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Formulas for the expansion of arbitrary invariant group functions in terms of the
characters for the Sp(2N), SO(2N11), and SO(2N) groups are derived using a
combinatorial method. The method is similar to one used by Balantekin to expand
group functions over the characters of the U(N) group. All three expansions have
been checked for allN by using them to calculate the known expansions of the
generating function of the homogeneous symmetric functions. An expansion of the
exponential of the traces of group elements, appearing in the finite-volume gauge
field partition functions, is worked out for the orthogonal and symplectic
groups. © 2002 American Institute of Physics.@DOI: 10.1063/1.1418014#

I. INTRODUCTION

The expansion of invariant functions of a group into its characters~traces of the representatio
matrices!1 is very useful in a number of physical situations. In U(N) lattice gauge theories and i
the lattice expansion of the nonlinear U(N)3U(N) sigma model calculation of certain U(N)
group integrals are needed.2–6 If the integrands can be expanded in terms of the U(N) characters,
then such integrals can easily be calculated.3,7,8 Similar U(N) integrals also arise in the statistic
theory of nuclear reactions.9 In 1980 Itzykson and Zuber calculated a particular unitary gro
integral10 which turned out to be a special case of a more general formula by Harish-Chan11

The Itzykson–Zuber integral and its generalizations12–15are also easily dealt with using charact
expansions.1

The character expansion of an invariant function of group elements is given by

f ~detU,TrU,...!5(
r

arx r~U !, ~1.1!

wherex r(U) is the character of the representationr . Since group characters form an orthogon
set16 the coefficients can be obtained by explicitly integrating the product of this function with
characters over the group manifold:

ar5E dUx r* ~U ! f ~detU,TrU,...!. ~1.2!

~Note thata0 is the integral of the function itself over the group manifold!. It is rather difficult to
obtain complicated character expansions by explicit integration. In 1984 Balantekin8 developed a
combinatorial method that enabled one to solve for the coefficients in some expansions o
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U(N) group characters that was quite simple in comparison to performing group integrals.
ing a more general version, the result was recently extended in its range of applicability.1

In a parallel development it was shown that the spectral density of the Dirac operator
gauge theory near its zero eigenvalues should only depend on the symmetries in questi17–19

Although the original work17–19 used a Gaussian random matrix model, the results from
random matrix theory can be proven to be universal.20–24This implies that the spectral density o
the Dirac operator near the origin can be extracted from random matrix theories which pro
description of common aspects of various quantum phenomena~for a review see Ref. 25!. Hence
to study the low-energy limit of, for example, quantum chromodynamics~QCD!, one needs to
choose a random matrix theory with the global symmetries of the QCD partition function.
partition functions calculated from the effective field theory and random matrix th
agree.17,26,27These random matrix theories are characterized by the Dyson indexb which is the
number of independent variables per matrix element.19,28 For fermions in the fundamental repre
sentationb51 for Nc52 andb52 for Nc>2 whereNc is the number of colors. For fermions i
the adjoint representation andNc>2 we haveb54. For b52 the low-energy~finite-volume!
QCD partition function is the same as the one-link integral of two-dimensional lattice QCD5,29 and
is calculated using the U(N) character expansion1 and other methods.30,14,31For b54 the zero
momentum Goldstone modes belong to the coset space SU(Nf)/SO(Nf)

30,15 where Nf is the
number of fermion flavors. Hence the finite-volume partition function is a group integral wher
argument is the exponential of an SO(Nf) group element. Similarly in theb51 case the cose
space of the Goldstone modes is SU(2Nf)/Sp(2Nf).

30,15 Massive partition functions of random
matrix ensembles withb51 and 4 were considered in Refs. 24 and 32. To calculate these par
functions it is very useful to have expressions for character expansions over the orthogon
symplectic groups. Explicit expressions for these partition functions, for example, may he
finding solutions of Virasoro constraints which were found so far only for theb52 case.~For the
application of Virasoro constraints on the effective finite volume partition function, see, fo
ample, Refs. 33–35!.

The present work is an extension of Balantekin’s method of finding the expansion coeffi
for expansions over the characters for the symplectic group Sp(2N), the odd dimensional specia
orthogonal group SO(2N11), and the even dimensional special orthogonal group SO(2N). Some
background material will be treated in Sec. II, including general information about the chara
of the groups in question. The procedures for developing the expansions for the different g
are similar, so Sec. III will treat the general idea. The specific expressions will be derived in
IV for Sp(2N), in Sec. V for SO(2N11), and in Sec. VI for SO(2N). Finally, some examples o
expansions will be given for each of the groups in Sec. VII.

For quick reference, the expansions and the most general expressions for their coefficie
Sp(2N), SO(2N11), and SO(2N) are found in Eqs.~4.10! and~4.11!, ~5.8! and~5.9!, and~6.10!
and ~6.12!, respectively.

II. BACKGROUND AND FORMULAS FOR CHARACTERS

In order to calculate expressions for the character expansions, we will need expressions
characters. These characters have been furnished by Weyl.36 For reference, the Weyl formulas fo
the U(N), Sp(2N), SO(2N11,R), and SO(2N,R) group characters are reprinted below.@We
have included the formula for the U(N) group characters for completeness even though we
not need them in the present work.#

In the following, det@Ai j # refers to the determinant of theN3N matrix A whose entry in the
i th row andj th column isAi j . Furthermore, we will denote a matrix in the unitary group asU,
the symplectic group asP, and the orthogonal group asR, and the eigenvalues of any of thes
matrices are labeled byt i . For the U(N) case, there areN eigenvalues that are all phases. For t
Sp(2N) and SO(2N) cases, there are 2N eigenvalues, but they come in pairs of a phase and
reciprocal. Thus, a complete list of eigenvalues would bet1 ,t2 ,...,tN ,t1

21 ,t2
21 ,...,tN

21 . For the
SO(2N11) case, it is the same as the even dimensional cases with an additional eigenva
3 Feb 2007 to 128.175.189.139. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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t51. The determinants given below, then, are determinants ofN3N matrices which contain
functions of only the individual eigenvalues, not their reciprocals. Finally, the character
function of the representation, which is labeled by a partition (n1 ,n2 ,...,nN) where the non-
negative integersni satisfy n1>n2>¯>nN . Each representation corresponds to a permiss
Young tableau.

The expressions for the simple characters of the U(N), Sp(2N), and SO(2N11) groups are

x (n1 ,n2 ,...,nN)~U !5
det@ t i

nj 1N2 j
#

det@ t i
N2 j #

, ~2.1!

x (n1 ,n2 ,...,nN)~P!5
det@ t i

nj 1N2 j 11
2t i

2(nj 1N2 j 11)
#

det@ t i
N112 j2t i

2(N112 j )#
, ~2.2!

and

x (n1 ,n2 ,...,nN)~R!5
det@ t i

nj 1N2 j 11/2
2t i

2(nj 1N2 j 11/2)
#

det@ t i
N11/22 j2t i

2(N11/22 j )#
, ~2.3!

respectively.
The SO(2N) case requires more attention. We define

C(n1 ,n2 ,...,nN)~R!5
det@ t i

nj 1N2 j
1t i

2(nj 1N2 j )
2d jNdnN0#

det@ t i
N2 j1t i

2(N2 j )2d jN#
~2.4!

and

S(n1 ,n2 ,...,nN)~R!5
det@ t i

nj 1N2 j
2t i

2(nj 1N2 j )
#

det@ t i
N2 j1t i

2(N2 j )2d jN#
. ~2.5!

~The notation in the previous two equations is nonstandard, but they give the proper elem
stated in Ref. 16 in a more modern and manipulable form.! C(n1 ,n2 ,...,nN)(R) alone is the simple
character of SO(2N) if and only if nN50. If nNÞ0, thenC(n1 ,n2 ,...,nN)(R) is a double character
For this case, the simple characters are given by1

2(C(n1 ,n2 ,...,nN)(R)6S(n1 ,n2 ,...,nN)(R)). In the
present work, only the expression forC(n1 ,n2 ,...,nN)(R) given in Eq. ~2.4! will be needed. This
statement will be justified in Sec. VI where SO(2N) is treated.

One last property of these expressions that will be useful for checking the reliability o
expansions derived in this article is the value of the characters for representations correspon
Young tableaux of one row~n15n, all others are 0! and one column~nn51 for all n up to some
value, all others are 0!. The characters for representations with one row, labeled (n), and one
column, labeled (1n), are

x (n)~U !5hn~ t i !, x (1n)~U !5an~ t i !, ~2.6!

x (n)~P!5hn~ t i ,t i
21!, x (1n)~P!5an~ t i ,t i

21!2an22~ t i ,t i
21!, ~2.7!

x (n)~R!5hn~ t i ,t i
21,1!2hn22~ t i ,t i

21,1!, x (1n)~R!5an~ t i ,t i
21,1!, ~2.8!

C(n)~R!5hn~ t i ,t i
21!2hn22~ t i ,t i

21!, C(1n)~R!5an~ t i ,t i
21!, ~2.9!

for the U(N), Sp(2N), SO(2N11), and SO(2N) groups, respectively. The functionshn(t i) are
the homogeneous symmetric functions of ordern, and the functionsan(t i) are the elementary
symmetric functions of ordern. Further discussion is given in Ref. 1.
3 Feb 2007 to 128.175.189.139. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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III. GENERAL PROPERTIES OF THE DERIVATION

We are now ready to derive the form for the expansions of group functions over the char
of the various groups mentioned in the previous section. As with any expansion, the crux o
issue is being able to determine and calculate the coefficients in the expansion. The goa
next four sections will be to find these coefficients.

The derivation is very similar to the one used by Balantekin1 in finding the coefficients of the
expansion over the unitary group characters. As the expressions for the group charact
Sp(2N), SO(2N11), and SO(2N) are all similar, the derivations for all three will proceed
much the same manner. To make the general method more transparent, the common aspec
derivation will be presented in this section without mention of the specific groups. The follo
three sections will be devoted to using the result of this section to derive expressions f
coefficients in the expansions over the characters in each group.

We begin by noting that each of the expressions for the characters given by Eqs.~2.2!–~2.4!
are all ratios of determinants, so that we can write

x (n1 ,n2 ,...,nN)~M !5
N
D , ~3.1!

where M is a matrix element of the group in question andN and D refer to numerator and
denominator. For any of these groups, the denominatorD can be expressed generally as

D5det@ t i
N2 j 1q6t i

2(N2 j 1q)2dq0d jN#, ~3.2!

whereq can take on the value 1 for the Sp(2N) group, 1
2 for the SO(2N11) group, and 0 for the

SO(2N) group. In this form, we choose the appropriate value ofq and the proper sign of the
6 sign to specify which group we are discussing. Namely, we see that the minus sign will be
for Sp(2N) and SO(2N11) whereas the plus sign will be used for SO(2N).

In following the derivation of the U(N) expansion given in Ref. 1, we define a ‘‘generati
function,’’ G(x,t), to be some function of a variablet and any necessary parametersx. Later, we
will take t to be an eigenvalue of a group matrix. For now, we expand the generating funct
a power series in the variablet aroundt50. Thus,

G~x,t !5 (
n52`

`

An~x!tn. ~3.3!

We assume that the series expansion converges forutu51. However, there are no other restrictio
on the coefficients, so that some of theAn(x) can be zero. For instance, if the expansion is
Taylor series, thenAn[0 for all n,0.

Now, we define a functionF by

F5D)
i 51

N

G~x,t i !G~x,t i
21!, ~3.4!

whereD is given in Eq.~3.2!. By using the definition ofG(x,t) from Eq. ~3.3!, F can be written
as ~suppressing thex dependence ofAn!

F5DF (
n52`

`

Ant1
nGF (

n52`

`

Ant1
2nGF (

n52`

`

Ant2
nGF (

n52`

`

Ant2
2nG¯F (

n52`

`

AntN
n GF (

n52`

`

AntN
2nG ,

~3.5!

or, by combining the product of sums over the same variable, it can be written as
3 Feb 2007 to 128.175.189.139. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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F5DF (
n52`

`

(
p52`

`

AnApt1
n2pGF (

n52`

`

(
p52`

`

AnApt2
n2pG¯F (

n52`

`

(
p52`

`

AnAptN
n2pG . ~3.6!

To proceed, we use the expression forD in Eq. ~3.2!. This determinant can be laborious
expanded as an alternating sum of products of the elements@see Eq.~A3!#. Upon doing so, we can
combine the factors of the variablet i in the determinant with the factor in Eq.~3.6! of the same
variable. However, before naively doing so, we notice that there is a symmetry in the expone
the determinant. We also notice that the double summations of thet i ’s are unaffected by inter-
change of the dummy indicesn andp. So the symmetry of the exponents will be preserved if
usen2p in the product of the first term,p2n in the product of the second term, and split the de
term in half usingn2p in the first one andp2n in the second one. Upon doing so, we find th
the new expression is again a determinant. Rewriting this as a determinant, we obtain

F5detF (
n52`

`

(
p52`

`

AnApS t i
N2 j 1q1n2p6t i

2(N2 j 1q1n2p)2
1

2
dq0d jN~ t i

n2p1t i
p2n! D G . ~3.7!

Now, we change variables, defining a new integerr 5N2 j 1n2p. This gives

F5detF (
p52`

`

(
r 52`

`

Ar 2N1 j 1pApS t i
r 1q6t i

2(r 1q)2
1

2
dq0d jN~ t i

r 2N1 j1t i
N2 j 2r ! D G . ~3.8!

The order of the summation forr andp is interchangeable. Also, the delta term chooses onlN
5 j . Thus,

F5detF (
r 52`

`

(
p52`

`

Ar 2N1 j 1pApS t i
r 1q6t i

2(r 1q)2
1

2
dq0d jN~ t i

r1t i
2r ! D G . ~3.9!

We notice that all of the dependence on the dummy variablep can be isolated by defining

cr , j5 (
p52`

`

Ar 2N1 j 1pAp . ~3.10!

Also, by combining the delta term with the other term@again remembering that it is only prese
for the SO(2N) case in whichq50 and we use the1 sign#, we can write our expression forF as

F5detF (
r 52`

`

cr , j~ t i
r 1q6t i

2(r 1q)!S 12
1

2
dq0d jND G . ~3.11!

We have come to the point in the derivation where it will be necessary to specialize Eq.~3.11! for
the three different types of groups by making appropriate choices forq and the6 sign. This will
be taken up in the next three sections.

IV. THE EXPANSION OVER SP„2N… CHARACTERS

We begin with the Sp(2N) case, as it is the simplest one. The starting point will be Eq.~3.11!.
For the Sp(2N) case,q51 and we choose the minus sign. Thus, we have

F5detF (
r 52`

`

cr , j~ t i
r 112t i

2(r 11)!G , ~4.1!

wherecr , j is defined in Eq.~3.10!. Before proceeding, it is beneficial to change dummy indi
again by lettingr 11→r . This gives us
3 Feb 2007 to 128.175.189.139. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



ing

. We
sing

r in the

us,

609J. Math. Phys., Vol. 43, No. 1, January 2002 Character expansions for the orthogonal groups

Downloaded 0
F5detF (
r 52`

`

cr , j8 ~ t i
r2t i

2r !G , ~4.2!

where

cr , j8 5 (
p52`

`

Ar 2N1 j 211pAp . ~4.3!

This sum overr from 2` to ` can be broken up into positiver , negativer , and r 50. The r
50 term vanishes becauset i

02t i
050. Then, changing the negative values to positive by replac

r with 2r and collecting terms, we get

F5detF (
r 50

`

dr , j~ t i
r2t i

2r !G , ~4.4!

where

dr , j5cr , j8 2c2r , j8 . ~4.5!

Equation~4.4! is very similar to an expression that is treated in Theorem 1.2.1 from Ref. 37
will need a slightly more general form of this theorem, which we present in the Appendix. U
the result, Eq.~A8!, we get

F5 (
r 1.r 2.¯.r N>0

`

det@dr j ,i #det@ t i
r j2t i

2r j #. ~4.6!

Now, if, in the summation,r N50, then both determinants vanish, so we can restrictr N>1. Let us
define

r j5nj1N2 j 11. ~4.7!

Then,r j.r j 11 implies thatnj>nj 11 . Furthermore, sincer N>1, thennN>0. Thus, we can write
the summation as

F5 (
n1>n2>¯>nN>0

`

det@dnj 1N2 j 11,i #det@ t i
nj 1N2 j 11

2t i
2(nj 1N2 j 11)

#. ~4.8!

In the above expression, the second determinant is seen to be exactly the numerato
Weyl formula for the characters of the symplectic group given in Eq.~2.2!. We even have the
appropriate restrictions on the values of theni that are necessary to make the equation valid. Th
we can write the above expression as

F5 (
n1>n2>¯>nN>0

`

det@dnj 1N2 j 11,i #N. ~4.9!

Now we recall our definition ofF from Eq. ~3.4!. If we divide both sides by the denominatorD
and recall that our expression for the character of the Sp(2N) group isx (n1 ,n2 ,...,nN)(P)5 N/D,
then we obtain

)
i 51

N

G~x,t i !G~x,t i
21!5 (

n1>n2>¯>nN>0

`

det@dnj 1N2 j 11,i #x (n1 ,n2 ,...,nN)~P!. ~4.10!
3 Feb 2007 to 128.175.189.139. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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This is our desired character expansion over the Sp(2N) group! It is a sum over all irreducible
representations of the symplectic group. Expressions for the coefficients are obtained usin
~4.5! and ~4.3!. The result is

dnj 1N2 j 11,i5 (
p52`

`

Ap~Anj 1 i 2 j 1p2A2nj 22N221 i 1 j 1p!. ~4.11!

In the special case in which the expansion of the generating functionG(x,t) is a Taylor series
expansion withAp[0 for all p,0, this simplifies slightly to

dnj 1N2 j 11,i5 (
p50

`

Ap~Ap1unj 1 i 2 j u2Ap1nj 12N122 i 2 j !. ~4.12!

We defer examples of the usage of this expansion until Sec. VII.

V. THE EXPANSION OVER SO„2N¿1… CHARACTERS

Once again, we start from Eq.~3.11!. For SO(2N11), we haveq5 1
2 and we choose the

minus sign. Then, we have

F5detF (
r 52`

`

cr , j~ t i
r 11/22t i

2(r 11/2)!G ~5.1!

andcr , j is defined in Eq.~3.10!.
This sum overr from 2` to ` can be broken up into ranges ofr>0 andr ,0, which gives

F5detF (
r 50

`

cr , j~ t i
r 11/22t i

2(r 11/2)!1 (
r 52`

21

cr , j~ t i
r 11/22t i

2(r 11/2)!G . ~5.2!

Changing variables in the second summation usingr→2(r 11) and collecting terms, we get

F5detF (
r 50

`

dr , j~ t i
r 11/22t i

2(r 11/2)!G , ~5.3!

where

dr , j5cr , j2c2r 21,j . ~5.4!

Once again, we refer to Eq.~A8! in the Appendix to simplify Eq.~5.3! and we write

F5 (
r 1.r 2.¯.r N>0

`

det@dr j ,i #det@ t i
r j 11/2

2t i
2(r j 11/2)

#. ~5.5!

If we define

r j5nj1N2 j , ~5.6!

then the summation becomes

F5 (
n1>n2>¯>nN>0

`

det@dnj 1N2 j ,i #det@ t i
nj 1N2 j 11/2

2t i
2(nj 1N2 j 11/2)

#. ~5.7!

The second determinant is simply the numerator of the Weyl formula for SO(2N11) as given in
Eqs.~2.3!, so using the definition ofF from Eq. ~3.4! and dividing byD gives
3 Feb 2007 to 128.175.189.139. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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)
i 51

N

G~x,t i !G~x,t i
21!5 (

n1>n2>¯>nN>0

`

det@dnj 1N2 j ,i #x (n1 ,n2 ,...,nN)~R!. ~5.8!

This is the expansion for the SO(2N11) group, again a sum over all irreducible representatio
Note, however, that this expression does not include the spinor representations of SO(2N11).
The expression for the coefficient is found using Eqs.~5.4! and ~3.10! with the result given by

dnj 1N2 j ,i5 (
p52`

`

Ap~Anj 1 i 2 j 1p2A2nj 22N211 i 1 j 1p!. ~5.9!

In the special case of a Taylor series withAp[0 for all p,0, this simplifies to

dnj 1N2 j ,i5 (
p50

`

Ap~Ap1unj 1 i 2 j u2Ap1nj 12N112 i 2 j !. ~5.10!

We conclude this section with a reminder that care must be taken in the usage of the
formulas for SO(2N11). One must remember that the number 1 is always an additional e
value of the matrixR. Thus, in forming group functions, one must manually include a facto
G(x,1) on both sides of the equation in order to have a function on the left hand side that
all eigenvalues equally. This tricky point will be illustrated by example in Sec. VII, after we t
the SO(2N) case in the next section.

VI. THE EXPANSION OVER SO„2N… CHARACTERS

One more time, we start from Eq.~3.11!. Recall that for SO(2N), we haveq50 and we use
the 1 sign. Thus, we have

F5detF (
r 52`

`

cr , j~ t i
r1t i

2r !S 12
1

2
d jND G , ~6.1!

wherecr , j is defined in Eq.~3.10!. The delta function term serves to divide each entry in the
column by a factor of 2. When taking the determinant, a factor of 2 comes out and divide
equation. Thus,

F5
1

2
detF (

r 52`

`

cr , j~ t i
r1t i

2r !G . ~6.2!

This sum overr from 2` to ` can be broken up into positiver , negativer , andr 50. Then
changing the negative values to positive by replacingr with 2r and collecting terms, we get

F5
1

2
detF (

r 50

`

dr , j S 12
1

2
d r0D ~ t i

r1t i
2r !G , ~6.3!

where

dr , j5cr , j1c2r , j ~6.4!

and thed r0 is inserted to ensure the correct coefficient forr 50. Once again, we can use Eq.~A8!
from the Appendix to simplify Eq.~6.3! which gives

F5
1

2 (
r 1.r 2.¯.r N>0

`

det@dr j ,i #detF ~ t i
r j1t i

2r j !S 12
1

2
d r j0D G . ~6.5!
3 Feb 2007 to 128.175.189.139. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Let us define

r j5nj1N2 j . ~6.6!

Then the summation becomes

F5
1

2 (
n1>n2>¯>nN>0

`

det@dnj 1N2 j ,i #detF ~ t i
nj 1N2 j

1t i
2(nj 1N2 j )

!S 12
1

2
dnj 1N2 j ,0D G . ~6.7!

Focusing on the second determinant on the right hand side, we can multiply the two binom
give

detF t i
nj 1N2 j

1t i
2(nj 1N2 j )

2
1

2
dnj 1N2 j ,0~ t i

nj 1N2 j
1t i

2(nj 1N2 j )
!G . ~6.8!

Now, the delta function is only nonzero whennj1N2 j 50, which can only occur forj 5N and
nN50 becausenj is non-negative. In this event, the exponents vanish and the sum in paren
becomes 2, which cancels the1

2. Thus, we can write Eq.~6.7! as

F5
1

2 (
n1>n2>¯>nN>0

`

det@dnj 1N2 j ,i #det@ t i
nj 1N2 j

1t i
2(nj 1N2 j )

2d jNdnN0#. ~6.9!

We see that the second determinant is precisely the appropriate numerator in the Weyl f
for the quantityC(n1 ,n2 ,...,nN)(R) given in Eq.~2.4!. By recalling the definition ofF from Eq.~3.4!
and dividing byD, we get

)
i 51

N

G~x,t i !G~x,t i
21!5 (

n1>n2>¯>nN>0

`
1

2
det@dnj 1N2 j ,i #C(n1 ,n2 ,...,nN)~R!, ~6.10!

This is the character expansion for SO(2N). As with the SO(2N11) case, the expansion does n
include the spinor representations. Note that the above expansion is not an expansion o
simple characters of the SO(2N) group because theC’s are double characters ifnN.0 as dis-
cussed in Sec. II. If one desires an expansion over the simple characters, one can write

C5 1
2 ~C1S!1 1

2 ~C2S!, ~6.11!

which puts the two simple characters on the right hand side, as explained earlier. At the p
time, we find it simpler to apply the formula in the state that it is in. The expression for
coefficient is found using Eqs.~6.4! and ~3.10! and is found to be

dnj 1N2 j ,i5 (
p52`

`

Ap~Anj 1 i 2 j 1p1A2nj 22N1 i 1 j 1p!. ~6.12!

In the special case of a Taylor series withAp50 for all p,0, this simplifies to

dnj 1N2 j ,i5 (
p50

`

Ap~Ap1unj 1 i 2 j u1Ap1nj 12N2 i 2 j !. ~6.13!

The derivations of the expansions are complete. We now turn to some examples.

VII. EXAMPLES OF CHARACTER EXPANSIONS

In this section, we give some examples of expansions of group functions over the cha
of the Sp(2N), SO(2N11), and SO(2N) groups. In Sec. VII A, we will present the expansion
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the generating function of the homogeneous symmetric functions. This can be used as a c
the formulas derived in the present article, as the expansions are known. In Sec. VII B, we p
the expansion for the function exp(xTrM), whereM is some matrix element of one of the thre
groups we treat.

A. Homogeneous symmetric functions

Consider the generating function of the homogeneous symmetric functions, namely

G~x,t !5
1

12xt
5 (

n50

`

xntn. ~7.1!

Thus, we haveAn(x)5xn for n>0 andAn(x)50 otherwise. Consider the Sp(2N) expansion.
Note that

)
i 51

N

G~x,t i !G~x,t i
21!5

1

det@ I 2xP#
, ~7.2!

where I is the 2N32N identity matrix. The expansion is given by Eq.~4.10!. Since the series
expansion of the generating function in Eq.~7.1! does not contain negative powers oft, the
coefficients are given by Eq.~4.12!. Thus, the coefficients are given by

det@dnj 1N2 j 11,i #5detF (
p50

`

xp~xp1unj 1 i 2 j u2xp1nj 12N122 i 2 j !G , ~7.3!

which after simplifying becomes

det@dnj 1N2 j 11,i #5detFxunj 1 i 2 j u2xnj 12N122 i 2 j

12x2 G . ~7.4!

We simplify by noticing that ifn2>1, then the first column of the determinant is a multiple of t
second column, thereby making the determinant vanish. Thus,n2 must be zero in order to have
nonvanishing coefficient. Now, sincen2>n3 and so on, we see that the only surviving terms in
expansion are those for whichn25n35¯5nN50. This corresponds to one row Young tableau
labeled (n) earlier. The above determinant then becomes

det@dnj 1N2 j 11,i #5detFxun1d1 j 1 i 2 j u2xn1d1 j 12N122 i 2 j

12x2 G . ~7.5!

This, in turn, can be written as

det@dnj 1N2 j 11,i #5
xn1

~12x2!N det@xu i 2 j u2x2N122 i 2 j #. ~7.6!

By an induction argument on the dimension of the determinant on the right hand side, on
prove that

det@xu i 2 j u2x2N122 i 2 j #5~12x2!N ~7.7!

and thus

det@dnj 1N2 j 11,i #5xn1, ~7.8!

where we recall that alln’s other thann1 are 0. Then, the character expansion is Eq.~4.10! with
the coefficients found above is
3 Feb 2007 to 128.175.189.139. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



eous

us, we

ed

nt

614 J. Math. Phys., Vol. 43, No. 1, January 2002 A. B. Balantekin and P. Cassak

Downloaded 0
1

det@ I 2xP#
5)

i 51

N S 1

12xti
D S 1

12xti
21D 5 (

n150

`

xn1x (n1)~P!. ~7.9!

If we use Eq.~2.7!, which relates the character of one row Young tableaux to the homogen
symmetric functions, we have

1

det@ I 2xP#
5)

i 51

N S 1

12xti
D S 1

12xti
21D 5 (

n50

`

xnhn~ t i ,t i
21!. ~7.10!

However, this is exactly the defining equation for the homogeneous symmetric functions. Th
see that the expansion derived for Sp(2N) agrees with the known expansion.

To perform the same expansion over the SO(2N11) group, one must use caution. As allud
to earlier, we must manually include the eigenvalue 1. Mathematically, we have

1

det@ I 2xR#
5G~x,1!)

i 51

N

G~x,t i !G~x,t i
21!, ~7.11!

whereG(x,t) is still given by Eq.~7.1! andI is the (2N11)3(2N11) identity matrix. Then, we
have the expansion from Eq.~5.8! and we scale both sides byG(x,1)5(12x)21 to get

G~x,1!)
i 51

N

G~x,t i !G~x,t i
21!5

1

12x (
n1>n2>¯>nN>0

`

det@dnj 1N2 j ,i #x (n1 ,n2 ,...,nN)~R!.

~7.12!

The coefficient is given by Eq.~5.10!

det@dnj 1N2 j ,i #5detF (
p50

`

xp~xp1unj 1 i 2 j u2xp1nj 12N112 i 2 j !G , ~7.13!

or, after simplifying,

det@dnj 1N2 j ,i #5detFxunj 1 i 2 j u2xnj 12N112 i 2 j

12x2 G . ~7.14!

Once again it can be shown that ifn2>1, the first two columns are multiples and the coefficie
vanishes. It can also be shown using the result of the similar expression for the Sp(2N) expansion
that if n15n and all otherni50, then

det@dnj 1N2 j ,i #5
xn

11x
~7.15!

so that

1

det@ I 2xR#
5

1

~12x! )i 51

N
1

~12xti !

1

~12xti
21!

5 (
n50

`
xn

12x2 x (n)~R!. ~7.16!

Finally, using the value of the single row characters for the SO(2N11) group from Eq.~2.8!, one
can show that

1

det@ I 2xR#
5

1

~12x! )i 51

N
1

~12xti !

1

~12xti
21!

5 (
n50

`

xnhn~ t i ,t i
21,1!, ~7.17!

which again agrees with the definition of the homogeneous symmetric functions.
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We continue on with the same expansion for the SO(2N) group. Using the same generatin
function and using the character expansion from Eq.~6.10!, we have

1

det@ I 2xR#
5)

i 51

N
1

~12xti !

1

~12xti
21!

5 (
n1>n2>¯>nN>0

`
1

2
det@dnj 1N2 j ,i #C(n1 ,n2 ,...,nN)~R!.

~7.18!

Note the appearance of the factor of1
2 in this expression. The coefficient is given by Eq.~6.13! to

be

det@dnj 1N2 j ,i #5detF (
p50

`

xp~xp1unj 1 i 2 j u1xp1nj 12N2 i 2 j !G , ~7.19!

or, after simplification,

det@dnj 1N2 j ,i #5detFxunj 1 i 2 j u1xnj 12N2 i 2 j

12x2 G . ~7.20!

Once again, the first two columns are multiples ifn2>1, so the only surviving coefficients are th
ones corresponding ton15n, all others are zero. Again, the determinant can be evaluated with
help of the result from the Sp(2N) case, and the result is

det@dnj 1N2 j ,i #5
2xn

12x2 . ~7.21!

We note that the 2 cancels with the1
2 built into the SO(2N) expansion and the remaining expre

sion is exactly the same as the SO(2N11) expression. Thus, we see that the expansions der
in the present work indeed give the correct expansion. In all three of these examples, w
tacitly assumed thatN is at least 2, but one can check that the expansions are correct for tN
51 cases as well.

We could also consider the generating function for the alternating symmetric func
G(x,t)512xt, and calculate the expansions as another check for reliability. One can chec
the expansions derived from the present work in fact give the known expansions. This tas
not be undertaken in the present work.

B. Expansion of exp „x Tr M…

Now that we have confidence in the character expansions derived here, we can start
ering more interesting examples. Of course, any generating function can be chosen as lo
can be expanded in a power series. For our example, we will choose the exponential fu
because it is expected that this technique will prove useful in performing group integrals tha
in low-energy effective QCD partition functions and the integrals are of exponential functio

We begin by defining the generating function

G~x,t !5ext5 (
n50

`
xn

n!
tn ~7.22!

so thatAn(x)5 xn/n! for n>0 and zero otherwise. Let us first consider Sp(2N). We have

)
i 51

N

G~x,t i !G~x,t i
21!5ex(t11t21¯1tN1t1

21
1t2

21
1¯1tN

21)5exp~xTrP!. ~7.23!

Our character expansion is given by Eq.~4.10! as
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exp~xTrP!5 (
n1>n2>¯>nN>0

`

det@dnj 1N2 j 11,i #x (n1 ,n2 ,...,nN)~P!, ~7.24!

where the coefficients are given directly by Eq.~4.12! as

det@dnj 1N2 j 11,i #5detF (
p50

`
xp

p! S xp1unj 1 i 2 j u

~p1unj1 i 1 j u!!
2

xp1nj 12N122 i 2 j

~p1nj12N122 i 2 j !! D G . ~7.25!

This can be recognized as a modified Bessel function, which has the expansion

I l~x!5 (
p50

`
1

p! ~p1l!! S x

2D 2p1l

. ~7.26!

Note also thatI l(x)5I 2l(x) for any x. Thus, we can rewrite the coefficient as~dropping the
absolute value sign!

det@dnj 1N2 j 11,i #5det@ I nj 1 i 2 j~2x!2I nj 12N122 i 2 j~2x!# ~7.27!

so that, finally,

exp~xTrP!5 (
n1>n2>¯>nN>0

`

det@ I nj 1 i 2 j~2x!2I nj 12N122 i 2 j~2x!#x (n1 ,n2 ,...,nN)~P!.

~7.28!

We proceed with the same expansion for the SO(2N11) group. Using the same generatin
function, Eq.~5.8! gives us the expansion as

)
i 51

N

exp~xti !exp~xti
21!5 (

n1>n2>¯>nN>0

`

det@dnj 1N2 j ,i #x (n1 ,n2 ,...,nN)~R!, ~7.29!

where Eq.~5.10! gives

det@dnj 1N2 j ,i #5detF (
p50

`
xp

p! S xp1unj 1 i 2 j u

~p1unj1 i 2 j u!!
2

xp1nj 12N112 i 2 j

~p1nj12N112 i 2 j !! D G , ~7.30!

or, using the definition of the modified Bessel function,

det@dnj 1N2 j ,i #5det@ I nj 1 i 2 j~2x!2I nj 12N112 i 2 j~2x!#. ~7.31!

Thus, our expression is

)
i 51

N

exp~xti !exp~xti
21!5 (

n1>n2>¯>nN>0

`

det@ I nj 1 i 2 j~2x!2I nj 12N112 i 2 j~2x!#x (n1 ,n2 ,...,nN)~R!.

~7.32!

Now, the left hand side is not yet exp(xTrR). We need to include the eigenvalue 1. Thus
multiply both sides byex and we get
3 Feb 2007 to 128.175.189.139. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



f

racter
nge of

random
gating

e exis-

b-
r
ver an
ed on
super-
stand
rmulas
raded

r

617J. Math. Phys., Vol. 43, No. 1, January 2002 Character expansions for the orthogonal groups

Downloaded 0
exp~xTrR!5exp~x!)
i 51

N

exp~xti !exp~xti
21!

5ex (
n1>n2>¯>nN>0

`

det@ I nj 1 i 2 j~2x!2I nj 12N112 i 2 j~2x!#x (n1 ,n2 ,...,nN)~R!,

~7.33!

which is the desired expansion. We emphasize the appearance of theex on the right hand side o
the expression. This extra term is unique to the SO(2N11) group.

As our final example, we develop the same expansion for the SO(2N) group. As before, we
write the expansion from Eq.~6.10! as

exp~xTrR!5)
i 51

N

exp~xti !exp~xti
21!5 (

n1>n2>¯>nN.0

`
1

2
det@dnj 1N2 j ,i #C(n1 ,n2 ,...,nN)~R!.

~7.34!

The coefficients are given by Eq.~6.13! as

det@dnj 1N2 j ,i #5detF (
p50

`
xp

p! S xp1unj 1 i 2 j u

~p1unj1 i 2 j u!!
1

xp1nj 12N2 i 2 j

~p1nj12N2 i 2 j !! D G . ~7.35!

Again using the modified Bessel equation expansion, we get

det@dnj 1N2 j ,i #5det@ I nj 1 i 2 j~2x!1I nj 12N2 i 2 j~2x!#. ~7.36!

Thus, the desired expansion is

exp~xTrR!5 (
n1>n2>¯>nN>0

`
1

2
det@ I nj 1 i 2 j~2x!1I nj 12N2 i 2 j~2x!#C(n1 ,n2 ,...,nN)~R!.

~7.37!

Once again, we emphasize the factor of1
2 in this expression. This is unique to the SO(2N)

expansion.

VIII. CONCLUSIONS

The present article, along with Refs. 1 and 8 completes the program of finding cha
expansions for all classical Lie groups. We expect these formulas to be useful in a wide ra
applications. We already described some of these applications in the Introduction.

One should emphasize that the success in understanding the relationship between the
matrix theories and the low-lying eigenvalues of the QCD Dirac operator suggests investi
other aspects of QCD in a statistical framework~for a recent review see Ref. 38!. More recently
a similarity between disordered systems in condensed matter physics and QCD, namely th
tence of a universal energy scale known as Thouless energy, was suggested.39–41This problem can
be treated using the supersymmetry approach.42,25,43In the supersymmetry approach to this pro
lem one needs to calculate integrals over supergroups.44,45 One should note that integration ove
unitary supergroups was already considered in Refs. 13 and 45–47. Invariant integration o
Osp(N/2M ) manifold was also previously discussed in Refs. 48 and 49. An approach bas
Gelfand–Tzetlin coordinates was developed and a recursion formula for both ordinary and
group integrals was found.50–53Character expansions for supergroups may be useful to under
the nature and extent of this approach. The characters of supergroups are given by fo
similar to the Weyl formulas except that complete symmetric functions are replaced by the g
homogeneous symmetric functions or alternately traces by supertraces.54–57 Since our characte
3 Feb 2007 to 128.175.189.139. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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expansion formulas are basically combinatorial in nature they are applicable to the supergro
well by the appropriate substitution of traces with supertraces. Thus one can obtain ch
expansions of the orthosymplectic supergroup Osp(N/2M ) from our formulas for SO(N)54 and of
the supergroup P(N) from our formulas for Sp(2N).55
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APPENDIX: A THEOREM ON DETERMINANTS

Here we take up the issue of slightly generalizing a theorem on determinants that can be
in Hua’s book.37 His Theorem 1.2.1 states that

detF (
r 50

`

dr , j t i
r G5 (

r 1.r 2.....r N>0

`

det@dr j ,i #det@ t i
r j #. ~A1!

We would like to prove the following more general statement, which we state as a theorem
Theorem 1: Let fr(t) be an arbitrary function of the variable t with dependence on the in

r . Then the following equality holds:

detF (
r 50

`

dr , j f r~ t i !G5 (
r 1.r 2.....r N>0

`

det@dr j ,i #det@ f r j
~ t i !#. ~A2!

To prove the theorem, we recall the expansion of determinants ofN3N matrices, namely,

det@Ai , j #5 (
m151

N

(
m251

N

¯ (
mN51

N

em1m2¯mN
A1,m1

A2,m2
¯AN,mN

, ~A3!

where the tensorem1m2¯mN
is completely antisymmetric. Then, the left hand side of Eq.~A2!

becomes

detF (
r 50

`

dr , j f r~ t i !G5 (
m151

N

(
m251

N

¯ (
mN51

N

em1m2¯mNF (
r 150

`

dr 1 ,m1
f r 1

~ t1!G
3F (

r 250

`

dr 2 ,m2
f r 2

~ t2!G¯F (
r N50

`

dr N ,mN
f r N

~ tN!G . ~A4!

Isolating the dependence on themi ’s, we get

detF (
r 50

`

dr , j f r~ t i !G5 (
r 150

`

(
r 250

`

¯ (
r N50

`

f r 1
~ t1! f r 2

~ t2!¯ f r N
~ tN!

3F (
m151

N

(
m251

N

¯ (
mN51

N

em1m2¯mN
dr 1 ,m1

dr 2 ,m2
¯dr N ,mNG . ~A5!

We recognize the term on the right hand side in the large brackets as a determinant, so
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ause

t
and

brings
s this

the

619J. Math. Phys., Vol. 43, No. 1, January 2002 Character expansions for the orthogonal groups

Downloaded 0
detF (
r 50

`

dr , j f r~ t i !G5 (
r 150

`

(
r 250

`

¯ (
r N50

`

f r 1
~ t1! f r 2

~ t2!¯ f r N
~ tN!det@dr i , j #. ~A6!

Now, if any of ther i are equal, then the determinant on the right hand side will vanish bec
two rows would be identical. Thus, the sum can be restricted to distinct values of ther i ’s. Next,
since ther i ’s are all different, we would like to order them in descending order so thar i

.r i 11 . In doing so, we would like to not change the form of the determinant on the right h
side. So, for any switch of labels, we permute the rows to leave the form unchanged. This
in a factor of11 or 21, depending on how many permutations are needed. We can expres
simply by using theNth rank alternating tensor as

detF (
r 50

`

dr , j f r~ t i !G
5 (

r 1.r 2.¯.r N>0

`

det@dr i , j # (
m151

N

(
m251

N

¯ (
mN51

N

em1m2¯mN
f r m1

~ t1! f r m2
~ t2!¯ f r mN

~ tN!.

~A7!

Here we note that the term involvingmi sums is a determinant. Thus, taking the transpose of
determinant of thed’s, we conclude

detF (
r 50

`

dr , j f r~ t i !G5 (
r 1.r 2.¯.r N>0

`

det@dr j ,i #det@ f r j
~ t i !#, ~A8!

which proves the theorem.
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