n! for n=0 and zero otherwise. Let us first consider S9f2We have

N
I1 G(x,ti)G(x,ti_l)=ex(t1“2+'““N“Il+tz_1+“‘+tﬁl):exp(xTrP). (7.23
=1

Our character expansion is given by E4.10 as
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expxTrP)= > defdy in-jr1ilX(ny my..m (P, (7.24

where the coefficients are given directly by E4.12 as

xPFInj+i=jl xPTNj+2N+2-i—]

xP
(p+|nj+i+j|)!_(p+nj+2N+2—i—j)!”' (7.29

detdnj+N_j+1,i]=de{p20 of

This can be recognized as a modified Bessel function, which has the expansion

I\ (X)= Z (7.26

X)2p+>\

IOH\)'

Note also that,(x)=1_,(x) for any x. Thus, we can rewrite the coefficient &dropping the
absolute value sign

defdy n-jrai]=detln i j(2X) = ln sont2-i-j(2X)] (7.27)

so that, finally,

eXpXTrP) = ;: . de['nj+i—j(2X)_|nj+2N+2—i—j(2X)]X(n1,n2 ..... ny(P)-

n{=ny=---=nN= (7 2&

We proceed with the same expansion for the S0{2L) group. Using the same generating
function, Eq.(5.8) gives us the expansion as

N 3

IT expxt)expxt b= > defdy n-jilX(n nsno(R), (7.29
=5 0 i , 1:M20--0N

i= ny=n,=---=ny=

where Eq.(5.10 gives

“ X xPFInj+i=ijl xPHNj+2N+1-i—]
de(d”ﬁNivi]:de{Z p_((p+|n,-+i—j|)! _(p+nj+2N+1—i—j)!)]’ (7.30
or, using the definition of the modified Bessel function,
defdy +n-jil=detln +i—j(2¥) = In rons1-i-(2X)]. (7.3

Thus, our expression is

N B

I eqxtyexpxty = > defly (20~ cone1-i-(29]X(n,

i= 1=Ny==np=

ny(R).
(7.32

Now, the left hand side is not yet exdrR). We need to include the eigenvalue 1. Thus we
multiply both sides bye* and we get
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N
expxTrR)=expx) [ ] expixt)expxt %)
=1

0

=e* 2 defln i (20~ ansaioi (20 Xy (R,

(7.33

which is the desired expansion. We emphasize the appearanceeaf ahethe right hand side of
the expression. This extra term is unique to the SO{2A) group.

As our final example, we develop the same expansion for the BD{Poup. As before, we
write the expansion from Eq6.10 as

N 0
B 1
expxTrR)=[] expxt)expxt 1= > 5 defdn n-i1Cn, ... (R)-
i= ny=ny=---=ny>0 J
(7.39
The coefficients are given by E¢6.13 as
CooxP xP+Inj+i=jl xPHNjF2N=i=j
de(dnon-y.1=de{ 2 or| o r =1 +(p+n,»+2N—i—j>!) (7:35
Again using the modified Bessel equation expansion, we get
defdy n-jil=detln i j(2¥)+1n 1on-i-j(2X)]. (7.36
Thus, the desired expansion is
- 1
expxTrR)= > 5 aefln i (2X) 1y yon-i-(201C(, n, .. (R)-
ni=n,=---=ny=0 ) )
(7.37
Once again, we emphasize the factor Join this expression. This is unique to the S®(2

expansion.

VIIl. CONCLUSIONS

The present article, along with Refs. 1 and 8 completes the program of finding character
expansions for all classical Lie groups. We expect these formulas to be useful in a wide range of
applications. We already described some of these applications in the Introduction.

One should emphasize that the success in understanding the relationship between the random
matrix theories and the low-lying eigenvalues of the QCD Dirac operator suggests investigating
other aspects of QCD in a statistical framewditr a recent review see Ref. B8Viore recently
a similarity between disordered systems in condensed matter physics and QCD, namely the exis-
tence of a universal energy scale known as Thouless energy, was suggeStetis problem can
be treated using the supersymmetry apprdaéf*3In the supersymmetry approach to this prob-
lem one needs to calculate integrals over supergrétfi<One should note that integration over
unitary supergroups was already considered in Refs. 13 and 45—47. Invariant integration over an
Osp(N/2M) manifold was also previously discussed in Refs. 48 and 49. An approach based on
Gelfand—Tzetlin coordinates was developed and a recursion formula for both ordinary and super-
group integrals was fourtf->3Character expansions for supergroups may be useful to understand
the nature and extent of this approach. The characters of supergroups are given by formulas
similar to the Weyl formulas except that complete symmetric functions are replaced by the graded
homogeneous symmetric functions or alternately traces by supertfacéSince our character
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expansion formulas are basically combinatorial in nature they are applicable to the supergroups as
well by the appropriate substitution of traces with supertraces. Thus one can obtain character
expansions of the orthosymplectic supergroup ®gpi1) from our formulas for SOY)>* and of

the supergroup ™) from our formulas for Sp(R).>®
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APPENDIX: A THEOREM ON DETERMINANTS

Here we take up the issue of slightly generalizing a theorem on determinants that can be found
in Hua's book®” His Theorem 1.2.1 states that

©

> . defd,, i1deft]. (A1)

T>T9> . >0 =

de{E dojtf|=
r=0

We would like to prove the following more general statement, which we state as a theorem.
Theorem 1: Let f,(t) be an arbitrary function of the variable t with dependence on the index
r. Then the following equality holds

©

> defd, Jdeff (t)]. (A2)

r1>rp,>..>ry=0

de{ Zo dr,jfr(ti) =

To prove the theorem, we recall the expansion of determinani>dfl matrices, namely,

N N N
def A 1= > > - 2 ey Arm Az, A (A3)
Mi=1 mo=1 Min= 2" 1IN 1 2 N’

where the tensoEm m,...my is completely antisymmetric. Then, the left hand side of E&R)
becomes

de{godr,,-frai)} 2 2 2 €mym, mN[ EOdrl,mlfH(tl)}

m;=1my=1 my=1

[

2 o, m,f rz(tzﬂ [20 drN,merNaN)] (A4)

o=

Isolating the dependence on thg's, we get

2 E E fr (t)f(t) - Fr ()

r;=0r,=0 rn=0
N N N
E 2 2 emlmz mNdr1 mldr2 m, drN,mN} (AS)

m=1my=1 my=

de{E d, if,(t)
r=0

X

We recognize the term on the right hand side in the large brackets as a determinant, so
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=2 2 2 (t)f(t) o f (tydefd, . (A6)

r1=01r3=0 ry=0

de{ 20 d jf,(t)

Now, if any of ther; are equal, then the determinant on the right hand side will vanish because
two rows would be identical. Thus, the sum can be restricted to distinct values pf shé&lext,
since ther,’s are all different, we would like to order them in descending order so that
>r;,,. In doing so, we would like to not change the form of the determinant on the right hand
side. So, for any switch of labels, we permute the rows to leave the form unchanged. This brings
in a factor of+1 or —1, depending on how many permutations are needed. We can express this
simply by using theNth rank alternating tensor as

de{ }_}0 dr,jfr(ti)}

= X defd, ;12 X - 2 €mmomfr (t)f (t2)F (ty).
0 P mp=1 my=1 my=1 172N Ty ma My

[1=>r>>1rN=
(A7)

Here we note that the term involvimg; sums is a determinant. Thus, taking the transpose of the
determinant of thel’s, we conclude

©

= 2 defd, Jdeff, (t)], (A8)

r>rp>>ry=0

de{ ZO d, if.(t)

which proves the theorem.
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